Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.638
Filtrar
1.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731499

RESUMO

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Carbono , Reação de Maillard , Células-Tronco Mesenquimais , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Carbono/química , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Pontos Quânticos/química , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Enxofre/química
2.
J Exp Clin Cancer Res ; 43(1): 133, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698462

RESUMO

BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Lett ; 591: 216877, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615930

RESUMO

Mantle cell lymphoma (MCL) is an incurable and aggressive subtype of non-Hodgkin B-cell lymphoma. Increased lipid uptake, storage, and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. However, no data has been explored for the roles of lipid metabolism reprogramming in MCL. Here, we identified aberrant lipid metabolism reprogramming and PRMT5 as a key regulator of cholesterol and fatty acid metabolism reprogramming in MCL patients. High PRMT5 expression predicts adverse outcome prognosis in 105 patients with MCL and GEO database (GSE93291). PRMT5 deficiency resulted in proliferation defects and cell death by CRISPR/Cas9 editing. Moreover, PRMT5 inhibitors including SH3765 and EPZ015666 worked through blocking SREBP1/2 and FASN expression in MCL. Furthermore, PRMT5 was significantly associated with MYC expression in 105 MCL samples and the GEO database (GSE93291). CRISPR MYC knockout indicated PRMT5 can promote MCL outgrowth by inducing SREBP1/2 and FASN expression through the MYC pathway.


Assuntos
Proliferação de Células , Ácido Graxo Sintase Tipo I , Metabolismo dos Lipídeos , Linfoma de Célula do Manto , Proteína-Arginina N-Metiltransferases , Proteínas Proto-Oncogênicas c-myc , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Linhagem Celular Tumoral , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Regulação Neoplásica da Expressão Gênica , Animais , Camundongos , Masculino , Prognóstico , Feminino , Colesterol/metabolismo , Sistemas CRISPR-Cas , Reprogramação Metabólica
4.
J Agric Food Chem ; 72(18): 10391-10405, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669300

RESUMO

Metabolic-associated fatty liver disease (MAFLD) is witnessing a global surge; however, it still lacks effective pharmacological interventions. Fucoxanthin, a natural bioactive metabolite derived from marine brown algae, exhibits promising pharmacological functions, particularly in ameliorating metabolic disorders. However, the mechanisms underlying its therapeutic efficacy in addressing MAFLD remain elusive. Our present findings indicated that fucoxanthin significantly alleviated palmitic acid (PA)-induced hepatic lipid deposition in vitro and obesity-induced hepatic steatosis in ob/ob mice. Moreover, at both the protein and transcriptional levels, fucoxanthin effectively increased the expression of PPARα and CPT1 (involved in fatty acid oxidation) and suppressed FASN and SREBP1c (associated with lipogenesis) in both PA-induced HepG2 cells and hepatic tissues in ob/ob mice. This modulation was accompanied by the activation of AMPK. The capacity of fucoxanthin to improve hepatic lipid deposition was significantly attenuated when utilizing the AMPK inhibitor or siRNA-mediated AMPK silencing. Mechanistically, fucoxanthin activates AMPK, subsequently regulating the KEAP1/Nrf2/ARE signaling pathway to exert antioxidative effects and stimulating the PGC1α/NRF1 axis to enhance mitochondrial biogenesis. These collective actions contribute to fucoxanthin's amelioration of hepatic steatosis induced by metabolic perturbations. These findings offer valuable insights into the prospective utilization of fucoxanthin as a therapeutic strategy for managing MAFLD.


Assuntos
Fígado , Camundongos Endogâmicos C57BL , Xantofilas , Xantofilas/farmacologia , Animais , Humanos , Camundongos , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Lipogênese/efeitos dos fármacos , Camundongos Obesos
5.
Biochem Pharmacol ; 224: 116207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621425

RESUMO

Osimertinib is a novel epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), acting as the first-line medicine for advanced EGFR-mutated NSCLC. Recently, the acquired resistance to osimertinib brings great challenges to the advanced treatment. Therefore, it is in urgent need to find effective strategy to overcome osimertinib acquired resistance. Here, we demonstrated that SREBP pathway-driven lipogenesis was a key mediator to promote osimertinib acquired resistance, and firstly found Tanshinone IIA (Tan IIA), a natural pharmacologically active constituent isolated from Salvia miltiorrhiza, could overcome osimertinib-acquired resistance in vitro and in vivo via inhibiting SREBP pathway-mediated lipid lipogenesis by using LC-MS based cellular lipidomics analysis, quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, flow cytometry, small interfering RNAs transfection, and membrane fluidity assay et al. The results showed that SREBP1/2-driven lipogenesis was highly activated in osimertinib acquired resistant NSCLC cells, while knockdown or inhibition of SREBP1/2 could restore the sensitivity of NSCLC to osimertinib via altered the proportion of saturated phospholipids and unsaturated phospholipids in osimertinib acquired-resistant cells. Furthermore, Tanshinone IIA (Tan IIA) could reverse the acquired resistance to osimertinib in lung cancer. Mechanically, Tan IIA inhibited SREBP signaling mediated lipogenesis, changed the profiles of saturated phospholipids and unsaturated phospholipids, and thus promoted osimertinib acquired resistant cancer cells to be attacked by oxidative stress-induced damage and reduce the cell membrane fluidity. The reversal effect of Tan IIA on osimertinib acquired resistant NSCLC cells was also confirmed in vivo, which is helpful for the development of strategies to reverse osimertinib acquired resistance.


Assuntos
Abietanos , Acrilamidas , Resistencia a Medicamentos Antineoplásicos , Lipogênese , Neoplasias Pulmonares , Camundongos Nus , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Abietanos/farmacologia , Animais , Acrilamidas/farmacologia , Lipogênese/efeitos dos fármacos , Camundongos , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Masculino , Feminino , Indóis , Pirimidinas
6.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195030, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670485

RESUMO

Antiretroviral therapy-naive people living with HIV possess less fat than people without HIV. Previously, we found that HIV-1 transactivator of transcription (TAT) decreases fat in ob/ob mice. The TAT38 (a.a. 20-57) is important in the inhibition of adipogenesis and contains three functional domains: Cys-ZF domain (a.a. 20-35 TACTNCYCAKCCFQVC), core-domain (a.a. 36-46, FITKALGISYG), and protein transduction domain (PTD)(a.a. 47-57, RAKRRQRRR). Interestingly, the TAT38 region interacts with the Cyclin T1 of the P-TEFb complex, of which expression increases during adipogenesis. The X-ray crystallographic structure of the complex showed that the Cys-ZF and the core domain bind to the Cyclin T1 via hydrophobic interactions. To prepare TAT38 mimics with structural and functional similarities to TAT38, we replaced the core domain with a hydrophobic aliphatic amino acid (from carbon numbers 5 to 8). The TAT38 mimics with 6-hexanoic amino acid (TAT38 Ahx (C6)) and 7-heptanoic amino acid (TAT38 Ahp (C7)) inhibited adipogenesis of 3T3-L1 potently, reduced cellular triglyceride content, and decreased body weight of diet-induced obese (DIO) mice by 10.4-11 % in two weeks. The TAT38 and the TAT38 mimics potently repressed the adipogenic transcription factors genes, C/EBPα, PPARγ, and SREBP1. Also, they inhibit the phosphorylation of PPARγ. The TAT peptides may be promising candidates for development into a drug against obesity or diabetes.


Assuntos
Adipogenia , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , PPAR gama/metabolismo , Adipogenia/efeitos dos fármacos , Camundongos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Células 3T3-L1 , Humanos , Regulação da Expressão Gênica , Camundongos Obesos , Masculino , Ciclina T/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Estimuladoras de Ligação a CCAAT
7.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
8.
Cell Signal ; 119: 111183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636768

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide, with Hepatitis B virus (HBV) infection being the leading cause. This study aims to investigate the role of HBV in HCC pathogenesis involving glucose metabolism. Long non-coding RNA (lncRNA) OIP5-AS1 was significantly downregulated in HBV-positive HCC patients, and its low expression indicated a poor prognosis. This lncRNA was primarily localized in the cytoplasm, acting as a tumor suppressor. HBV protein X (HBx) repressed OIP5-AS1 expression by inhibiting a ligand-activated transcriptional factor peroxisome proliferator-activated receptor α (PPARα). Furthermore, mechanistic studies revealed that OIP5-AS1 inhibited tumor growth by suppressing Hexokinase domain component 1 (HKDC1)-mediated glycolysis. The expression of HKDC1 could be enhanced by transcriptional factor sterol regulatory element-binding protein 1 (SREBP1). OIP5-AS1 facilitated the ubiquitination and degradation of SREBP1 to suppress HKDC1 transcription, which inhibited glycolysis. The results suggest that lncRNA OIP5-AS1 plays an anti-oncogenic role in HBV-positive HCC via the HBx/OIP5-AS1/HKDC1 axis, providing a promising diagnostic marker and therapeutic target for HBV-positive HCC patients.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Glicólise , Hexoquinase , Neoplasias Hepáticas , RNA Longo não Codificante , Transativadores , Proteínas Virais Reguladoras e Acessórias , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Glicólise/genética , Transativadores/metabolismo , Transativadores/genética , Hexoquinase/metabolismo , Hexoquinase/genética , Animais , Vírus da Hepatite B , Masculino , Linhagem Celular Tumoral , Regulação para Baixo , Camundongos , Camundongos Nus , Feminino , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Camundongos Endogâmicos BALB C , PPAR alfa/metabolismo , PPAR alfa/genética
9.
Yakugaku Zasshi ; 144(4): 411-417, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38556316

RESUMO

Long-term caloric restriction (CR) is an effective intervention that improves whole-body metabolism, suppresses age-related pathophysiology, and extends lifespan. Although the beneficial effects of caloric restriction mediated by growth hormone/insulin-like growth factor-1 (GH/IGF-1) have been extensively studied, the mechanisms independent of GH/IGF-1 remain largely unknown. In this review, we focus on these GH/IGF-1-independent mechanisms, with a particular emphasis on the role of sterol regulatory element-binding protein 1c (SREBP-1c). CR increases the expression of SREBP-1c through the suppression of leptin signaling and enhances downstream factors involved in fatty acid synthesis in white adipose tissue (WAT). SREBP-1c also directly and indirectly increases the expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, a master regulator of mitochondrial biogenesis, leading to an increase in the number of mitochondria. Furthermore, SREBP-1c elevates expression of mitochondrial intermediate peptidase, which contributes to improving mitochondrial quality through the processing of sirtuin 3 into its mature form. Thus, it appears that CR exerts beneficial effects by modulating mitochondrial quantity and quality in WAT in a GH/IGF-1 signal-independent manner.


Assuntos
Fator de Crescimento Insulin-Like I , Longevidade , Fator de Crescimento Insulin-Like I/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Tecido Adiposo Branco/metabolismo
10.
J Nutr Biochem ; 128: 109626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527560

RESUMO

Along with the increasing prevalence of obesity worldwide, the deleterious effects of high-calorie diet are gradually recognized through more and more epidemiological studies. However, the concealed and chronic causality whitewashes its unhealthy character. Given an ingenious mechanism orchestrates the metabolic adaptation to high-fat high-fructose (HFF) diet and connive its lipotoxicity, in this study, an experimental rat/mouse model of obesity was induced and a comparative transcriptomic analysis was performed to probe the mystery. Our results demonstrated that HFF diet consumption altered the transcriptomic pattern as well as different high-calorie diet fed rat/mouse manifested distinct hepatic transcriptome. Validation with RT-qPCR and Western blotting confirmed that SREBP1-FASN involved in de novo lipogenesis partly mediated metabolic self-adaption. Moreover, hepatic ACSL1-CPT1A-CPT2 pathway involved in fatty acids ß-oxidation, played a key role in the metabolic adaption to HFF. Collectively, our findings enrich the knowledge of the chronic adaptation mechanisms and also shed light on future investigations. Meanwhile, our results also suggest that efforts to restore the fatty acids metabolic fate could be a promising avenue to fight against obesity and associated steatosis and insulin resistance challenged by HFF diet.


Assuntos
Dieta Hiperlipídica , Ácido Graxo Sintase Tipo I , Frutose , Fígado , Obesidade , Proteína de Ligação a Elemento Regulador de Esterol 1 , Transcriptoma , Animais , Frutose/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Masculino , Fígado/metabolismo , Obesidade/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Lipogênese , Camundongos Endogâmicos C57BL , Ratos , Camundongos , Ratos Sprague-Dawley , Ácidos Graxos/metabolismo
11.
J Nutr ; 154(5): 1505-1516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460786

RESUMO

BACKGROUND: Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES: This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS: Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS: Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS: This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.


Assuntos
Dieta Hiperlipídica , Gluconeogênese , Intolerância à Glucose , Fígado , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Gluconeogênese/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Humanos , Intolerância à Glucose/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Células HEK293 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Transdução de Sinais
12.
Science ; 383(6684): eadi3332, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359126

RESUMO

The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.


Assuntos
Lipogênese , Glicogênio Hepático , Fígado , Hepatopatia Gordurosa não Alcoólica , Pró-Proteína Convertases , Serina Endopeptidases , Uridina Difosfato Glucose , Animais , Humanos , Camundongos , Carbono/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pró-Proteína Convertases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Uridina Difosfato Glucose/administração & dosagem , Uridina Difosfato Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células HEK293
13.
Bioorg Chem ; 145: 107236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402796

RESUMO

In this study, 16 new compounds, six bibenzyls (1-6) and 10 naphthalenes (7-13), including three pairs of naphthalene enantiomers and three known compounds (14-16), were isolated from Dendrobium chrysanthum. Structurally, compounds 1-5 are previously undescribed dimeric bibenzyls, uniquely linked by unusual carbon bonds. The structures of the compounds were determined using spectroscopy and X-ray crystallography. The screening results indicated that 1, 2, and 5 showed remarkable lipid-lowering activities in FFA-induced HepG2 cells, with EC50 values ranging from 3.13 to 6.57 µM. Moreover, 1, 2, and 5 significantly decreased both the mRNA and protein levels of the target SREBP-1c, and 5 also reduced PPARα mRNA and protein levels. Therefore, 1, 2, and 5 are potential drugs against hepatic steatosis by targeting PPARα or SREBP-1c.


Assuntos
Bibenzilas , Dendrobium , Fígado Gorduroso , Bibenzilas/farmacologia , Bibenzilas/química , Dendrobium/química , PPAR alfa , RNA Mensageiro , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Naftalenos/química , Naftalenos/farmacologia
14.
Mol Nutr Food Res ; 68(6): e2300471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400696

RESUMO

To investigate the efficacy of anserine on antiobesity, C57BL/6 mice are orally administered with a high-fat diet (HFD) and different doses of anserine (60, 120, and 240 mg/kg/day) for 16 weeks. Body weight, lipid, and epididymal fat content in mice are measured, and their liver damage is observed. The results display that the body weight, epididymal fat content, and low-density lipoprotein cholesterol (LDL-C) content in anserine groups are decreased by 4.36-18.71%, 7.57-35.12%, and 24.32-44.40%, respectively. To further investigate the antiobesity mechanism of anserine, the expression of SREBP-1, NLRP3, NF-κB p65 (p65), and p-NF-κB p65 (p-p65) proteins in the liver and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1-α) and UCP-1 proteins in brown adipose tissue (BAT) is analyzed by Western blot. Results show that anserine can significantly decrease the expression of the NLRP3, p65, p-p65, and the SREBP-1 proteins and increase the expression of the PGC1-α and UCP-1 proteins. This study demonstrates that anserine lowered blood lipids and prevented obesity; its antiobesity mechanism may be related to the activation of brown fat by inflammation.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Anserina , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , NF-kappa B , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Peso Corporal , Fármacos Antiobesidade/farmacologia
15.
Proc Natl Acad Sci U S A ; 121(7): e2318822121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319967

RESUMO

The maintenance of cholesterol homeostasis is crucial for normal function at both the cellular and organismal levels. Two integral membrane proteins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and Scap, are key targets of a complex feedback regulatory system that operates to ensure cholesterol homeostasis. HMGCR catalyzes the rate-limiting step in the transformation of the 2-carbon precursor acetate to 27-carbon cholesterol. Scap mediates proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-bound transcription factor that controls expression of genes involved in the synthesis and uptake of cholesterol. Sterol accumulation triggers binding of HMGCR to endoplasmic reticulum (ER)-localized Insig proteins, leading to the enzyme's ubiquitination and proteasome-mediated ER-associated degradation (ERAD). Sterols also induce binding of Insigs to Scap, which leads to sequestration of Scap and its bound SREBP-2 in the ER, thereby preventing proteolytic activation of SREBP-2 in the Golgi. The oxygenated cholesterol derivative 25-hydroxycholesterol (25HC) and the methylated cholesterol synthesis intermediate 24,25-dihydrolanosterol (DHL) differentially modulate HMGCR and Scap. While both sterols promote binding of HMGCR to Insigs for ubiquitination and subsequent ERAD, only 25HC inhibits the Scap-mediated proteolytic activation of SREBP-2. We showed previously that 1,1-bisphosphonate esters mimic DHL, accelerating ERAD of HMGCR while sparing SREBP-2 activation. Building on these results, our current studies reveal specific, Insig-independent photoaffinity labeling of HMGCR by photoactivatable derivatives of the 1,1-bisphosphonate ester SRP-3042 and 25HC. These findings disclose a direct sterol binding mechanism as the trigger that initiates the HMGCR ERAD pathway, providing valuable insights into the intricate mechanisms that govern cholesterol homeostasis.


Assuntos
Fitosteróis , Esteróis , Esteróis/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Colesterol/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Carbono/metabolismo , Difosfonatos
16.
Chem Biol Interact ; 389: 110865, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38191086

RESUMO

Non-alcoholic Fatty Liver Disease (NAFLD) is one of the common side effects of tamoxifen treatment for estrogen receptor-positive breast cancer, and is representative of disorders of energy metabolism. Fatty liver is induced after tamoxifen (TAM) inhibition of estrogen receptor activity, but the exact mechanism is not clear. This study investigated the effects and mechanisms of TAM-induced steatosis in the liver. The effects and mechanisms of TAM on hepatocyte lipid metabolism were assessed using C57BL/6 female mice and human hepatoma cells. TAM promoted fat accumulation in the liver by upregulation of Srebp-1c expression. Regarding the molecular mechanism, TAM promoted the recruitment of the auxiliary transcriptional activator, p300, and dissociated the auxiliary transcriptional repressor, nuclear receptor corepressor (NCOR), of the complexes, which led to enhancement of Srebp-1c transcription and an increase of triglyceride (TG) synthesis. Vitamin D (VD), a common fat-soluble vitamin, can decrease TAM-induced NAFLD by promoting p300 dissociation and NCOR recruitment. Tamoxifen promoted the recruitment and dissociation of co-transcription factors on the LXR/ER/RXR receptor complex, leading to a disorder of liver lipid metabolism. VD interfered with TAM-induced liver lipid metabolism disorders by reversing this process.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Feminino , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores X do Fígado/metabolismo , Tamoxifeno/farmacologia , Vitamina D/farmacologia , Receptores de Estrogênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Vitaminas/metabolismo , Vitaminas/farmacologia
17.
J Biol Chem ; 300(2): 105655, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237682

RESUMO

Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Morte Celular , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Linfócitos T/metabolismo , Masculino
18.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256181

RESUMO

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.


Assuntos
Fígado Gorduroso , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas , Proteínas de Membrana , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Metabolismo dos Lipídeos , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética
19.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256272

RESUMO

Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.


Assuntos
Cornus , Lagomorpha , Extratos Vegetais , Animais , Coelhos , Antocianinas , Transportadores de Cassetes de Ligação de ATP , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Cornus/química , Dieta , Frutas/química , Fígado , Receptores X do Fígado/genética , Extratos Vegetais/farmacologia , PPAR alfa/genética , PPAR gama/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
20.
Cell Biochem Funct ; 42(1): e3918, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269516

RESUMO

Several cellular processes, including the recovery of misfolded proteins, the folding of polypeptide chains, transit of polypeptides across the membrane, construction and disassembly of protein complexes, and modulation of protein control, are carried out by DnaJ homolog subfamily A member 1 (DNAJA1), which belongs to the DnaJ heat-shock protein family. It is unknown if DNAJA1 regulates the production of milk in bovine mammary epithelium cells (BMECs). Methionine and leucine increased DNAJA1 expression and nuclear location, as seen by us. In contrast to DNAJA1 knockdown, overexpression of DNAJA1 boosted the production of milk proteins and fats as well as mammalian target of rapamycin (mTOR) and sterol regulatory element binding protein-1c (SREBP-1c). As a result of amino acids, mTOR and SREBP-1c gene expression are stimulated, and DNAJA1 is a positive regulator of BMECs' amino acid-induced controlled milk protein and fat production.


Assuntos
Células Epiteliais , Proteínas do Leite , Animais , Bovinos , Aminoácidos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA