Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Gene ; 889: 147800, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37716588

RESUMO

In eukaryotes, TATA-binding protein (TBP) occupancy of the core promoter globally correlates with transcriptional activity of class II genes. Elucidating how TBP is delivered to the TATA box or TATA-like element is crucial to understand the mechanisms of transcriptional regulation. A previous study demonstrated that the inhibitory DNA binding (IDB) surface of human TBP plays an indispensable role during the two-step formation of the TBP-TATA complex, first assuming an unstable and unbent intermediate conformation, and subsequently converting slowly to a stable and bent conformation. The DNA binding property of TBP is altered by physical contact of this surface with TBP regulators. In the present study, we examined whether the interaction between Taf1 N-terminal domain 2 (TAND2) and the IDB surface affected DNA binding property of yeast TBP by exploiting TAND2-fused TBP derivatives. TAND2 promoted formation of two distinct types of TBP-TATA complexes, which we arbitrarily designated as complex I and II. While complex I was stable and similar to the well-characterized original TBP-TATA complex, complex II was unstable and moved along DNA. Removal of TAND2 from TBP after complex formation revealed that continuous contact of TAND2 with the IDB surface was required for formation of complex II but not complex I. Further, TFIIA could be incorporated into the complex of TAND2-fused TBP and the TATA box, which was dependent on the amino-terminal non-conserved region of TBP, implying that this region could facilitate the exchange between TAND2 and TFIIA on the IDB surface. Collectively, these findings provide novel insights into the mechanism by which TBP is relieved from the interaction with TAND to bind the TATA box or TATA-like element within promoter-bound TFIID.


Assuntos
Regulação da Expressão Gênica , Fator de Transcrição TFIID , Humanos , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Proteína de Ligação a TATA-Box/química , DNA/metabolismo , Saccharomyces cerevisiae/genética , TATA Box/genética
2.
Nat Struct Mol Biol ; 30(5): 640-649, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106137

RESUMO

The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Adenosina Trifosfatases/metabolismo , Fatores de Transcrição/metabolismo , TATA Box , Proteína de Ligação a TATA-Box/química , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/química , Trifosfato de Adenosina/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química
3.
Curr Opin Struct Biol ; 75: 102404, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700575

RESUMO

RNA polymerase II (Pol II)-mediated transcription in eukaryotic cells starts with assembly of preinitiation complex (PIC) on core promoter, a DNA sequence of ∼100 base pairs. The transcription PIC consists of Pol II and general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. Previous structural studies focused on PIC assembled on TATA box promoters with TFIID replaced by its subunit, TATA box-binding protein (TBP). However, the megadalton TFIID complex is essential for promoter recognition, TBP loading onto promoter, and PIC assembly for almost all Pol II-mediated transcription, especially on the TATA-less promoters, which account for ∼85% of core promoters of human coding genes. The functions of TFIID could not be replaced by TBP. The recent breakthrough in structure determination of TFIID-based PIC complexes in different assembly stages revealed mechanistic insights into PIC assembly on TATA box and TATA-less promotes and provided a framework for further investigation of transcription initiation.


Assuntos
RNA Polimerase II , Fator de Transcrição TFIID , Iniciação da Transcrição Genética , Humanos , RNA Polimerase II/química , TATA Box , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIID/química
4.
Gene ; 833: 146581, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35597524

RESUMO

The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.


Assuntos
RNA Polimerase II , Proteína de Ligação a TATA-Box , Fatores de Transcrição , Transcrição Gênica , Adenosina Trifosfatases/genética , Animais , DNA/genética , Drosophila , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , TATA Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/química , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Fatores Associados à Proteína de Ligação a TATA , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Fatores de Transcrição/genética
5.
J Biol Chem ; 295(49): 16470-16486, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33051202

RESUMO

RNA-protein interfaces control key replication events during the HIV-1 life cycle. The viral trans-activator of transcription (Tat) protein uses an archetypal arginine-rich motif (ARM) to recruit the host positive transcription elongation factor b (pTEFb) complex onto the viral trans-activation response (TAR) RNA, leading to activation of HIV transcription. Efforts to block this interaction have stimulated production of biologics designed to disrupt this essential RNA-protein interface. Here, we present four co-crystal structures of lab-evolved TAR-binding proteins (TBPs) in complex with HIV-1 TAR. Our results reveal that high-affinity binding requires a distinct sequence and spacing of arginines within a specific ß2-ß3 hairpin loop that arose during selection. Although loops with as many as five arginines were analyzed, only three arginines could bind simultaneously with major-groove guanines. Amino acids that promote backbone interactions within the ß2-ß3 loop were also observed to be important for high-affinity interactions. Based on structural and affinity analyses, we designed two cyclic peptide mimics of the TAR-binding ß2-ß3 loop sequences present in two high-affinity TBPs (KD values of 4.2 ± 0.3 and 3.0 ± 0.3 nm). Our efforts yielded low-molecular weight compounds that bind TAR with low micromolar affinity (KD values ranging from 3.6 to 22 µm). Significantly, one cyclic compound within this series blocked binding of the Tat-ARM peptide to TAR in solution assays, whereas its linear counterpart did not. Overall, this work provides insight into protein-mediated TAR recognition and lays the ground for the development of cyclic peptide inhibitors of a vital HIV-1 RNA-protein interaction.


Assuntos
Arginina/química , Repetição Terminal Longa de HIV/genética , HIV-1/metabolismo , Peptídeos Cíclicos/química , RNA Viral/metabolismo , Proteína de Ligação a TATA-Box/química , Sequência de Aminoácidos , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Peptídeos Cíclicos/metabolismo , Ligação Proteica , RNA Viral/química , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Termodinâmica
6.
Nat Commun ; 11(1): 3019, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541649

RESUMO

Transcription factors (TFs) regulate target genes by specific interactions with DNA sequences. Detecting and understanding these interactions at the molecular level is of fundamental importance in biological and clinical contexts. Crosslinking mass spectrometry is a powerful tool to assist the structure prediction of protein complexes but has been limited to the study of protein-protein and protein-RNA interactions. Here, we present a femtosecond laser-induced crosslinking mass spectrometry (fliX-MS) workflow, which allows the mapping of protein-DNA contacts at single nucleotide and up to single amino acid resolution. Applied to recombinant histone octamers, NF1, and TBP in complex with DNA, our method is highly specific for the mapping of DNA binding domains. Identified crosslinks are in close agreement with previous biochemical data on DNA binding and mostly fit known complex structures. Applying fliX-MS to cells identifies several bona fide crosslinks on DNA binding domains, paving the way for future large scale ex vivo experiments.


Assuntos
DNA/química , Espectrometria de Massas/métodos , Fatores de Transcrição NFI/química , Proteína de Ligação a TATA-Box/química , Fatores de Transcrição/química , Animais , DNA/genética , DNA/metabolismo , Humanos , Lasers , Espectrometria de Massas/instrumentação , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Ligação Proteica , Domínios Proteicos , Suínos , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nat Commun ; 11(1): 2384, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404905

RESUMO

TATA-box binding protein (TBP) is required for every single transcription event in archaea and eukaryotes. It binds DNA and harbors two repeats with an internal structural symmetry that show sequence asymmetry. At various times in evolution, TBP has acquired multiple interaction partners and different organisms have evolved TBP paralogs with additional protein regions. Together, these observations raise questions of what molecular determinants (i.e. key residues) led to the ability of TBP to acquire new interactions, resulting in an increasingly complex transcriptional system in eukaryotes. We present a comprehensive study of the evolutionary history of TBP and its interaction partners across all domains of life, including viruses. Our analysis reveals the molecular determinants and suggests a unified and multi-stage evolutionary model for the functional innovations of TBP. These findings highlight how concerted chemical changes on a conserved structural scaffold allow for the emergence of complexity in a fundamental biological process.


Assuntos
Domínios Proteicos , TATA Box/genética , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica , Algoritmos , Sequência de Aminoácidos , Animais , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação/genética , Eucariotos/classificação , Eucariotos/genética , Eucariotos/metabolismo , Evolução Molecular , Humanos , Modelos Moleculares , Ligação Proteica , Homologia de Sequência de Aminoácidos , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Vírus/classificação , Vírus/genética , Vírus/metabolismo
9.
Nature ; 577(7792): 711-716, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969704

RESUMO

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes1. Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 Å resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Pichia , Regiões Promotoras Genéticas/genética , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/química , Transativadores/metabolismo , Sítios de Ligação , DNA Fúngico/química , DNA Fúngico/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Pichia/química , Pichia/genética , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIIA/química , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo
10.
Nature ; 577(7792): 717-720, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969703

RESUMO

Gene transcription by RNA polymerase II is regulated by activator proteins that recruit the coactivator complexes SAGA (Spt-Ada-Gcn5-acetyltransferase)1,2 and transcription factor IID (TFIID)2-4. SAGA is required for all regulated transcription5 and is conserved among eukaryotes6. SAGA contains four modules7-9: the activator-binding Tra1 module, the core module, the histone acetyltransferase (HAT) module and the histone deubiquitination (DUB) module. Previous studies provided partial structures10-14, but the structure of the central core module is unknown. Here we present the cryo-electron microscopy structure of SAGA from the yeast Saccharomyces cerevisiae and resolve the core module at 3.3 Å resolution. The core module consists of subunits Taf5, Sgf73 and Spt20, and a histone octamer-like fold. The octamer-like fold comprises the heterodimers Taf6-Taf9, Taf10-Spt7 and Taf12-Ada1, and two histone-fold domains in Spt3. Spt3 and the adjacent subunit Spt8 interact with the TATA box-binding protein (TBP)2,7,15-17. The octamer-like fold and its TBP-interacting region are similar in TFIID, whereas Taf5 and the Taf6 HEAT domain adopt distinct conformations. Taf12 and Spt20 form flexible connections to the Tra1 module, whereas Sgf73 tethers the DUB module. Binding of a nucleosome to SAGA displaces the HAT and DUB modules from the core-module surface, allowing the DUB module to bind one face of an ubiquitinated nucleosome.


Assuntos
Microscopia Crioeletrônica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae , Transativadores/química , Transativadores/ultraestrutura , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/ultraestrutura , Histonas/metabolismo , Modelos Moleculares , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIID/metabolismo , Ubiquitinação
11.
J Chem Inf Model ; 60(2): 866-879, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31917925

RESUMO

The TATA-box binding protein (TBP) is an important element of the transcription machinery in archaea and eukaryotic organisms. TBP is expressed in organisms adapted to different temperatures, indicating a robust structure, and experimental studies have shown that the mid-unfolding temperature (Tm) of TBP is directly correlated with the optimal growth temperature (OGT) of the organism. To understand which are the relevant structural requirements for its stability, we present the first structural and dynamic computational study of TBPs, combining molecular dynamics (MD) simulations and a quantitative structure-property relationship (QSPR) over a set of TBPs of organisms adapted to different temperatures. We found that the main structural properties of TBP used to adapt to high temperatures are an increase in the ease of desolvation of charged residues at the surface, an increase in the local resiliency, the presence of Leu clusters in the protein core, and an increase in the loss of hydrophobic packing in the N-terminal subdomain. In view of our results, we consider that TBP is a good model to study thermal adaptation, and our analysis opens the possibility of performing protein engineering on TBPs to study transcription at high or low temperatures.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Temperatura , Adaptação Fisiológica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Sulfetos/química
12.
Chem Biol Drug Des ; 95(1): 130-149, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31569300

RESUMO

The TATA-binding protein (TBP) is a central transcription factor in eukaryotes that interacts with a large number of different transcription factors; thus, affecting these interactions will be lethal for any living being. In this work, we present the first structural and dynamic computational study of the surface properties of the TBP DNA-binding domain for a set of parasites involved in diseases of worldwide interest. The sequence and structural differences of these TBPs, as compared with human TBP, were proposed to select representative ensembles generated from molecular dynamics simulations and to evaluate their druggability by molecular ensemble-based docking of drug-like molecules. We found that potential druggable sites correspond to the NC2-binding site, N-terminal tail, H2 helix, and the interdomain region, with good selectivity for Plasmodium falciparum, Necator americanus, Entamoeba histolytica, Candida albicans, and Taenia solium TBPs. The best hit compounds share structural similarity among themselves and have predicted dissociation constants ranging from nM to µM. These can be proposed as initial scaffolds for experimental testing and further optimization. In light of the obtained results, we propose TBP as an attractive therapeutic target for treatment of parasitic diseases.


Assuntos
DNA/química , Eucariotos/química , Compostos Orgânicos/química , Proteína de Ligação a TATA-Box/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Termodinâmica
13.
Curr Opin Struct Biol ; 61: 17-24, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31751889

RESUMO

TFIID is a large multiprotein assembly that serves as a general transcription factor for transcription initiation by eukaryotic RNA polymerase II (Pol II). TFIID is involved in the recognition of the core promoter sequences and neighboring chromatin marks, and can interact with gene-specific activators and repressors. In order to obtain a better molecular and mechanistic understanding of the function of TFIID, its structure has been pursued for many years. However, the scarcity of TFIID and its highly flexible nature have made this pursuit very challenging. Recent breakthroughs, largely due to methodological advances in cryo-electron microscopy, have finally described the structure of this complex, both alone and engaged with core promoter DNA, revealing the functional significance of its conformational complexity in the process of core promoter recognition and initiation of Pol II transcription. Here, we review these recent structural insights and discuss their implications for our understanding of eukaryotic transcription initiation.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas , Conformação Proteica , Fator de Transcrição TFIID/química , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/metabolismo
14.
Nat Struct Mol Biol ; 26(11): 1035-1043, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31686052

RESUMO

Transcription factor c-MYC is a potent oncoprotein; however, the mechanism of transcriptional regulation via MYC-protein interactions remains poorly understood. The TATA-binding protein (TBP) is an essential component of the transcription initiation complex TFIID and is required for gene expression. We identify two discrete regions mediating MYC-TBP interactions using structural, biochemical and cellular approaches. A 2.4 -Å resolution crystal structure reveals that human MYC amino acids 98-111 interact with TBP in the presence of the amino-terminal domain 1 of TBP-associated factor 1 (TAF1TAND1). Using biochemical approaches, we have shown that MYC amino acids 115-124 also interact with TBP independently of TAF1TAND1. Modeling reveals that this region of MYC resembles a TBP anchor motif found in factors that regulate TBP promoter loading. Site-specific MYC mutants that abrogate MYC-TBP interaction compromise MYC activity. We propose that MYC-TBP interactions propagate transcription by modulating the energetic landscape of transcription initiation complex assembly.


Assuntos
Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-myc/química , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo
15.
Parasitol Res ; 118(10): 3019-3031, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31473857

RESUMO

The protozoan parasite Trichomonas vaginalis is a common human pathogen from one of the earliest-diverging eukaryotic lineages. At the transcriptional level, the highly conserved Inr element of RNA pol II-transcribed genes surrounds the transcription start site and is recognised by IBP39, a protein exclusive of T. vaginalis. Typical TATA boxes have not been identified in this organism but, in contrast, BLAST analyses of the T. vaginalis genome identified two genes encoding putative TATA-binding proteins (herein referred to as TvTBP1 and TvTBP2). The goal of this work was to characterise these two proteins at the molecular level. Our results show that both TvTBPs theoretically adopt the saddle-shaped structure distinctive to TBPs and both Tvtbp genes are expressed in T. vaginalis. TvTBP1 did not complement a Saccharomyces cerevisiae mutant lacking TBP; however, TvTBP1 and TvTBP2 proteins bound T. vaginalis DNA promoter sequences in EMSA assays. We propose that TvTBP1 may be part of the preinitiation transcription complex in T. vaginalis since TvTBP1 recombinant protein was able to bind IBP39 in vitro. This work represents the first approach towards the characterisation of general transcription factors in this early divergent organism.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Protozoários/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Trichomonas vaginalis/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica , Trichomonas vaginalis/genética
16.
Angew Chem Int Ed Engl ; 58(35): 12010-12013, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31268220

RESUMO

Hoogsteen DNA base pairs (bps) are an alternative base pairing to canonical Watson-Crick bps and are thought to play important biochemical roles. Hoogsteen bps have been reported in a handful of X-ray structures of protein-DNA complexes. However, there are several examples of Hoogsteen bps in crystal structures that form Watson-Crick bps when examined under solution conditions. Furthermore, Hoogsteen bps can sometimes be difficult to resolve in DNA:protein complexes by X-ray crystallography due to ambiguous electron density and by solution-state NMR spectroscopy due to size limitations. Here, using infrared spectroscopy, we report the first direct solution-state observation of a Hoogsteen (G-C+ ) bp in a DNA:protein complex under solution conditions with specific application to DNA-bound TATA-box binding protein. These results support a previous assignment of a G-C+ Hoogsteen bp in the complex, and indicate that Hoogsteen bps do indeed exist under solution conditions in DNA:protein complexes.


Assuntos
Citosina/química , DNA/metabolismo , Guanina/química , Proteína de Ligação a TATA-Box/metabolismo , Pareamento de Bases , Cristalografia por Raios X , DNA/química , Conformação de Ácido Nucleico , Espectrofotometria Infravermelho , Proteína de Ligação a TATA-Box/química
17.
Nucleic Acids Res ; 47(16): 8410-8423, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31226204

RESUMO

The nucleosome core regulates DNA-templated processes through the highly conserved nucleosome acidic patch. While structural and biochemical studies have shown that the acidic patch controls chromatin factor binding and activity, few studies have elucidated its functions in vivo. We employed site-specific crosslinking to identify proteins that directly bind the acidic patch in Saccharomyces cerevisiae and demonstrated crosslinking of histone H2A to Paf1 complex subunit Rtf1 and FACT subunit Spt16. Rtf1 bound to nucleosomes through its histone modification domain, supporting its role as a cofactor in H2B K123 ubiquitylation. An acidic patch mutant showed defects in nucleosome positioning and occupancy genome-wide. Our results provide new information on the chromatin engagement of two central players in transcription elongation and emphasize the importance of the nucleosome core as a hub for proteins that regulate chromatin during transcription.


Assuntos
DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas Nucleares/genética , Nucleossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética , Sítios de Ligação , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
18.
Mater Sci Eng C Mater Biol Appl ; 100: 1-10, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948043

RESUMO

We demonstrate that a new, stable, artificial TATA (T - thymine, A - adenine) box is recognized by amino acids recognizing the natural TATA box. Here, the former mimicked, as a minimal motif, oligodeoxyribonucleotide interactions with amino acids of proteins involved in repairing of damaged dsDNA. By electropolymerization, we molecularly imprinted non-labeled 5'-TATAAA-3' via Watson-Crick nucleobase pairing, thus synthesizing, in a one-step procedure, the hexakis[bis(2,2'-bithien-5-yl)] TTTATA and simultaneously hybridizing it with the 5'-TATAAA-3' template. That is, a stable dsDNA analog having a controlled sequence of nucleobases was formed in the molecularly imprinted polymer (MIP). The 5'-TATAAA-3' was by the X-ray photoelectron spectroscopy (XPS) depth profiling found to be homogeneously distributed both in the bulk of the MIP film and on its surface. The 5'-TATAAA-3' concentration in the 2.8(±0.2)-nm relative surface area, ~140-nm thick MIP film was 2.1 mM. The MIP served as a matrix of an artificial TATA box with the TATAAA-promoter sequence. We comprehensively characterized this artificial DNA hybrid by the polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and X-ray photoelectron spectroscopy (XPS). Further, we examined interactions of DNA repairing TATA binding protein (TBP) amino acids with the artificial TATA box prepared. That is, molecules of l-phenylalanine aromatic amino acid were presumably engaged in stacking interactions with nucleobase steps of this artificial TATA box. The nitrogen-to­phosphorus atomic % ratio on the surface of the MIP-(5'-TATAAA-3') film increased by ~1.6 times after film immersing in the l-glutamic acid solution, as determined using the XPS depth profiling. Furthermore, l-lysine and l-serine preferentially interacted with the phosphate moiety of 5'-TATAAA-3'. We monitored amino acids interactions with the artificial TATA box using real-time piezoelectric microgravimetry at a quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy under flow injection analysis (FIA) conditions.


Assuntos
Reparo do DNA , Impressão Molecular , Polímeros/química , TATA Box/genética , Aminoácidos/química , Aminoácidos/metabolismo , DNA/química , DNA/metabolismo , Conformação Molecular , Espectroscopia Fotoeletrônica , Técnicas de Microbalança de Cristal de Quartzo , Ressonância de Plasmônio de Superfície , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo
19.
Biochem Soc Trans ; 47(1): 411-423, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30710057

RESUMO

In all domains of life, the regulation of transcription by DNA-dependent RNA polymerases (RNAPs) is achieved at the level of initiation to a large extent. Whereas bacterial promoters are recognized by a σ-factor bound to the RNAP, a complex set of transcription factors that recognize specific promoter elements is employed by archaeal and eukaryotic RNAPs. These initiation factors are of particular interest since the regulation of transcription critically relies on initiation rates and thus formation of pre-initiation complexes. The most conserved initiation factor is the TATA-binding protein (TBP), which is of crucial importance for all archaeal-eukaryotic transcription initiation complexes and the only factor required to achieve full rates of initiation in all three eukaryotic and the archaeal transcription systems. Recent structural, biochemical and genome-wide mapping data that focused on the archaeal and specialized RNAP I and III transcription system showed that the involvement and functional importance of TBP is divergent from the canonical role TBP plays in RNAP II transcription. Here, we review the role of TBP in the different transcription systems including a TBP-centric discussion of archaeal and eukaryotic initiation complexes. We furthermore highlight questions concerning the function of TBP that arise from these findings.


Assuntos
Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Iniciação da Transcrição Genética , Proteínas Arqueais , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Conformação Proteica
20.
Nucleic Acids Res ; 47(6): 2793-2806, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649478

RESUMO

The TATA-box Binding Protein (TBP) plays a central role in regulating gene expression and is the first step in the process of pre-initiation complex (PIC) formation on promoter DNA. The lifetime of TBP at the promoter site is controlled by several cofactors including the Modifier of transcription 1 (Mot1), an essential TBP-associated ATPase. Based on ensemble measurements, Mot1 can use adenosine triphosphate (ATP) hydrolysis to displace TBP from DNA and various models for how this activity is coupled to transcriptional regulation have been proposed. However, the underlying molecular mechanism of Mot1 action is not well understood. In this work, the interaction of Mot1 with the DNA/TBP complex was investigated by single-pair Förster resonance energy transfer (spFRET). Upon Mot1 binding to the DNA/TBP complex, a transition in the DNA/TBP conformation was observed. Hydrolysis of ATP by Mot1 led to a conformational change but was not sufficient to efficiently disrupt the complex. SpFRET measurements of dual-labeled DNA suggest that Mot1's ATPase activity primes incorrectly oriented TBP for dissociation from DNA and additional Mot1 in solution is necessary for TBP unbinding. These findings provide a framework for understanding how the efficiency of Mot1's catalytic activity is tuned to establish a dynamic pool of TBP without interfering with stable and functional TBP-containing complexes.


Assuntos
Adenosina Trifosfatases/fisiologia , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Catálise , DNA Fúngico/química , Escherichia coli , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA