Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188883, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972769

RESUMO

The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.


Assuntos
Proteínas de Drosophila , Proteína Supressora de Tumor p53 , Animais , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila/genética , Drosophila/metabolismo
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1279-1282, 2022 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-36317219

RESUMO

OBJECTIVE: To assess the association of genomic instability of epithelial cadherin 1 (CDH1) gene and clinicopathological characteristics of gastric cancer. METHODS: In total 120 paraffin-embedded gastric cancer tissue specimen were prepared, and genomic DNA was extracted. The genomic instability of the CDH1 gene was analyzed by immunohistochemistry and silver staining PCR-single-strand conformation polymorphism. RESULTS: The number of information individuals (heterozygotes) was 98 for the D16S752 locus. The detection rates for microsatellite instability (MSI) and loss of heterozygosity (LOH) at the D16S752 locus and the positive rate of CDH1 protein were 19.39%, 16.33% and 51.02%, respectively. The detection rate of MSI in TNM stages I or II was significantly higher than that in stages III or IV (P<0.05) while the detection rate of LOH was significantly lower than that in stages III or IV (P<0.05). The positive rate of CDH1 protein in TNM stages III or IV was significantly lower than that in stages I or II (P<0.05). The detection rate of MSI of cases with lymph node metastasis was significantly lower than that of without lymph node metastasis (P<0.05) while the detection rate of LOH was significantly higher than that without lymph node metastasis (P<0.05). The positive rate of CDH1 protein in patients with lymph node metastasis was significantly lower than that in patients without lymph node metastasis (P<0.05). The positive rate of CDH1 protein in MSI-positive group was significantly higher than that in MSI-negative group (P<0.05), and the positive rate of CDH1 protein in the LOH-positive group was significantly lower than that the LOH-negative group (P<0.05). CONCLUSION: The genomic instability of the CDH1 gene is associated with the progression of gastric cancer. MSI at the D16S752 locus may be used as a molecular marker for early gastric cancer, while LOH at this locus mostly occurs in advanced gastric cancer and can be regarded as an effective indicators for malignancy evaluation and prognosis.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Metástase Linfática , Proteínas Cdh1/genética , Instabilidade de Microssatélites , Perda de Heterozigosidade , Instabilidade Genômica , Repetições de Microssatélites , Antígenos CD/genética , Caderinas/genética
3.
Microbiol Spectr ; 10(5): e0092322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214694

RESUMO

Pyolysin (PLO) is secreted by Trueperella pyogenes as a water-soluble monomer after forming transmembrane ß-barrel channels in the cell membrane by binding cholesterol. Two significantly conserved residues at domain 1 of PLO are mutated, which provides novel evidence of a relationship between conformational change and interaction with the cell membrane and uncovers the pore formation mechanism of the cholesterol-dependent cytolysin (CDC) family. Moreover, PLO is a special member of the CDCs, which the percentage of sequence identities between PLO and other CDC members is from 31% to 45%, while others are usually from 40% to 70%. It is important to understand that at very low sequence identities, models can be different in the pathogenic mechanisms of these CDC members, which are dedicated to a large number of Gram-positive bacterial pathogens. Our studies, for the first time, located and mutated two different highly conserved structural sites in the primary structure critical for PLO structure and function that proved the importance of these sites. Together, novel and repeatable observations into the pore formation mechanism of CDCs are provided by our findings. IMPORTANCE Postpartum disease of dairy cows caused by persistent bacterial infection is a global disease, which has a serious impact on the development of the dairy industry and brings huge economic losses. As one of the most relevant pathogenic bacteria for postpartum diseases in dairy cows, Trueperella pyogenes can secrete pyolysin (PLO), a member of the cholesterol-dependent cytolysin (CDC) family and recognized as the most important toxin of T. pyogenes. However, the current research work on PLO is still insufficient. The pathogenic mechanism of this toxin can be fully explored by changing the local structure and overall function of the toxin by a previously unidentified single point mutation. These studies lay the groundwork for future studies that will explore the contribution of this large family of CDC proteins to microbial survival and human disease.


Assuntos
Proteínas de Bactérias , Mutação Puntual , Bovinos , Animais , Feminino , Humanos , Virulência , Proteínas Cdh1/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Colesterol/química , Colesterol/metabolismo , Bactérias/metabolismo , Citotoxinas , Água
4.
Brain ; 145(5): 1684-1697, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34788397

RESUMO

FZR1, which encodes the Cdh1 subunit of the anaphase-promoting complex, plays an important role in neurodevelopment by regulating the cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental and epileptic encephalopathies and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Whole-exome sequencing in 39 patient-parent trios and subsequent targeted sequencing in an additional cohort of 211 patients was performed to identify novel genes involved in developmental and epileptic encephalopathy. Functional studies in Drosophila were performed using three different mutant alleles of the Drosophila homologue of FZR1 fzr. All three individuals carrying de novo variants in FZR1 had childhood-onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the developmental and epileptic encephalopathy subtype myoclonic atonic epilepsy. We provide genetic-association testing using two independent statistical tests to support FZR1 association with developmental and epileptic encephalopathies. Further, we provide functional evidence that the missense variants are loss-of-function alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homologue fzr and overexpression studies, we show that patient variants can affect proper neurodevelopment. With the recent report of a patient with neonatal-onset with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and developmental and epileptic encephalopathy and expands the associated phenotype. We conclude that heterozygous loss-of-function of FZR1 leads to developmental and epileptic encephalopathies associated with a spectrum of neonatal to childhood-onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed myoclonic atonic epilepsy or developmental and epileptic encephalopathy cases.


Assuntos
Proteínas Cdh1 , Epilepsia Generalizada , Epilepsia , Microcefalia , Ataxia , Proteínas Cdh1/genética , Criança , Epilepsia/genética , Epilepsia Generalizada/genética , Humanos , Mutação com Perda de Função , Microcefalia/genética , Fenótipo
5.
Dev Biol ; 482: 55-66, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34922934

RESUMO

The coincidence of cell cycle exit and differentiation has been described in a wide variety of stem cells and organisms for decades, but the causal relationship is still unclear due to the complicated regulation of the cell cycle. Here, we used the planarian Dugesia japonica since they may possess a simple cell cycle regulation in which Cdh1 is one of the factors responsible for exiting the cell cycle. When cdh1 was functionally inhibited, the planarians could not maintain their tissue homeostasis and could not regenerate their missing body parts. While the knockdown of cdh1 caused pronounced accumulation of the stem cells, the progenitor and differentiated cells were decreased. Further analyses indicated that the stem cells with cdh1 knockdown did not undergo differentiation even though they received ERK signaling activation as an induction signal. These results suggested that stem cells could not acquire differentiation competence without cell cycle exit. Thus, we propose that cell cycle regulation determines the differentiation competence and that cell cycle exit to G0 enables stem cells to undergo differentiation.


Assuntos
Proteínas Cdh1/genética , Ciclo Celular/fisiologia , Planárias/crescimento & desenvolvimento , Regeneração/genética , Animais , Proteínas Cdh1/metabolismo , Diferenciação Celular/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Planárias/citologia , Interferência de RNA , Regeneração/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Leukemia ; 36(3): 834-846, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34635784

RESUMO

FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreased quiescence of HSC. Haploinsufficiency of Fzr1 shows impaired quiescence and self-renewal ability of HSC in two Fzr1 heterozygous knockout mouse models. Mechanistically, FZR1 insufficiency inhibits the ubiquitination of RUNX1 protein at lysine 125, leading to the accumulation of RUNX1 protein, which disturbs the quiescence of HSCs in SAA patients. Moreover, downregulation of Runx1 reversed the loss of quiescence and impaired long-term self-renew ability in Fzr1+/- HSCs in vivo and impaired repopulation capacity in BM from SAA patients in vitro. Our findings, therefore, raise the possibility of a decisive role of the FZR1-RUNX1 pathway in the pathogenesis of SAA via deregulation of HSC quiescence.


Assuntos
Anemia Aplástica/metabolismo , Proteínas Cdh1/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Adulto , Idoso , Anemia Aplástica/genética , Animais , Proteínas Cdh1/genética , Células Cultivadas , Senescência Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação para Baixo , Feminino , Haploinsuficiência , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteólise , Ubiquitina/metabolismo , Ubiquitinação , Adulto Jovem
7.
Electron. j. biotechnol ; 53: 54-60, Sep.2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1451272

RESUMO

BACKGROUND Cancer is a life-threatening disease that affects approximately 18 million individuals worldwide. Breast cancer is the most common female neoplasm globally with more than 276,480 new cases of invasive breast cancer expected to be diagnosed in women in the U.S. alone in 2020. Genetic and epigenetic factors play role in the carcinogenesis and progression of this disease. In this study, MCF-7 adenocarcinoma cells were transfected with CRISPR/Cas9 plasmid to either knock out CDK11 or to activate CDH1. Treated cells were allografted into the mammary glands of female rats (150­190 g, 6­8 weeks) to evaluate the capability of these cells to control cancer progression and metastasis. RESULTS qPCR data revealed a significant downregulation of CDK11 and upregulation of CDH1. Cell cycle analysis and apoptosis assays indicated the knockout of CDK11 and simultaneous activation of CDH1 resulted in cell cycle arrest at G2/M phase and accumulation of cells at G2. Meanwhile, the percentage of cells that underwent late apoptosis increased in both genome editing hits. Histopathological sectioning data indicated that untransfected MCF-7 cells were capable of developing tumors in the mammary gland and initiation g angiogenesis. Transfected cells significantly restricted cancer cell infiltration/invasion by minimally localizing tumors and inhibiting angiogenesis. CONCLUSIONS Although further investigation is needed, the present data indicate the potentiality of using CRISPR/Cas9-based therapy as a promising approach to treat breast cancer. Impact: these data indicate targeting cancer-related genes via any genome editing tool might represent a novel approach to combat cancer.


Assuntos
Animais , Feminino , Ratos , Neoplasias da Mama/genética , Adenocarcinoma/genética , Proteínas Cdh1/genética , Proteína 9 Associada à CRISPR/genética , Neoplasias da Mama/secundário , Ratos Sprague-Dawley
8.
Kaohsiung J Med Sci ; 37(11): 991-999, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34370374

RESUMO

The aim of the study was to investigate the role of NSUN2 (NOP2/Sun RNA Methyltransferase Family Member 2) in hepatocellular carcinoma (HCC). The expressions of NSUN2 and FZR1 were measured. Cell viability, proliferation, and apoptosis were assessed. HCC xenograft in nude mouse model was established. Tumor weight and volume were examined. Tumor tissues were collected for immunohistochemistry (IHC). TCGA database analysis and clinical sample testing suggested that the transcript levels of NSUN2 and FZR1 were increased in HCC tissues. NSUN2 knockdown inhibited HCC cell viability and proliferation, and promoted cell apoptosis. Moreover, the effects of NSUN2 could be countered by overexpressing FZR1. In animal experiment, NSUN2 silencing suppressed tumor growth in nude mice by downregulating FZR1. In conclusion, NSUN2 has a regulatory effect on HCC cell proliferation and apoptosis. NSUN2 knockout could inhibit cellular processes in HCC and tumor growth, likely via FZR1 inhibition. This finding has not only revealed the role of NSUN2 in HCC growth, but also suggests a promising target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas Cdh1/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas Cdh1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218190

RESUMO

Fumarylacetoacetate hydrolase (FAH) is the last enzyme in the degradation pathway of the amino acids tyrosine and phenylalanine in mammals that catalyzes the hydrolysis of 4-fumarylacetoacetate into acetoacetate and fumarate. Mutations of the FAH gene are associated with hereditary tyrosinemia type I (HT1), resulting in reduced protein stability, misfolding, accelerated degradation and deficiency in functional proteins. Identifying E3 ligases, which are necessary for FAH protein stability and degradation, is essential. In this study, we demonstrated that the FAH protein level is elevated in liver cancer tissues compared to that in normal tissues. Further, we showed that the FAH protein undergoes 26S proteasomal degradation and its protein turnover is regulated by the anaphase-promoting complex/cyclosome-Cdh1 (APC/C)Cdh1 E3 ubiquitin ligase complex. APC/CCdh1 acts as a negative stabilizer of FAH protein by promoting FAH polyubiquitination and decreases the half-life of FAH protein. Thus, we envision that Cdh1 might be a key factor in the maintenance of FAH protein level to regulate FAH-mediated physiological functions.


Assuntos
Antígenos CD/genética , Proteínas Cdh1/genética , Hidrolases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Proteínas Cdh1/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Hidrolases/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
11.
Cell Death Dis ; 11(9): 804, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978372

RESUMO

The concept of breast-conserving surgery is a remarkable achievement of breast cancer therapy. Neoadjuvant chemotherapy is being used increasingly to shrink the tumor prior to surgery. Neoadjuvant chemotherapy is reducing the tumor size to make the surgery with less damaging to surrounding tissue and downstage locally inoperable disease to operable. However, non-effective neoadjuvant chemotherapy could increase the risks of delaying surgery, develop unresectable disease and metastatic tumor spread. The biomarkers for predicting the neoadjuvant chemotherapy effect are scarce in breast cancer treatment. In this study, we identified that FZR1 can be a novel biomarker for breast cancer neoadjuvant chemotherapy according to clinical patient cohort evaluation and molecular mechanism investigation. Transcriptomic data analysis indicated that the expression of FZR1 is correlated with the effect of neoadjuvant chemotherapy. Mechanistically, we demonstrate that FZR1 is pivotal to the chemotherapy drugs induced apoptosis and cell cycle arrest. FZR1 is involved in the stability of p53 by impairing the phosphorylation at ser15 site. We demonstrate that the expression of FZR1 detected by quantification of IHC can be an effective predictor of neoadjuvant chemotherapy in animal experiment and clinical patient cohort. To obtain more benefit for breast cancer patient, we propose that the FZR1 IHC score using at the clinical to predict the effect of neoadjuvant chemotherapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteínas Cdh1/metabolismo , Terapia Neoadjuvante/métodos , Adulto , Idoso , Animais , Proteínas Cdh1/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transfecção
12.
Biochem Biophys Res Commun ; 531(4): 566-572, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32811646

RESUMO

MAD2L2 (i.e. Rev7) is a central regulatory protein important in several processes, such as translesion synthesis (TLS), DNA damage response and mitosis. In TLS, MAD2L2 binds Rev3 to form Pol zeta (ζ) and promotes formation of the Pol ζ- REV1 complex allowing extension beyond distorted DNA structures. MAD2L2 is also part of the heterotetrameric shieldin complex that regulates DNA repair at sites of damage, where similarly to TLS, it bridges the interaction between SHLD2 and SHLD3. Lastly, during mitosis, MAD2L2 prevents premature activation of the anaphase promoting complex/cyclosome (APC/C), by sequestering its activator, CDH1. MAD2L2 exits in a 'closed' active conformation binding Rev3 and Rev1, or SHLD2 and SHLD3, and an 'open' inactive conformation, with no binding partners. Moreover, Pol ζ- REV1 forms a homodimer using a protein-protein interaction (PPI) domain comprised of a central αC helix, promoting Rev3-MAD2L2 interaction and C-terminus ß-sheets, enabling Rev1-MAD2L2 interaction. While the role of MAD2L2 in TLS is well established, molecular details regarding the CDH1-MAD2L2 interaction and MAD2L2 homodimerization are still missing. Here we demonstrate, in a human cell line, using a series of MAD2L2 mutants, that MAD2L2's C-terminus interface is essential for the CDH1-MAD2L2 binding as well as for homodimerization. In addition, we show that CDH1 interacts with MAD2L2 in a Rev1-like pattern, using the same C-terminus residues on MAD2L2 which Rev1 binds. Thus, identification of CDH1 as an additional Rev1-like binding protein strengthens the versatility of MAD2L2 as a regulatory protein and emphasizes the complexity involved in MAD2L2's preferential complex formation.


Assuntos
Antígenos CD/metabolismo , Proteínas Cdh1/metabolismo , Proteínas Mad2/metabolismo , Antígenos CD/genética , Sítios de Ligação , Proteínas Cdh1/genética , Células HEK293 , Humanos , Proteínas Mad2/genética , Nucleotidiltransferases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
13.
Mol Genet Genomic Med ; 8(8): e1267, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32478482

RESUMO

Sarcopenia is a complex polygenic disease, and its molecular mechanism is still unclear. Whole lean body mass (WLBM) is a heritable trait predicting sarcopenia. To identify genomic loci underlying, we performed a whole-exome sequencing (WES) of WLBM variation with high sequencing depth (more than 40*) in 101 Chinese subjects. We then replicated in the major findings in the large-scale UK Biobank (UKB) cohort (N = 217,822) for WLBM. The results of four single-nucleotide polymorphisms (SNPs) were significant both in the discovery stage and replication stage: SNP rs740681 (discovery p = 1.66 × 10-6 , replication p = .05), rs2272303 (discovery p = 3.20 × 10-4 , replication p = 3.10 × 10-4 ), rs11170413 (discovery p = 3.99 × 10-4 , replication p = 2.90 × 10-4 ), and rs2272302 (discovery p = 9.13 × 10-4 , replication p = 3.10 × 10-4 ). We combined p values of the significant SNPs. Functional annotations highlighted two candidate genes, including FZR1 and SOAT2, that may exert pleiotropic effects to the development of body mass. Our findings provide useful insights that further enhance our understanding of genetic interplay in sarcopenia.


Assuntos
Proteínas Cdh1/genética , Polimorfismo de Nucleotídeo Único , Sarcopenia/genética , Esterol O-Aciltransferase/genética , Adulto , Índice de Massa Corporal , China , Exoma , Feminino , Pleiotropia Genética , Humanos , Masculino , Esterol O-Aciltransferase 2
14.
Ann Pathol ; 40(2): 78-84, 2020 Apr.
Artigo em Francês | MEDLINE | ID: mdl-32241645

RESUMO

Breast cancers occurring in the context of a hereditary mutation of a predisposition gene represent 5 to 10% of all breast cancers, 20 to 25% of which being due to a mutation in the BRCA1 or BRCA2 genes. Authorization to market PARP inhibitors for breast cancer patients with hereditary BRCA1 and 2 mutations has recently been obtained. Given the annual frequency of breast cancer, morphological identification could facilitate the patient care process to limit the search for BRCA1 and 2 mutations to patients whose tumors have very specific characteristics. However, only a few morphological features have been recognized and differ depending on the mutated genes. Breast cancer occurring as part of a mutation in the BRCA1 gene is in 85% of cases of high-grade non-specific type invasive carcinomas with very limited contours, contain numerous lymphocytes in the stroma and are of triple-negative phenotype. Carcinomas associated with mutations in the BRCA2 genes and genes more recently recognized as associated with a risk of development of breast cancer (CHECK2, BMPR1A, BRIP1, PALB2, MUTYH) are most often non-specific invasive carcinomas, although other histological types are possible, grade III, luminal B phenotype. Breast cancer occurring in the context of a constitutional mutation of TP53 occurs in women under 35 years old are of non-specific histological type and with an amplification of HER2 in two thirds of the cases. Those associated with a PTEN mutation are readily of the apocrine type. Finally, very rarely, certain lobular-type breast cancers can occur in the context of a constitutional mutation of the CDH1 gene, which codes for the protein E-cadherin. The morphological and phenotypic characteristics may suggest to the pathologist a carcinoma of the breast occurring in a context of hereditary mutation. However, at the present time the only situations where a morphological sorting makes it possible to accelerate the genetic analysis are those of an invasive carcinoma of non-specific type of triple-negative phenotype in a woman of less than 50 years or that of a diagnosis of HER2 breast cancer amplified in a woman under 31 years of age (Chompret criteria). Family background and personal history are of great importance in the genetic counseling indication decision trees. Unfortunately, to date, no quality antibody has been developed against BRCA1 and 2 to help the pathologist identify hereditary cases. The immunohistochemical analysis of RAD51 could facilitate the identification of tumors possibly sensitive to PARP inhibitors. Progress to identify hereditary cancers is expected thanks to the development of artificial intelligence algorithms from digitized histological slides.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias , Proteínas Oncogênicas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Fatores Etários , Inteligência Artificial , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Proteínas Cdh1/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Genes erbB-2 , Genes p53 , Aconselhamento Genético , Testes Genéticos , Técnicas Histológicas , Humanos , Mutação , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
15.
Semin Cancer Biol ; 67(Pt 2): 80-91, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165320

RESUMO

The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Neoplasias/patologia , Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/genética , Antígenos CD/genética , Carbamatos/farmacologia , Proteínas Cdc20/genética , Proteínas Cdh1/genética , Diaminas/farmacologia , Instabilidade Genômica , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/genética
16.
J Cell Physiol ; 235(3): 2521-2531, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31489637

RESUMO

Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a member of the immunoglobulin superfamily and is expressed by hematopoietic and endothelial cells (ECs). Recent studies have shown that PECAM-1 plays a crucial role in promoting the development of the EC inflammatory response in the context of disturbed flow. However, the mechanistic pathways that control PECAM-1 protein stability remain largely unclear. Here, we identified PECAM-1 as a novel substrate of the APC/Cdh1 E3 ubiquitin ligase. Specifically, lentivirus-mediated Cdh1 depletion stabilized PECAM-1 in ECs. Conversely, overexpression of Cdh1 destabilized PECAM-1. The proteasome inhibitor MG132 blocked Cdh1-mediated PECAM-1 degradation. In addition, Cdh1 promoted K48-linked polyubiquitination of PECAM-1 in a destruction box-dependent manner. Furthermore, we demonstrated that compared with pulsatile shear stress (PS), oscillatory shear stress decreased the expression of Cdh1 and the ubiquitination of PECAM-1, therefore stabilizing PECAM-1 to promote inflammation in ECs. Hence, our study revealed a novel mechanism by which fluid flow patterns regulate EC homeostasis via Cdh1-dependent ubiquitination and subsequent degradation of PECAM-1.


Assuntos
Antígenos CD/genética , Proteínas Cdh1/genética , Inflamação/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Ubiquitina-Proteína Ligases/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclo Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células HeLa , Humanos , Fosforilação/genética , Proteólise , Ubiquitinação/genética
17.
Exp Cell Res ; 386(2): 111720, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738907

RESUMO

CHK1 and WEE1 play pivotal roles in G2/M checkpoint following exogenous DNA damage and regulation of DNA replication under normal cellular conditions. Here, we monitored and compared the cell cycle kinetics of mitosis-associated events after CHK1 and WEE1 inhibitor treatments in a human tongue cancer cell line (SAS). A fluorescent ubiquitination-based cell cycle indicator (Fucci) that reflects SCFSKP2 and APCCDH1 E3 ligase activities was used to monitor cell cycle progression. Numerous γH2AX-positive cells were observed within the S phase population of cells following CHK1 inhibitor treatment, and polyploid cells exhibiting DNA damage emerged via abortive mitosis (endomitosis) at 24 h post treatment. While WEE1 inhibitor-treated cells exhibited similar polyploidy via endomitosis at later time points, they possessed fewer γH2AX foci during S phase, and polyploid cells exhibiting DNA damage were scarce. Instead, mitosis duration greatly extended and was accompanied by an abnormal emission of Fucci red fluorescence. Kinetic analysis of Fucci fluorescence revealed that abnormal emission occurred at early M phase in a manner independent of green fluorescence degradation as a marker of APCCDH1 activation. When an inhibitor of the essential spindle checkpoint factor MPS1 was co-treated with a WEE1 inhibitor, the elongated mitosis duration and abnormal red fluorescence were abrogated, and WEE1-induced reduction of clonogenic survival was offset. We demonstrate novel differential effects on mitosis-associated events following CHK1 and WEE1 inhibitor treatments.


Assuntos
Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem/genética , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Citometria de Fluxo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Genes Reporter , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Mitose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Fase S/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo
18.
Nat Commun ; 10(1): 3716, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420536

RESUMO

The Anaphase Promoting Complex (APC) coactivator Cdh1 drives proper cell cycle progression and is implicated in the suppression of tumorigenesis. However, it remains elusive how Cdh1 restrains cancer progression and how tumor cells escape the inhibition of Cdh1. Here we report that Cdh1 suppresses the kinase activity of c-Src in an APC-independent manner. Depleting Cdh1 accelerates breast cancer cell proliferation and cooperates with PTEN loss to promote breast tumor progression in mice. Hyperactive c-Src, on the other hand, reciprocally inhibits the ubiquitin E3 ligase activity of APCCdh1 through direct phosphorylation of Cdh1 at its N-terminus, which disrupts the interaction between Cdh1 and the APC core complex. Furthermore, pharmacological inhibition of c-Src restores APCCdh1 tumor suppressor function to repress a panel of APCCdh1 oncogenic substrates. Our findings reveal a reciprocal feedback circuit of Cdh1 and c-Src in the crosstalk between the cell cycle machinery and the c-Src signaling pathway.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Neoplasias da Mama , Carcinogênese , Proteínas Cdh1/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Transplante de Neoplasias , PTEN Fosfo-Hidrolase/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Dev Cell ; 50(1): 11-24.e10, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31130353

RESUMO

Defects in mitotic spindle orientation (MSO) disrupt the organization of stem cell niches impacting tissue morphogenesis and homeostasis. Mutations in centrosome genes reduce MSO fidelity, leading to tissue dysplasia and causing several diseases such as microcephaly, dwarfism, and cancer. Whether these mutations perturb spindle orientation solely by affecting astral microtubule nucleation or whether centrosome proteins have more direct functions in regulating MSO is unknown. To investigate this question, we analyzed the consequences of deregulating Plk4 (the master centriole duplication kinase) activity in Drosophila asymmetrically dividing neural stem cells. We found that Plk4 functions upstream of MSO control, orchestrating centriole symmetry breaking and consequently centrosome positioning. Mechanistically, we show that Plk4 acts through Spd2 phosphorylation, which induces centriole release from the apical cortex. Overall, this work not only reveals a role for Plk4 in regulating centrosome function but also links the centrosome biogenesis machinery with the MSO apparatus.


Assuntos
Proteínas Cdh1/metabolismo , Centríolos/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Tronco Neurais/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/fisiologia , Animais , Proteínas Cdh1/genética , Ciclo Celular , Células Cultivadas , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Células-Tronco Neurais/citologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética
20.
Proc Natl Acad Sci U S A ; 116(19): 9423-9432, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000600

RESUMO

The Hippo-YAP/TAZ signaling pathway plays a pivotal role in growth control during development and regeneration and its dysregulation is widely implicated in various cancers. To further understand the cellular and molecular mechanisms underlying Hippo signaling regulation, we have found that activities of core Hippo signaling components, large tumor suppressor (LATS) kinases and YAP/TAZ transcription factors, oscillate during mitotic cell cycle. We further identified that the anaphase-promoting complex/cyclosome (APC/C)Cdh1 E3 ubiquitin ligase complex, which plays a key role governing eukaryotic cell cycle progression, intrinsically regulates Hippo signaling activities. CDH1 recognizes LATS kinases to promote their degradation and, hence, YAP/TAZ regulation by LATS phosphorylation is under cell cycle control. As a result, YAP/TAZ activities peak in G1 phase. Furthermore, we show in Drosophila eye and wing development that Cdh1 is required in vivo to regulate the LATS homolog Warts with a conserved mechanism. Cdh1 reduction increased Warts levels, which resulted in reduction of the eye and wing sizes in a Yorkie dependent manner. Therefore, LATS degradation by APC/CCdh1 represents a previously unappreciated and evolutionarily conserved layer of Hippo signaling regulation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Proteínas Cdh1/metabolismo , Proteínas de Drosophila/metabolismo , Fase G1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Antígenos CD/genética , Caderinas/genética , Proteínas Cdh1/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Células HeLa , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA