Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.300
Filtrar
1.
Nat Commun ; 15(1): 5499, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951509

RESUMO

Argonaute proteins are the central effectors of RNA-guided RNA silencing pathways in eukaryotes, playing crucial roles in gene repression and defense against viruses and transposons. Eukaryotic Argonautes are subdivided into two clades: AGOs generally facilitate miRNA- or siRNA-mediated silencing, while PIWIs generally facilitate piRNA-mediated silencing. It is currently unclear when and how Argonaute-based RNA silencing mechanisms arose and diverged during the emergence and early evolution of eukaryotes. Here, we show that in Asgard archaea, the closest prokaryotic relatives of eukaryotes, an evolutionary expansion of Argonaute proteins took place. In particular, a deep-branching PIWI protein (HrAgo1) encoded by the genome of the Lokiarchaeon 'Candidatus Harpocratesius repetitus' shares a common origin with eukaryotic PIWI proteins. Contrasting known prokaryotic Argonautes that use single-stranded DNA as guides and/or targets, HrAgo1 mediates RNA-guided RNA cleavage, and facilitates gene silencing when expressed in human cells and supplied with miRNA precursors. A cryo-EM structure of HrAgo1, combined with quantitative single-molecule experiments, reveals that the protein displays structural features and target-binding modes that are a mix of those of eukaryotic AGO and PIWI proteins. Thus, this deep-branching archaeal PIWI may have retained an ancestral molecular architecture that preceded the functional and mechanistic divergence of eukaryotic AGOs and PIWIs.


Assuntos
Proteínas Argonautas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Humanos , Interferência de RNA , Archaea/genética , Archaea/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Microscopia Crioeletrônica , MicroRNAs/genética , MicroRNAs/metabolismo , Evolução Molecular , Filogenia
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000272

RESUMO

In recent years, interest in very small proteins (µ-proteins) has increased significantly, and they were found to fulfill important functions in all prokaryotic and eukaryotic species. The halophilic archaeon Haloferax volcanii encodes about 400 µ-proteins of less than 70 amino acids, 49 of which contain at least two C(P)XCG motifs and are, thus, predicted zinc finger proteins. The determination of the NMR solution structure of HVO_2753 revealed that only one of two predicted zinc fingers actually bound zinc, while a second one was metal-free. Therefore, the aim of the current study was the homologous production of additional C(P)XCG proteins and the quantification of their zinc content. Attempts to produce 31 proteins failed, underscoring the particular difficulties of working with µ-proteins. In total, 14 proteins could be produced and purified, and the zinc content was determined. Only nine proteins complexed zinc, while five proteins were zinc-free. Three of the latter could be analyzed using ESI-MS and were found to contain another metal, most likely cobalt or nickel. Therefore, at least in haloarchaea, the variability of predicted C(P)XCG zinc finger motifs is higher than anticipated, and they can be metal-free, bind zinc, or bind another metal. Notably, AlphaFold2 cannot correctly predict whether or not the four cysteines have the tetrahedral configuration that is a prerequisite for metal binding.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Dedos de Zinco , Zinco , Haloferax volcanii/metabolismo , Haloferax volcanii/química , Zinco/metabolismo , Zinco/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ligação Proteica , Sequência de Aminoácidos
3.
Nat Commun ; 15(1): 5841, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992036

RESUMO

The swimming device of archaea-the archaellum-presents asparagine (N)-linked glycans. While N-glycosylation serves numerous roles in archaea, including enabling their survival in extreme environments, how this post-translational modification contributes to cell motility remains under-explored. Here, we report the cryo-EM structure of archaellum filaments from the haloarchaeon Halobacterium salinarum, where archaellins, the building blocks of the archaellum, are N-glycosylated, and the N-glycosylation pathway is well-resolved. We further determined structures of archaellum filaments from two N-glycosylation mutant strains that generate truncated glycans and analyzed their motility. While cells from the parent strain exhibited unidirectional motility, the N-glycosylation mutant strain cells swam in ever-changing directions within a limited area. Although these mutant strain cells presented archaellum filaments that were highly similar in architecture to those of the parent strain, N-linked glycan truncation greatly affected interactions between archaellum filaments, leading to dramatic clustering of both isolated and cell-attached filaments. We propose that the N-linked tetrasaccharides decorating archaellins act as physical spacers that minimize the archaellum filament aggregation that limits cell motility.


Assuntos
Proteínas Arqueais , Halobacterium salinarum , Glicosilação , Halobacterium salinarum/metabolismo , Halobacterium salinarum/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Polissacarídeos/metabolismo , Microscopia Crioeletrônica , Mutação , Citoesqueleto/metabolismo , Processamento de Proteína Pós-Traducional , Movimento Celular
4.
Methods Mol Biol ; 2819: 279-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028512

RESUMO

Atomic force microscopy is a high-resolution imaging technique useful for observing the structures of biomolecular complexes. This approach provides a straightforward method to characterize the binding behavior of different chromatin architectural proteins and to analyze the increasingly complex structural units assembled on the DNA. The protocol describes the preparation, AFM imaging, and structural analysis of chromatin that is reconstituted in vitro using purified proteins and DNA. Here, we describe the successful application of the method on the chromatin architectural proteins of the archaeon Sulfolobus solfataricus.


Assuntos
DNA , Microscopia de Força Atômica , Sulfolobus solfataricus , Microscopia de Força Atômica/métodos , Sulfolobus solfataricus/metabolismo , DNA/química , DNA/metabolismo , Cromatina/metabolismo , Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ligação Proteica
5.
Biophys J ; 123(13): 1846-1856, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824390

RESUMO

Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-ß-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.


Assuntos
Ácido Aspártico Proteases , Haloferax volcanii , Difração de Nêutrons , Multimerização Proteica , Espalhamento a Baixo Ângulo , Ácido Aspártico Proteases/metabolismo , Ácido Aspártico Proteases/química , Haloferax volcanii/enzimologia , Membrana Celular/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína
6.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 464-473, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860981

RESUMO

Eukaryotic and archaeal translation initiation factor 2 in complex with GTP delivers the initiator methionyl-tRNA to the small ribosomal subunit. Over the past 20 years, thanks to the efforts of various research groups, including ours, this factor from the archaeon Sulfolobus solfataricus and its individual subunits have been crystallized in ten different space groups. Analysis of the molecular packing in these crystals makes it possible to better understand the roles of functionally significant switches and other elements of the nucleotide-binding pocket during the function of the factor as well as the influence of external effects on its transition between active and inactive states.


Assuntos
Proteínas Arqueais , Sulfolobus solfataricus , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Conformação Proteica , Sítios de Ligação , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo
7.
Cell ; 187(13): 3357-3372.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866018

RESUMO

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.


Assuntos
Archaea , Hidrogênio , Hidrogenase , Filogenia , Archaea/genética , Archaea/enzimologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Genoma Arqueal , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Hidrogenase/genética , Hidrogenase/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Estrutura Terciária de Proteína
8.
Proc Natl Acad Sci U S A ; 121(26): e2318761121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885389

RESUMO

Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.


Assuntos
Archaea , Proteínas Arqueais , Filogenia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Archaea/metabolismo , Archaea/genética , Thermococcus/metabolismo , Thermococcus/genética , Éteres de Glicerila/metabolismo , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/biossíntese
9.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38896033

RESUMO

Selenocysteine (Sec) is encoded by the UGA codon that normally functions as a stop signal and is specifically incorporated into selenoproteins via a unique recoding mechanism. The translational recoding of UGA as Sec is directed by an unusual RNA structure, the SECIS element. Although archaea and eukaryotes adopt similar Sec encoding machinery, the SECIS elements have no similarities to each other with regard to sequence and structure. We analyzed >400 Asgard archaeal genomes to examine the occurrence of both Sec encoding system and selenoproteins in this archaeal superphylum, the closest prokaryotic relatives of eukaryotes. A comprehensive map of Sec utilization trait has been generated, providing the most detailed understanding of the use of this nonstandard amino acid in Asgard archaea so far. By characterizing the selenoproteomes of all organisms, several selenoprotein-rich phyla and species were identified. Most Asgard archaeal selenoprotein genes possess eukaryotic SECIS-like structures with varying degrees of diversity. Moreover, euryarchaeal SECIS elements might originate from Asgard archaeal SECIS elements via lateral gene transfer, indicating a complex and dynamic scenario of the evolution of SECIS element within archaea. Finally, a roadmap for the transition of eukaryotic SECIS elements from archaea was proposed, and selenophosphate synthetase may serve as a potential intermediate for the generation of ancestral eukaryotic SECIS element. Our results offer new insights into a deeper understanding of the evolution of Sec insertion machinery.


Assuntos
Archaea , Eucariotos , Selenocisteína , Selenoproteínas , Selenocisteína/metabolismo , Selenocisteína/genética , Archaea/genética , Archaea/metabolismo , Archaea/classificação , Selenoproteínas/genética , Selenoproteínas/metabolismo , Eucariotos/genética , Eucariotos/classificação , Eucariotos/metabolismo , Genoma Arqueal , Proteoma , Códon de Terminação/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Evolução Molecular , Transferência Genética Horizontal , Filogenia
10.
Biomolecules ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38927025

RESUMO

The exosome multiprotein complex plays a critical role in RNA processing and degradation. This system governs the regulation of mRNA quality, degradation in the cytoplasm, the processing of short noncoding RNA, and the breakdown of RNA fragments. We determined two crystal structures of exosome components from Thermoplasma acidophilum (Taci): one with a resolution of 2.3 Å that reveals the central components (TaciRrp41 and TaciRrp42), and another with a resolution of 3.5 Å that displays the whole exosome (TaciRrp41, TaciRrp42, and TaciRrp4). The fundamental exosome structure revealed the presence of a heterodimeric complex consisting of TaciRrp41 and TaciRrp42. The structure comprises nine subunits, with TaciRrp41 and TaciRrp42 arranged in a circular configuration, while TaciRrp4 is located at the apex. The RNA degradation capabilities of the TaciRrp4:41:42 complex were verified by RNA degradation assays, consistent with prior findings in other archaeal exosomes. The resemblance between archaeal exosomes and bacterial PNPase suggests a common mechanism for RNA degradation. Despite sharing comparable topologies, the surface charge distributions of TaciRrp4 and other archaea structures are surprisingly distinct. Different RNA breakdown substrates may be responsible for this variation. These newfound structural findings enhance our comprehension of RNA processing and degradation in biological systems.


Assuntos
Proteínas Arqueais , Exossomos , Thermoplasma , Thermoplasma/metabolismo , Exossomos/metabolismo , Exossomos/química , Cristalografia por Raios X , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Estabilidade de RNA
11.
Nat Commun ; 15(1): 5051, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877024

RESUMO

Type IV pili are filamentous appendages found in most bacteria and archaea, where they can support functions such as surface adhesion, DNA uptake, aggregation, and motility. In most bacteria, PilT-family ATPases disassemble adhesion pili, causing them to rapidly retract and produce twitching motility, important for surface colonization. As archaea do not possess PilT homologs, it was thought that archaeal pili cannot retract and that archaea do not exhibit twitching motility. Here, we use live-cell imaging, automated cell tracking, fluorescence imaging, and genetic manipulation to show that the hyperthermophilic archaeon Sulfolobus acidocaldarius exhibits twitching motility, driven by retractable adhesion (Aap) pili, under physiologically relevant conditions (75 °C, pH 2). Aap pili are thus capable of retraction in the absence of a PilT homolog, suggesting that the ancestral type IV pili in the last universal common ancestor (LUCA) were capable of retraction.


Assuntos
Fímbrias Bacterianas , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/fisiologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética
12.
Nat Commun ; 15(1): 5049, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877064

RESUMO

Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.


Assuntos
Proteínas Arqueais , Microscopia Crioeletrônica , Proteínas de Fímbrias , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/ultraestrutura , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Modelos Moleculares , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/química , Conformação Proteica , Sequência de Aminoácidos
13.
Nat Commun ; 15(1): 4858, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871712

RESUMO

Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales, are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c-type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales, is not a methanogen but a CO2-reducing, electron-fueled acetogen without electron bifurcation.


Assuntos
Metano , Metano/metabolismo , Genoma Arqueal , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Metagenoma/genética , Filogenia , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Metagenômica
14.
Nat Commun ; 15(1): 5256, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898040

RESUMO

Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp3)-C(sp3) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.


Assuntos
Archaea , Oxigênio , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Archaea/genética , Archaea/metabolismo , Archaea/enzimologia , Oxigênio/metabolismo , Anaerobiose , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Glicerol/metabolismo , Metagenoma , Filogenia
15.
Nat Commun ; 15(1): 5050, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877033

RESUMO

Amongst the major types of archaeal filaments, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus system (Ups) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Ups in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility. Here, we present a cryoEM structure of the Aap of the archaeal model organism Sulfolobus acidocaldarius. We identify the component subunit as AapB and find that while its structure follows the canonical T4P blueprint, it adopts three distinct conformations within the pilus. The tri-conformer Aap structure that we describe challenges our current understanding of pilus structure and sheds new light on the principles of twitching motility.


Assuntos
Microscopia Crioeletrônica , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/fisiologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/fisiologia , Fímbrias Bacterianas/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Modelos Moleculares
16.
Appl Environ Microbiol ; 90(6): e0069124, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809047

RESUMO

Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism Methanosarcina barkeri is a metabolically versatile methanogen, which can utilize acetate, methanol, and H2/CO2 to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate M. barkeri growth and gene transcription under different substrate regimes. According to the results, M. barkeri showed the best growth under methanol, followed by H2/CO2 and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase hdrBCA operon in M. barkeri. HdrR was able to bind to the hdrBCA operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.IMPORTANCEThe microorganism Methanosarcina barkeri has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the hdrBCA operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating hdrBCA operon transcription in the model methanogen M. barkeri. The results clarified that HdrR serves as a regulator of heterodisulfide reductase hdrBCA operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.


Assuntos
Proteínas Arqueais , Methanosarcina barkeri , Óperon , Oxirredutases , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Transcrição Gênica , Metano/metabolismo , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Acetatos/metabolismo , Hidrogênio/metabolismo
17.
Appl Environ Microbiol ; 90(6): e0057124, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814058

RESUMO

Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin-like transcriptional activators, proteins harboring a domain of unknown function (DUF2249), and cyanoglobin. In addition, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.IMPORTANCEDenitrification, a fundamental process within the nitrogen cycle, has been subject to extensive investigation due to its close association with anthropogenic activities, and its contribution to the global warming issue, mainly through the release of N2O emissions. Although our comprehension of denitrification and its implications is generally well established, most studies have been conducted in non-extreme environments with mesophilic microorganisms. Consequently, there is a significant knowledge gap concerning extremophilic denitrifiers, particularly those inhabiting hypersaline environments. The significance of this research was to delve into the process of haloarchaeal denitrification, utilizing the complete denitrifier haloarchaeon Haloferax mediterranei as a model organism. This research led to the analysis of the metabolic state of this microorganism under denitrifying conditions and the identification of regulatory signals and genes encoding proteins potentially involved in this pathway, serving as a valuable resource for future molecular studies.


Assuntos
Desnitrificação , Perfilação da Expressão Gênica , Transcriptoma , Desnitrificação/genética , Regulação da Expressão Gênica em Archaea , Haloferax mediterranei/genética , Haloferax mediterranei/metabolismo , RNA-Seq , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
18.
J Biol Chem ; 300(6): 107379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762184

RESUMO

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.


Assuntos
Proteínas Arqueais , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Cristalografia por Raios X , Methanocaldococcus/enzimologia , Methanocaldococcus/metabolismo , Ligação Proteica , Multimerização Proteica , DNA Helicases/metabolismo , DNA Helicases/química , DNA Helicases/genética , Modelos Moleculares , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética
19.
J Bacteriol ; 206(6): e0008924, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38819156

RESUMO

Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. In trans expression of arlI and arlJ mutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlI and ∆pilA[1-6]∆arlJ confirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA expression in trans in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirA cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals three Haloferax volcanii proteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.


Assuntos
Proteínas Arqueais , Proteínas de Fímbrias , Regulação da Expressão Gênica em Archaea , Haloferax volcanii , Haloferax volcanii/genética , Haloferax volcanii/fisiologia , Haloferax volcanii/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia
20.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787390

RESUMO

Archaeal cell biology is an emerging field expected to identify fundamental cellular processes, help resolve the deep evolutionary history of cellular life, and contribute new components and functions in biotechnology and synthetic biology. To facilitate these, we have developed plasmid vectors that allow convenient cloning and production of proteins and fusion proteins with flexible, rigid, or semi-rigid linkers in the model archaeon Haloferax volcanii. For protein subcellular localization studies using fluorescent protein (FP) tags, we created vectors incorporating a range of codon-optimized fluorescent proteins for N- or C-terminal tagging, including GFP, mNeonGreen, mCherry, YPet, mTurquoise2 and mScarlet-I. Obtaining functional fusion proteins can be challenging with proteins involved in multiple interactions, mainly due to steric interference. We demonstrated the use of the new vector system to screen for improved function in cytoskeletal protein FP fusions, and identified FtsZ1-FPs that are functional in cell division and CetZ1-FPs that are functional in motility and rod cell development. Both the type of linker and the type of FP influenced the functionality of the resulting fusions. The vector design also facilitates convenient cloning and tandem expression of two genes or fusion genes, controlled by a modified tryptophan-inducible promoter, and we demonstrated its use for dual-colour imaging of tagged proteins in H. volcanii cells. These tools should promote further development and applications of archaeal molecular and cellular biology and biotechnology.


Assuntos
Proteínas Arqueais , Clonagem Molecular , Vetores Genéticos , Haloferax volcanii , Proteínas Luminescentes , Plasmídeos , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA