Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8012): 697-703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658755

RESUMO

RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.


Assuntos
Microscopia Crioeletrônica , DNA de Cadeia Simples , Complexos Multiproteicos , Proteína Rad52 de Recombinação e Reparo de DNA , Proteína de Replicação A , Humanos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Modelos Moleculares , Ligação Proteica , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/ultraestrutura , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteína de Replicação A/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Domínios Proteicos , Sítios de Ligação
2.
Prog Biophys Mol Biol ; 117(2-3): 206-211, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542993

RESUMO

DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA).


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , DNA/química , DNA/ultraestrutura , Proteína de Replicação A/química , Animais , Sítios de Ligação , DNA/genética , Humanos , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Proteína de Replicação A/genética , Proteína de Replicação A/ultraestrutura
3.
Nucleic Acids Res ; 42(20): 12912-27, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25348395

RESUMO

The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork.


Assuntos
Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , DNA de Cadeia Simples/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Nucleares/química , Proteína de Replicação A/química , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Proteínas de Ligação a DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Replicação A/ultraestrutura
4.
J Mol Biol ; 426(19): 3246-3261, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25058683

RESUMO

Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single-molecule fluorescence approaches to examine human RPA (hRPA) diffusion along ssDNA and find that an hRPA heterotrimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1~5000nt(2) s(-1) at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA.


Assuntos
DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/química , Proteína de Replicação A/ultraestrutura , Carbocianinas/química , Reparo do DNA/genética , Replicação do DNA/genética , Corantes Fluorescentes/química , Rearranjo Gênico/genética , Humanos , Desnaturação de Ácido Nucleico/genética , Ligação Proteica/genética , Recombinação Genética
5.
Biochemistry ; 48(28): 6633-43, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19530647

RESUMO

The eukaryotic single-stranded DNA-binding protein, replication protein A (RPA), is essential in DNA metabolism and is phosphorylated in response to DNA-damaging agents. Rad52 and RPA participate in the repair of double-stranded DNA breaks (DSBs). It is known that human RPA and Rad52 form a complex, but the molecular mass, stoichiometry, and exact role of this complex in DSB repair are unclear. In this study, absolute molecular masses of individual proteins and complexes were measured in solution using analytical size-exclusion chromatography coupled with multiangle light scattering, the protein species present in each purified fraction were verified via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western analyses, and the presence of biotinylated ssDNA in the complexes was verified by chemiluminescence detection. Then, employing UV cross-linking, the protein partner holding the ssDNA was identified. These data show that phosphorylated RPA promoted formation of a complex with monomeric Rad52 and caused the transfer of ssDNA from RPA to Rad52. This suggests that RPA phosphorylation may regulate the first steps of DSB repair and is necessary for the mediator function of Rad52.


Assuntos
Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína de Replicação A/metabolismo , Cromatografia em Gel , DNA de Cadeia Simples/ultraestrutura , Humanos , Luz , Modelos Biológicos , Fosforilação , Proteína Rad52 de Recombinação e Reparo de DNA/ultraestrutura , Proteína de Replicação A/ultraestrutura , Espalhamento de Radiação
6.
J Biol Chem ; 283(18): 12166-74, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18310075

RESUMO

A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52 with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA binding activity and an oligomeric structure, is thought to be crucial for mediator activity and recombination. Unexpectedly, we find that the C-terminal region of Rad52 also harbors a DNA binding function. Importantly, the Rad52 C-terminal portion alone can promote Rad51 presynaptic filament assembly. The middle portion of Rad52 associates with DNA-bound RPA and contributes to the recombination mediator activity. Accordingly, expression of a protein species that harbors the middle and C-terminal regions of Rad52 in the rad52 Delta327 background enhances the association of Rad51 protein with a HO-made DNA double-strand break and partially complements the methylmethane sulfonate sensitivity of the mutant cells. Our results provide a mechanistic framework for rationalizing the multi-faceted role of Rad52 in recombination and DNA repair.


Assuntos
Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Teste de Complementação Genética , Microscopia Eletrônica , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Proteína Rad52 de Recombinação e Reparo de DNA/química , Proteína Rad52 de Recombinação e Reparo de DNA/isolamento & purificação , Proteína de Replicação A/metabolismo , Proteína de Replicação A/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA