Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 8(1): 129, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771067

RESUMO

Leukotrienes (LTs) contribute to the neuropathology of chronic neurodegenerative disorders including Alzheimer's Disease (AD), where they mediate neuroinflammation and neuronal cell-death. In consequence, blocking the action of Leukotrienes (LTs) ameliorates pathologies and improves cognitive function in animal models of neurodegeneration. Surprisingly, the source of Leukotrienes (LTs) in the brain is largely unknown. Here, we identified the Leukotriene (LT) synthesis rate-limiting enzyme 5-Lipoxygenase (5-Lox) primarily in neurons and to a lesser extent in a subpopulation of microglia in human Alzheimer´s Disease (AD) hippocampus brain sections and in brains of APP Swedish PS1 dE9 (APP-PS1) mice, a transgenic model for Alzheimer´s Disease (AD) pathology. The 5-Lipoxygenase (5-Lox) activating protein (FLAP), which anchors 5-Lipoxygenase (5-Lox) to the membrane and mediates the contact to the substrate arachidonic acid, was confined exclusively to microglia with the entire microglia population expressing 5-Lipoxygenase activating protein (FLAP). To define the contribution of microglia in the Leukotriene (LT) biosynthesis pathway, we ablated microglia using the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 in wildtype (WT) and APP-PS1 mice. Microglia ablation not only diminished the expression of FLAP and of the Leukotriene (LT) receptor Cysteinylleukotriene receptor 1 (CysLTR1), as expected based on their microglia cell type-specific expression, but also drastically reduced 5-Lipoxygenase (5-Lox) mRNA expression in the brain and its protein expression in neurons, in particular in wildtype (WT) mice. In conclusion i) microglia are key in Leukotriene (LT) biosynthesis, and ii) they regulate neuronal 5-Lipoxygenase (5-Lox) expression implying a yet unknown signaling mechanism between neurons and microglia.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Leucotrienos/biossíntese , Microglia/metabolismo , Proteínas Ativadoras de 5-Lipoxigenase/biossíntese , Animais , Araquidonato 5-Lipoxigenase/biossíntese , Feminino , Humanos , Masculino , Camundongos , Neurônios/metabolismo
2.
Carcinogenesis ; 34(6): 1251-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23393225

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most debilitating malignancies in humans, and one of the reasons for this is the inability to diagnose this disease early in its development. To search for biomarkers that can be used for early diagnosis of PDAC, we established a rat model of human PDAC in which expression of a human K-ras(G12V) oncogene and induction of PDAC are regulated by the Cre/lox system. In the present study, transgenic rats bearing PDAC and control transgenic rats with normal pancreatic tissues were used for metabolomic analysis of serum and pancreatic tissue by non-targeted and targeted gas chromatography-mass spectrometry and transcriptomic analysis of pancreatic tissue by microarray. Comparison of the metabolic profiles of the serum and pancreatic tissue of PDAC-bearing and control rats identified palmitoleic acid as a metabolite, which was significantly decreased in the serum of PDAC-bearing animals. Transcriptomic analysis indicated that several transcripts involved in anaerobic glycolysis and nucleotide degradation were increased and transcripts involved in the trichloroacetic acid cycle were decreased. Other transcripts that were changed in PDAC-bearing rats were adenosine triphosphate citrate lyase (decreased: fatty acid biosynthesis), fatty acid synthase (increased: fatty acid biosynthesis) and arachidonate 5-lipoxygenase activating protein (increased: arachidonic acid metabolism). Overall, our results suggest that the decreased serum levels of palmitoleic acid in rats with PDAC was likely due to its decrease in pancreatic tissue and that palmitoleic acid should be investigated in human samples to assess its diagnostic significance as a serum biomarker for human PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Graxos Monoinsaturados/sangue , Genes ras/genética , Neoplasias Pancreáticas , Proteínas Ativadoras de 5-Lipoxigenase/biossíntese , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Animais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Ácido Graxo Sintases/biossíntese , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Perfilação da Expressão Gênica , Glicólise/genética , Humanos , Metabolômica , Nucleotídeos/metabolismo , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Ratos , Ratos Transgênicos , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA