Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 28(4): 388-397, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782614

RESUMO

The structural conservation across the AAA (ATPases associated with diverse cellular activities) protein family makes designing selective chemical inhibitors challenging. Here, we identify a triazolopyridine-based fragment that binds the AAA domain of human katanin, a microtubule-severing protein. We have developed a model for compound binding and designed ASPIR-1 (allele-specific, proximity-induced reactivity-based inhibitor-1), a cell-permeable compound that selectively inhibits katanin with an engineered cysteine mutation. Only in cells expressing mutant katanin does ASPIR-1 treatment increase the accumulation of CAMSAP2 at microtubule minus ends, confirming specific on-target cellular activity. Importantly, ASPIR-1 also selectively inhibits engineered cysteine mutants of human VPS4B and FIGL1-AAA proteins, involved in organelle dynamics and genome stability, respectively. Structural studies confirm our model for compound binding at the AAA ATPase site and the proximity-induced reactivity-based inhibition. Together, our findings suggest a chemical genetics approach to decipher AAA protein functions across essential cellular processes and to test hypotheses for developing therapeutics.


Assuntos
Proteínas AAA/genética , Katanina/genética , Proteínas Associadas aos Microtúbulos/genética , Piridinas/química , Proteínas AAA/antagonistas & inibidores , Proteínas AAA/ultraestrutura , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/ultraestrutura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Humanos , Katanina/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/genética , Microtúbulos/ultraestrutura , Conformação Proteica/efeitos dos fármacos , Domínios Proteicos/genética , Piridinas/farmacologia , Triazóis/química
3.
Elife ; 92020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295875

RESUMO

This article is dedicated to the memory of Michael G. Rossmann. Dating back to the last universal common ancestor, P-loop NTPases and Rossmanns comprise the most ubiquitous and diverse enzyme lineages. Despite similarities in their overall architecture and phosphate binding motif, a lack of sequence identity and some fundamental structural differences currently designates them as independent emergences. We systematically searched for structure and sequence elements shared by both lineages. We detected homologous segments that span the first ßαß motif of both lineages, including the phosphate binding loop and a conserved aspartate at the tip of ß2. The latter ligates the catalytic metal in P-loop NTPases, while in Rossmanns it binds the nucleotide's ribose moiety. Tubulin, a Rossmann GTPase, demonstrates the potential of the ß2-Asp to take either one of these two roles. While convergence cannot be completely ruled out, we show that both lineages likely emerged from a common ßαß segment that comprises the core of these enzyme families to this very day.


Assuntos
Proteínas AAA/metabolismo , Proteínas AAA/química , Proteínas AAA/genética , Sítios de Ligação , Evolução Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
4.
J Mol Biol ; 432(20): 5544-5564, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32750390

RESUMO

A hallmark of the catalytically essential Walker B motif of P-loop NTPases is the presence of an acidic residue (aspartate/glutamate) for efficient Mg2+ coordination. Although the Walker B motif has been identified in well-studied examples of P-loop NTPases, its identity is ambiguous in many families, for example, in the prokaryotic small Ras-like GTPase family of MglA. MglA, belonging to TRAFAC class of P-loop NTPases, possesses a threonine at the position equivalent to Walker B aspartate in eukaryotic Ras-like GTPases. To resolve the identity of the Walker B residue in MglA, we carried out a comprehensive analysis of Mg2+ coordination on P-loop NTPase structures. Atoms in the octahedral coordination of Mg2+ and their interactions comprise a network including water molecules, Walker A, Walker B and switch motifs of P-loop NTPases. Based on the conserved geometry of Mg2+ coordination, we confirm that a conserved aspartate functions as the Walker B residue of MglA, and validate it through mutagenesis and biochemical characterization. Location of the newly identified aspartate is spatially equivalent to the Walker B residue of the ASCE division of P-loop NTPases. Furthermore, similar to the allosteric regulation of the Walker B aspartate conformation in MglA, we identify protein families in which large conformational changes involving Walker B motif potentially function as allosteric regulators. The study unravels conserved features of Mg2+ coordination among divergent families of P-loop NTPases, especially between ancient Ras-like GTPases and ASCE family of ATPases. The conserved geometric features provide a foundation for design of nucleotide-hydrolyzing enzymes.


Assuntos
Domínio AAA/fisiologia , Proteínas AAA/metabolismo , GTP Fosfo-Hidrolases/química , Células Procarióticas/metabolismo , Proteínas ras/química , Proteínas AAA/genética , Evolução Molecular , GTP Fosfo-Hidrolases/genética , Modelos Moleculares , Nucleosídeo-Trifosfatase/metabolismo , Conformação Proteica , Proteínas ras/genética
6.
Biomolecules ; 10(3)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106553

RESUMO

Bacterial enhancer-binding proteins (bEBPs) are specialised transcriptional activators. bEBPs are hexameric AAA+ ATPases and use ATPase activities to remodel RNA polymerase (RNAP) complexes that contain the major variant sigma factor, σ54 to convert the initial closed complex to the transcription competent open complex. Earlier crystal structures of AAA+ domains alone have led to proposals of how nucleotide-bound states are sensed and propagated to substrate interactions. Recently, the structure of the AAA+ domain of a bEBP bound to RNAP-σ54-promoter DNA was revealed. Together with structures of the closed complex, an intermediate state where DNA is partially loaded into the RNAP cleft and the open promoter complex, a mechanistic understanding of how bEBPs use ATP to activate transcription can now be proposed. This review summarises current structural models and the emerging understanding of how this special class of AAA+ proteins utilises ATPase activities to allow σ54-dependent transcription initiation.


Assuntos
Proteínas AAA/metabolismo , Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas AAA/química , Proteínas AAA/genética , Trifosfato de Adenosina/metabolismo , Bactérias/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
7.
Cell Chem Biol ; 26(9): 1263-1273.e5, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31257183

RESUMO

Drug-like inhibitors are often designed by mimicking cofactor or substrate interactions with enzymes. However, as active sites are comprised of conserved residues, it is difficult to identify the critical interactions needed to design selective inhibitors. We are developing an approach, named RADD (resistance analysis during design), which involves engineering point mutations in the target to generate active alleles and testing compounds against them. Mutations that alter compound potency identify residues that make key interactions with the inhibitor and predict target-binding poses. Here, we apply this approach to analyze how diaminotriazole-based inhibitors bind spastin, a microtubule-severing AAA (ATPase associated with diverse cellular activities) protein. The distinct binding poses predicted for two similar inhibitors were confirmed by a series of X-ray structures. Importantly, our approach not only reveals how selective inhibition of the target can be achieved but also identifies resistance-conferring mutations at the early stages of the design process.


Assuntos
Engenharia de Proteínas/métodos , Espastina/efeitos dos fármacos , Espastina/genética , Proteínas AAA/genética , Adenosina Trifosfatases/metabolismo , Amitrol (Herbicida)/química , Fenômenos Bioquímicos , Domínio Catalítico , Cristalografia por Raios X/métodos , Desenho de Fármacos , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Mutação Puntual/genética , Espastina/antagonistas & inibidores , Triazóis/química , Tubulina (Proteína)/química
8.
Sci Rep ; 9(1): 712, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679587

RESUMO

Despite recent advances in understanding the biogenesis of iron-sulfur (Fe-S) proteins, most studies focused on aerobic bacteria as model organisms. Accordingly, multiple players have been proposed to participate in the Fe-S delivery step to apo-target proteins, but critical gaps exist in the knowledge of Fe-S proteins biogenesis in anaerobic organisms. Mrp/NBP35 ATP-binding proteins are a subclass of the soluble P-loop containing nucleoside triphosphate hydrolase superfamily (P-loop NTPase) known to bind and transfer Fe-S clusters in vitro. Here, we report investigations of a novel atypical two-domain Mrp/NBP35 ATP-binding protein named MrpORP associating a P-loop NTPase domain with a dinitrogenase iron-molybdenum cofactor biosynthesis domain (Di-Nase). Characterization of full length MrpORP, as well as of its two domains, showed that both domains bind Fe-S clusters. We provide in vitro evidence that the P-loop NTPase domain of the MrpORP can efficiently transfer its Fe-S cluster to apo-target proteins of the ORange Protein (ORP) complex, suggesting that this novel protein is involved in the maturation of these Fe-S proteins. Last, we showed for the first time, by fluorescence microscopy imaging a polar localization of a Mrp/NBP35 protein.


Assuntos
Proteínas de Bactérias/metabolismo , Desulfovibrio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Proteínas AAA/genética , Proteínas AAA/metabolismo , Proteínas de Bactérias/genética , Citosol , Desulfovibrio/classificação , Desulfovibrio/genética , Proteínas de Ligação ao GTP/genética , Proteínas Ferro-Enxofre/genética , Molibdoferredoxina/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Ligação Proteica , Domínios Proteicos
9.
Elife ; 72018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30047865

RESUMO

The innate immune sensor retinoic acid-inducible gene I (RIG-I) detects cytosolic viral RNA and requires a conformational change caused by both ATP and RNA binding to induce an active signaling state and to trigger an immune response. Previously, we showed that ATP hydrolysis removes RIG-I from lower-affinity self-RNAs (Lässig et al., 2015), revealing how ATP turnover helps RIG-I distinguish viral from self-RNA and explaining why a mutation in a motif that slows down ATP hydrolysis causes the autoimmune disease Singleton-Merten syndrome (SMS). Here we show that a different, mechanistically unexplained SMS variant, C268F, which is localized in the ATP-binding P-loop, can signal independently of ATP but is still dependent on RNA. The structure of RIG-I C268F in complex with double-stranded RNA reveals that C268F helps induce a structural conformation in RIG-I that is similar to that induced by ATP. Our results uncover an unexpected mechanism to explain how a mutation in a P-loop ATPase can induce a gain-of-function ATP state in the absence of ATP.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Doenças da Aorta/genética , Proteína DEAD-box 58/química , Hipoplasia do Esmalte Dentário/genética , Metacarpo/anormalidades , Doenças Musculares/genética , Odontodisplasia/genética , Osteoporose/genética , Calcificação Vascular/genética , Proteínas AAA/química , Proteínas AAA/genética , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Doenças da Aorta/enzimologia , Doenças da Aorta/patologia , Citosol/virologia , Proteína DEAD-box 58/genética , Hipoplasia do Esmalte Dentário/enzimologia , Hipoplasia do Esmalte Dentário/patologia , Humanos , Hidrólise , Imunidade Inata/genética , Metacarpo/enzimologia , Metacarpo/patologia , Doenças Musculares/enzimologia , Doenças Musculares/patologia , Mutação , Odontodisplasia/enzimologia , Odontodisplasia/patologia , Osteoporose/enzimologia , Osteoporose/patologia , Ligação Proteica , Conformação Proteica , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA Viral/química , RNA Viral/genética , Receptores Imunológicos , Calcificação Vascular/enzimologia , Calcificação Vascular/patologia
10.
Mol Genet Genomics ; 293(1): 17-31, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28900732

RESUMO

STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.


Assuntos
Proteínas AAA/genética , Resistência à Doença/genética , Evolução Molecular , Genoma de Planta/genética , Adenosina Trifosfatases/genética , Genômica , Oryza/enzimologia , Oryza/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA