RESUMO
Antifreeze agents play a critical role in various fields including tissue engineering, gene therapy, therapeutic protein production, and transplantation. Commonly used antifreeze agents such as DMSO and other organic substances are known to have cytotoxic effects. Antifreeze proteins sourced from cold-adapted organisms offer a promising solution by inhibiting ice crystal formation; however, their effectiveness is hindered by a dynamic ice-shaping (DIS) effect and thermal hysteresis (TH) properties. In response to these limitations, antifreeze peptides (AFPs) have been developed as alternatives to antifreeze proteins, providing similar antifreeze properties without the associated drawbacks. This review explores the methods for acquiring AFPs, with a particular emphasis on chemical synthesis. It aims to offer valuable insights and practical implications to drive the realm of sub-zero storage.
Assuntos
Proteínas Anticongelantes , Proteínas Anticongelantes/química , Peptídeos/química , Peptídeos/farmacologia , Crioprotetores/química , Crioprotetores/farmacologia , Humanos , Animais , GeloRESUMO
In 2012, the molecular structure of a new, broad class of ice-binding proteins, classified as "domain of unknown function" (DUF) 3494, was described for the first time. These proteins have a common tertiary structure and are characterized by a very wide spectrum of antifreeze activity (from weakly active to hyperactive). The ice-binding surface (IBS) region of these molecules differs significantly in its structure from the IBS of previously known antifreeze proteins (AFPs), showing a complete lack of regularity and high hydrophilicity. The presence of a regular, repeating structural motif in the IBS region of hitherto known AFP molecules, combined with the hydrophobic nature of this surface, promotes the formation of an ice-like ordering of the solvation water layer and, as a result, facilitates the process of transformation of this water layer into ice. It is, therefore, surprising that the newly discovered DUF3494 class of proteins clearly breaks out of this characteristic. In this paper, using molecular dynamics simulations, we analyze the solvation water structure of the IBS region of both DUF3494 family molecules and AFPs. As we show, although the IBS of DUF3494 molecules does not form an ice-like water structure in the solvation layer, this is compensated by the formation of the equivalent of "anchored clathrate water," in the form of a relatively large number of water molecules bound to the surface of the protein molecule and providing potential binding sites for it to the ice surface.
Assuntos
Proteínas Anticongelantes , Gelo , Simulação de Dinâmica Molecular , Proteínas Anticongelantes/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Solventes/químicaRESUMO
Large-scale biosafe T-cell cryopreservation is required to bring T-cell therapies to the market, but it remains challenging due to the cytotoxicity of common cryoprotectants [e.g., dimethyl sulfoxide (DMSO)] and unavoidable ice injuries to cells. Herein, inspired by natural globular antifreeze proteins, we establish a biocompatible zwitterionic magnetic nanoparticle (ZMNP)-based cryoprotection system, achieving large-scale cryopreservation of T cells for lymphoma immunotherapy. ZMNPs could form a globular hydration shell to inhibit water molecule aggregation as well as ice growth, and the surficial hydration strength-antifreeze performance relationship of ZMNPs was investigated. During the thawing process, ZMNPs possessed a magnetic field-mediated nanowarming property that enabled rapid heating and also facilitated easy magnetic separation for cell recovery. These combined effects resulted in a high post-thaw viability (>80%) of large-scale T-cell cryopreservation (20 mL). Notably, post-thaw T cells exhibited similar transcript profiles to fresh cells, while up- or downregulation of 1050 genes was found in the DMSO group. In a mouse E.G7-OVA lymphoma model, ZMNP-system-cryopreserved T cells achieved a tumor suppression rate of 77.5%, twice as high as the DMSO group. This work holds great promise for the application of advanced cryopreservation techniques in the development of therapeutic cellular products.
Assuntos
Proteínas Anticongelantes , Criopreservação , Crioprotetores , Imunoterapia , Linfoma , Linfócitos T , Animais , Camundongos , Linfoma/terapia , Linfoma/patologia , Linfoma/imunologia , Proteínas Anticongelantes/química , Proteínas Anticongelantes/farmacologia , Crioprotetores/farmacologia , Crioprotetores/química , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Nanopartículas/química , Nanopartículas de Magnetita/químicaRESUMO
Ice formation is a critical challenge across multiple fields, from industrial applications to biological preservation. Inspired by natural antifreeze proteins, we designed and synthesized a new class of small-molecule antifreezes based on α-helical p-terphenyl scaffolds with guanidine side chains. These p-terphenyl guanidines 1, among the smallest molecules that mimic α-helical structures, exhibit potent ice recrystallization inhibition (IRI) activity, similar to that of existing large α-helical antifreeze compounds. The most effective compound, 1a, with four C1-carbon guanidine moieties, demonstrated a superior IRI activity of 0.46 (1 mg/mL). Using molecular dynamics simulations with density-functional theory and separate pKa calculations, we elucidated the mechanisms underlying their antifreeze properties.
Assuntos
Guanidinas , Simulação de Dinâmica Molecular , Guanidinas/química , Guanidinas/síntese química , Proteínas Anticongelantes/química , Compostos de Terfenil/química , Compostos de Terfenil/farmacologia , Compostos de Terfenil/síntese química , Desenho de Fármacos , Estrutura Molecular , Teoria da Densidade Funcional , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Gelo , Cristalização , Crioprotetores/química , Crioprotetores/farmacologiaRESUMO
Antifreeze proteins (AFPs) can inhibit ice crystal growth. The ice-binding mechanism of AFPs remains unclear, yet the hydration shells of AFPs are thought to play an important role in modulating the binding of AFPs and ice. Here, we performed all-atom molecular dynamics simulations of an AFP from Choristoneura fumiferana (CfAFP) at four different temperatures, with a focus on analysis at 240 and 300 K, to investigate the dynamic and thermodynamic characteristics of hydration shells around ice-binding surfaces (IBS) and non-ice-binding surfaces (NIBS). Our results revealed that the dynamics of CfAFP hydration shells were highly heterogeneous, with its IBS favoring a less dense and more tetrahedral solvation shell, and NIBS hydration shells having opposite features to those of the IBS. The IBS of nine typical hyperactive AFPs were found to be in pure low-entropy hydration shell region, indicating that low-entropy hydration shell region of IBS and the tetrahedral arrangements of water molecules around them mediate the ice-binding mechanism of AFPs. It is because the entropy increase of the low-entropy hydration shell around IBS, while the higher entropy water molecules at NIBS most likely prevent ice crystal growth. These findings provide new mechanistic insights into the ice-binding of AFPs.
Assuntos
Proteínas Anticongelantes , Proteínas de Insetos , Mariposas , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Mariposas/química , Mariposas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Gelo , Entropia , Animais , Adsorção , Simulação por ComputadorRESUMO
In this study, peptides designed using fragments of an antifreeze protein (AFP) from the freeze-tolerant insect Tenebrio molitor, TmAFP, were evaluated as inhibitors of clathrate hydrate formation. It was found that these peptides exhibit inhibitory effects by both direct and indirect mechanisms. The direct mechanism involves the displacement of methane molecules by hydrophobic methyl groups from threonine residues, preventing their diffusion to the hydrate surface. The indirect mechanism is characterized by the formation of cylindrical gas bubbles, the morphology of which reduces the pressure difference at the bubble interface, thereby slowing methane transport. The transfer of methane to the hydrate interface is primarily dominated by gas bubbles in the presence of antifreeze peptides. Spherical bubbles facilitate methane migration and potentially accelerate hydrate formation; conversely, the promotion of a cylindrical bubble morphology by two of the designed systems was found to mitigate this effect, leading to slower methane transport and reduced hydrate growth. These findings provide valuable guidance for the design of effective peptide-based inhibitors of natural-gas hydrate formation with potential applications in the energy and environmental sectors.
Assuntos
Proteínas Anticongelantes , Metano , Tenebrio , Água , Proteínas Anticongelantes/química , Cinética , Metano/química , Metano/análogos & derivados , Água/química , Tenebrio/química , Animais , Gases/química , Peptídeos/química , Peptídeos/farmacologiaRESUMO
Shifts in environmental conditions can impose strong selection for adaptive traits. During the Cenozoic era, as the oceans cooled, many marine teleost fish species were at risk of freezing. This led to the independent emergence of distinct ice-binding antifreeze proteins (AFPs). The report in this issue by Graham and Davies reveals the development of AFP genes in shorthorn and longhorn sculpin from a copy of the lunapark gene. The predicted sculpin AFP sequences are unrelated to that of lunapark; the coding sequences for the AFPs appear to have arisen from small portions of the lunapark gene by codon frameshifting along with a series of mutations.
Assuntos
Proteínas Anticongelantes , Proteínas de Peixes , Peixes , Animais , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/química , Peixes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Evolução MolecularRESUMO
An antifreeze protein's inclusion into ice can be used to purify it from other proteins and solutes. Domains that are covalently attached to the antifreeze protein are also drawn into the ice such that the ice-binding portion of the fusion protein can be used as an affinity tag. Here we have explored the use of ice-affinity tags on multi-subunit proteins. When an ice-binding protein was attached as a tag to multisubunit complexes a substantial portion of each multimer dissociated during overgrowth by the ice. The protein subunit attached to the affinity tag was enriched in the ice and the other subunit was appreciably excluded. We suggest that step growth of the advancing ice front generates shearing forces on the bound complex that can disrupt non-covalent protein-protein interactions. This will effectively limit the use of ice-affinity tags to single subunit proteins.
Assuntos
Proteínas Anticongelantes , Gelo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/isolamento & purificação , Proteínas Anticongelantes/genética , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismoRESUMO
The freezability of chicken spermatozoa is low, therefore, effective cryoprotectants is desiderated. Antifreeze proteins (AFPs) are widely found in cold-tolerant species and help them to survive in freezing environments. This study was the first to evaluate the effects of different concentrations of plant-originated antifreeze glycoprotein (AFGP) (0, 0.1, 1, and 5 µg/mL) on post-thawed sperm motion characteristics, morphology, mitochondrial function, antioxidant activity, and fertilizing potential in chickens. Results showed that the total motility of 0.1 to 1 µg/mL AFGP groups were significantly higher than those of the 5 µg/mL AFGP group (P < 0.05). The post-thawed sperm viability of 0.1 µg/mL AFGP group was significantly higher than any of test groups (P < 0.05). Higher abnormal morphology rate of post-thawed sperm was observed in the control group (0 µg/mL AFGP) than in the 0.1, 1, and 5 µg/mL AFGP groups (P < 0.05). The concentrations of malondialdehyde (MDA) decreased gradually with the increase of AFGP concentration. ATP was significantly higher in the 0.1 and 1 µg/mL AFGP groups than those of control and any of test groups (P < 0.05). The 0.1 to 1 µg/mL AFGP groups had increased mitochondrial membrane potential (MMP) level (P > 0.05). The 0.1 µg/mL AFGP group had the highest average fertility (61.36%) compared with control group (57.02%) and any of test groups of chickens at 31 wk of age, and the 1 µg/mL AFGP group had the highest average fertility (37.72%) compared with control group (21.73%) and any of test groups of chickens at 65 wk of age. In conclusion, the results from this study suggest lower concentration of AFGP (0.1-1 µg/mL) showed positive effect for sperm function. This study inspires the continuous evaluation and seeking right way of adopting different kinds of AFPs in rooster semen cryopreservation.
Assuntos
Proteínas Anticongelantes , Galinhas , Criopreservação , Preservação do Sêmen , Animais , Masculino , Proteínas Anticongelantes/química , Galinhas/fisiologia , Criopreservação/veterinária , Crioprotetores/farmacologia , Relação Dose-Resposta a Droga , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Triticum/químicaRESUMO
Antifreeze peptide (AFP) including in frozen protein ink is an inevitable trend because AFP can make protein ink suitable for 3D printing after freezing. AFP-based surimi ink (ASI) was firstly investigated, and the AFP significantly enhanced 3D printability of frozen surimi ink. The rheological and textural results of ASI show that the τ0, K, and n values are 321.14 Pa, 2.2259 × 105 Pa·sn, and 0.19, respectively, and the rupture strength of the 3D structure is up to 217.67 g. Circular dichroism, intermolecular force, and differential scanning calorimeter show ASI has more undenatured protein after freezing when compared that surimi ink (SI), which was denatured, and the α-helix changed to a ß-sheet due to the destruction of hydrogen bonds and the exposure of hydrophobic groups. The water distribution, water holding capacity, and microstructure indicate that ASI effectively binds free water after freezing, while SI has weak water binding capacity and a large amount of free water is formed. ASI is suitable for 3D printing, and can print up to 40.0 mm hollow isolation column and 50.0 mm high Wuba which is not possible with SI. The application of AFP provides guidance for 3D printing frozen protein ink in food industry.
Assuntos
Proteínas Anticongelantes , Congelamento , Tinta , Impressão Tridimensional , Proteínas Anticongelantes/química , Reologia , Água/químicaRESUMO
The quality of surimi, widely used in processed seafood, is compromised by freeze-thaw cycles, leading to protein denaturation and oxidative degradation. The objective of this study is to explore the effects of adding natural whey peptide hydrolysate (WPH) on the myofibrillar proteins of repeatedly freeze-thawed surimi. Results indicated surimi treated with 15% WPH exhibited only a 128% increase in surface hydrophobicity and a maximum peroxide value of 7.84 µg/kg, significantly lower than the control group. Additionally, salt-soluble protein content, emulsification activity, and stability decreased with the increase in freeze-thaw cycles. With a 15% WPH offering the most significant protective effect, evidenced by reductions of only 25.02%, 42.52% and 37.02% in salt-soluble protein content, emulsification activity, and stability, respectively. These outcomes demonstrate that WPH effectively reduces protein denaturation during repeated freeze-thaw processes. Future research should explore the molecular mechanisms underlying WPH's protective effects and evaluate their applicability in other food systems.
Assuntos
Congelamento , Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Hidrolisados de Proteína/química , Animais , Produtos Pesqueiros/análise , Proteínas Musculares/química , Proteínas de Peixes/química , Proteínas Anticongelantes/química , Interações Hidrofóbicas e Hidrofílicas , Manipulação de AlimentosRESUMO
Antifreeze proteins (AFPs) are found in a variety of marine cold-water fishes where they prevent freezing by binding to nascent ice crystals. Their diversity (types I, II, III and antifreeze glycoproteins), as well as their scattered taxonomic distribution hint at their complex evolutionary history. In particular, type I AFPs appear to have arisen in response to the Late Cenozoic Ice Age that began ~ 34 million years ago via convergence in four different groups of fish that diverged from lineages lacking this AFP. The progenitor of the alanine-rich α-helical type I AFPs of sculpins has now been identified as lunapark, an integral membrane protein of the endoplasmic reticulum. Following gene duplication and loss of all but three of the 15 exons, the final exon, which encoded a glutamate- and glutamine-rich segment, was converted to an alanine-rich sequence by a combination of frameshifting and mutation. Subsequent gene duplications produced numerous isoforms falling into four distinct groups. The origin of the flounder type I AFP is quite different. Here, a small segment from the original antiviral protein gene was amplified and the rest of the coding sequence was lost, while the gene structure was largely retained. The independent origins of type I AFPs with up to 83% sequence identity in flounder and sculpin demonstrate strong convergent selection at the level of protein sequence for alanine-rich single alpha helices that bind to ice. Recent acquisition of these AFPs has allowed sculpins to occupy icy seawater niches with reduced competition and predation from other teleost species.
Assuntos
Proteínas Anticongelantes , Evolução Molecular , Duplicação Gênica , Animais , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Mutação da Fase de Leitura , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/química , Peixes/genética , Sequência de Aminoácidos , FilogeniaRESUMO
The development of new materials for antifreezing and anti-icing applications is a big challenge in industry and academic area. Inspired by the antifreeze proteins, latex particles with superhydrophilic zwitterionic shells and superhydrophobic cores are synthesized by reversible addition-fragmentation chain transfer emulsion polymerization, and the applications of the latex particles in antifreezing and anti-icing applications are investigated. In antifreezing study, the critical aggregate temperature (CAT) of the latex particles decreases, and the separation of the melting and freezing temperature of ice increases with the particle concentration. Enzyme molecules can be cryopreserved in the particle solution, and their bioactivities are well maintained. Latex particles are casted into latex films with dynamic surfaces. Anti-icing performances, including antifrosting properties, freezing delay time, and ice adhesion strengths, are studied; and the water-treated latex films present stronger anti-icing properties than other films, due to the synergistic effects of the superhydrophilic and superhydrophobic components. In addition, latex particles with zwitterionic shells and poly(n-butyl methacrylate) cores, and latex particles with small molecular surfactant on the surfaces are synthesized. The antifreezing performances of the latex particles and anti-icing properties of the latex films are compared.
Assuntos
Interações Hidrofóbicas e Hidrofílicas , Látex , Látex/química , Propriedades de Superfície , Tamanho da Partícula , Congelamento , Proteínas Anticongelantes/químicaRESUMO
Antifreeze proteins (AFPs) are remarkable biomolecules that suppress ice formation at trace concentrations. To inhibit ice growth, AFPs must not only bind to ice crystals, but also resist engulfment by ice. The highest supercooling, [Formula: see text], for which AFPs are able to resist engulfment is widely believed to scale as the inverse of the separation, [Formula: see text], between bound AFPs, whereas its dependence on the molecular characteristics of the AFP remains poorly understood. By using specialized molecular simulations and interfacial thermodynamics, here, we show that in contrast with conventional wisdom, [Formula: see text] scales as [Formula: see text] and not as [Formula: see text]. We further show that [Formula: see text] is proportional to AFP size and that diverse naturally occurring AFPs are optimal at resisting engulfment by ice. By facilitating the development of AFP structure-function relationships, we hope that our findings will pave the way for the rational design of AFPs.
Assuntos
Proteínas Anticongelantes , Gelo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Termodinâmica , Simulação de Dinâmica Molecular , Animais , CristalizaçãoRESUMO
Molecules that inhibit the growth of ice crystals are highly desirable for applications in building materials, foods, and agriculture. Antifreezes are particularly essential in biomedicine for tissue banking, yet molecules currently in use have known toxic effects. Antifreeze glycoproteins have evolved naturally in polar fish species living in subzero climates, but practical issues with collection and purification have limited their commercial use. Here, we present a synthetic strategy using polymerization of amino acid N-carboxyanhydrides to produce polypeptide mimics of these potent natural antifreeze proteins. We investigated a set of mimics with varied structural properties and identified a glycopolypeptide with potent ice recrystallization inhibition properties. We optimized for molecular weight, characterized their conformations, and verified their cytocompatibility in a human cell line. Overall, we present a material that will have broad applications as a biocompatible antifreeze.
Assuntos
Proteínas Anticongelantes , Proteínas Anticongelantes/química , Humanos , Glicosilação , Animais , Gelo , Cristalização , Linhagem Celular , Glicopeptídeos/química , Glicopeptídeos/farmacologiaRESUMO
Antifreeze proteins have wide applications in the medical and food industries. In this study, we propose a stacking-based classifier that can effectively identify antifreeze proteins. Initially, feature extraction was performed in three aspects: reduction properties, scalable pseudo amino acid composition, and physicochemical properties. A hybrid feature set comprised of the combined information from these three categories was obtained. Subsequently, we trained the training set based on LightGBM, XGBoost, and RandomForest algorithms, and the training outcomes were passed to the Logistic algorithm for matching, thereby establishing a stacking algorithm. The proposed algorithm was tested on the test set and an independent validation set. Experimental data indicates that the algorithm achieved a recognition accuracy of 98.3 %, and an accuracy of 98.5 % on the validation set. Lastly, we analyzed the reasons why numerical features achieved high recognition capabilities from multiple aspects. Data dimensionality reduction and the analysis from two-dimensional and three-dimensional views revealed separability between positive and negative samples, and the protein three-dimensional structure further demonstrated significant differences in related features between the two samples. Analysis of the classifier revealed that Hr*Hr, HrHr, and Sc-PseAAC_1, 188D(152,116,57,183) were among the seven most important numerical features affecting algorithm recognition. For Hr*Hr and HrHr, supportive sequence level evidence for the reduction dictionary was found in terms of conservation area analysis, multiple sequence alignment, and amino acid conservative substitution. Moreover, the importance of the reduction dictionary was recognized through a comparative analysis of importance before and after the reduction, realizing the effectiveness of the dictionary in improving feature importance. A decision tree model has been utilized to discern the distinctions between dipeptides associated with the physical and chemical properties of His(H), Iso(I), Leu(L), and Lys(K) and other dipeptides. We finally analyzed the other seven features of importance, and data analysis confirmed that hydrophobicity, secondary structure, charge properties, van der Waals forces, and solvent accessibility are also factors affecting the antifreeze capability of proteins.
Assuntos
Algoritmos , Proteínas Anticongelantes , Proteínas Anticongelantes/química , Aminoácidos/química , Bases de Dados de Proteínas , Biologia Computacional/métodosRESUMO
Antarctic temperature variations and long periods of freezing shaped the evolution of microorganisms with unique survival mechanisms. These resilient organisms exhibit several adaptations for life in extreme cold. In such ecosystems, microorganisms endure the absence of liquid water and exhibit resistance to freezing by producing water-binding molecules such as antifreeze proteins (AFP). AFPs modify the ice structure, lower the freezing point, and inhibit recrystallization. The objective of this study was to select and identify microorganisms isolated from different Antarctic ecosystems based on their resistance to temperatures below 0 °C. Furthermore, the study sought to characterize these microorganisms regarding their potential antifreeze adaptive mechanisms. Samples of soil, moss, permafrost, and marine sediment were collected on King George Island, located in the South Shetland archipelago, Antarctica. Bacteria and yeasts were isolated and subjected to freezing-resistance and ice recrystallization inhibition (IR) tests. A total of 215 microorganisms were isolated, out of which 118 were molecularly identified through molecular analysis using the 16S rRNA and ITS regions. Furthermore, our study identified 24 freezing-resistant isolates, including two yeasts and 22 bacteria. A total of 131 protein extracts were subjected to the IR test, revealing 14 isolates positive for AFP production. Finally, four isolates showed both freeze-resistance and IR activity (Arthrobacter sp. BGS04, Pseudomonas sp. BGS05, Cryobacterium sp. P64, and Acinetobacter sp. M1_25C). This study emphasizes the diversity of Antarctic microorganisms with the ability to tolerate freezing conditions. These microorganisms warrant further investigation to conduct a comprehensive analysis of their antifreeze capabilities, with the goal of exploring their potential for future biotechnological applications.
Assuntos
Proteínas Anticongelantes , Bactérias , Congelamento , Regiões Antárticas , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Ilhas , Filogenia , Leveduras/genética , Leveduras/classificação , Leveduras/isolamento & purificação , Leveduras/metabolismo , RNA Ribossômico 16S/genética , EcossistemaRESUMO
Gelatin methacrylate (GelMA) hydrogels are expected to be ideal skin tissue engineering dressings for a wide range of clinical treatments. Herein, we report the preparation of GelMA or antifreeze GelMA hydrogel sheets with different GelMA concentrations, crosslinking times, and cryoprotectant (CPA) concentrations. The crystallization properties of GelMA or antifreeze GelMA hydrogel sheets were studied by cryomicroscopy and differential scanning calorimetry (DSC). It was found that the growth of ice crystals was slower when GelMA hydrogel concentration was more than 7%. The 10% DMSO-7% GelMA hydrogel sheets crosslinked for 60 min showed no ice crystal formation and growth during cooling and warming. The DSC results showed that the vitrification temperature of the 10% DMSO-7% GelMA hydrogel sheet was -111°C. Furthermore, slow freezing and rapid freezing of fibroblast-laden GelMA or antifreeze GelMA hydrogel sheets, and tissue-engineered skin constructs were studied. The results showed no significant difference in cell survival between slow (88.8% ± 1.51) and rapid (89.2% ± 3.00) freezing of fibroblast-loaded 10% DMSO-7% GelMA hydrogel sheets, and significantly higher than that of 7% GelMA hydrogel sheets (33.4% ± 5.46). The cell viability was higher in tissue-engineered skin constructs after slow freezing (86.34% ± 1.45) than rapid freezing (72.74% ± 1.34). We believe that the combination of antifreeze hydrogels and tissue engineering will facilitate the cryopreservation of tissue engineering constructs.
Assuntos
Criopreservação , Fibroblastos , Gelatina , Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Hidrogéis/farmacologia , Gelatina/química , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Cristalização , Crioprotetores/farmacologia , Crioprotetores/química , Metacrilatos/química , Pele/metabolismo , Camundongos , Proteínas Anticongelantes/química , Proteínas Anticongelantes/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacosRESUMO
Ice-binding proteins (IBPs) are expressed in various organisms for several functions, such as protecting them from freezing and freeze injuries. Via adsorption on ice surfaces, IBPs depress ice growth and recrystallization and affect nucleation and ice shaping. IBPs have shown promise in mitigating ice growth under moderate supercooling conditions, but their functionality under cryogenic conditions has been less explored. In this study, we investigate the impact of two types of antifreeze proteins (AFPs): type III AFP from fish and a hyperactive AFP from an insect, the Tenebrio molitor AFP, in vitrified dimethylsulfoxide (DMSO) solutions. We report that these AFPs depress devitrification at -80 °C. Furthermore, in cases where devitrification does occur, AFPs depress ice recrystallization during the warming stage. The data directly demonstrate that AFPs are active at temperatures below the regime of homogeneous nucleation. This research paves the way for exploring AFPs as potential enhancers of cryopreservation techniques, minimizing ice-growth-related damage, and promoting advancements in this vital field.
Assuntos
Gelo , alfa-Fetoproteínas , Animais , Temperatura , Congelamento , Proteínas Anticongelantes/químicaRESUMO
Exploring a novel natural cryoprotectant and understanding its antifreeze mechanism allows the rational design of future sustainable antifreeze analogues. In this study, various antifreeze polysaccharides were isolated from wheat bran, and the antifreeze activity was comparatively studied in relation to the molecular structure. The antifreeze mechanism was further revealed based on the interactions of polysaccharides and water molecules through dynamic simulation analysis. The antifreeze polysaccharides showed distinct ice recrystallization inhibition activity, and structural analysis suggested that the polysaccharides were arabinoxylan, featuring a xylan backbone with a majority of Araf and minor fractions of Manp, Galp, and Glcp involved in the side chain. The antifreeze arabinoxylan, characterized by lower molecular weight, less branching, and more flexible conformation, could weaken the hydrogen bonding of the surrounding water molecules more evidently, thus retarding the transformation of water molecules into the ordered ice structure.