Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Nephrol Hypertens ; 32(4): 394-400, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070493

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to highlight the publications from the prior 12-18 months that have contributed significant advances in the field of renal phosphate handling. RECENT FINDINGS: The discoveries include new mechanisms for the trafficking and expression of the sodium phosphate cotransporters; direct link between phosphate uptake and intracellular metabolic pathways; interdependence between proximal tubule transporters; and the persistent renal expression of phosphate transporters in chronic kidney disease. SUMMARY: Discovery of new mechanisms for trafficking and regulation of expression of phosphate transporters suggest new targets for the therapy of disorders of phosphate homeostasis. Demonstration of stimulation of glycolysis by phosphate transported into a proximal tubule cell expands the scope of function for the type IIa sodium phosphate transporter from merely a mechanism to reclaim filtered phosphate to a regulator of cell metabolism. This observation opens the door to new therapies for preserving kidney function through alteration in transport. The evidence for persistence of active renal phosphate transport even with chronic kidney disease upends our assumptions of how expression of these transporters is regulated, suggests the possibility of alternative functions for the transporters, and raises the possibility of new therapies for phosphate retention.


Assuntos
Fosfatos , Insuficiência Renal Crônica , Humanos , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa , Rim/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo
2.
Physiol Res ; 70(4): 655-659, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34062068

RESUMO

Lithium is used in the treatment of bipolar disorder. We previously demonstrated that two types of transporters mediate the tubular reabsorption of lithium in rats, and suggested that sodium-dependent phosphate transporters play a role in lithium reabsorption with high affinity. In the present study, we examined sex differences in lithium reabsorption in rats. When lithium chloride was infused at 60 µg/min, creatinine clearance and the renal clearance of lithium were lower, and the plasma concentration of lithium was higher in female rats. These values reflected the higher fractional reabsorption of lithium in female rats. In rats infused with lithium chloride at 6 µg/min, the pharmacokinetic parameters of lithium examined were all similar in both sexes. The fractional reabsorption of lithium was decreased by foscarnet, a representative inhibitor of sodium-dependent phosphate transporters, in male and female rats when lithium chloride was infused at the low rate. Among the candidate transporters mediating lithium reabsorption examined herein, the mRNA expression of only PiT2, a sodium-dependent phosphate transporter, exhibited sexual dimorphism. The present results demonstrated sex differences in the tubular reabsorption of lithium with low affinity in rats.


Assuntos
Túbulos Renais/metabolismo , Cloreto de Lítio/metabolismo , Reabsorção Renal , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Feminino , Infusões Intravenosas , Cloreto de Lítio/administração & dosagem , Cloreto de Lítio/farmacocinética , Masculino , Ratos Wistar , Caracteres Sexuais , Fatores Sexuais , Proteínas Cotransportadoras de Sódio-Fosfato/genética
3.
Biol Reprod ; 104(5): 1084-1096, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624764

RESUMO

Appropriate mineralization of the fetal skeleton requires an excess of phosphate in the fetus compared to the mother. However, mechanisms for placental phosphate transport are poorly understood. This study aimed to identify phosphate regulatory pathways in ovine endometria and placentae throughout gestation. Suffolk ewes were bred with fertile rams upon visual detection of estrus (Day 0). On Days 9, 12, 17, 30, 70, 90, 110, and 125 of pregnancy (n = 3-14/Day), ewes were euthanized and hysterectomized. Phosphate abundance varied across gestational days in uterine flushings, allantoic fluid, and homogenized endometria and placentae (P < 0.05). The expression of mRNAs for sodium-dependent phosphate transporters (SLC20A1 and SLC20A2) and klotho signaling mediators (FGF7, FGF21, FGF23, FGFR1-4, KL, KLB, ADAM10, and ADAM17) were quantified by qPCR. Day 17 conceptus tissue expressed SLC20A1, SLC20A2, KLB, FGF7, FGF21, FGF23, FGFR1, and FGFR2 mRNAs. Both sodium-dependent phosphate transporters and klotho signaling mediators were expressed in endometria and placentae throughout gestation. Gestational day influenced the expression of SLC20A1, ADAM10, ADAM17, FGF21, FGFR1, and FGFR3 mRNAs in both endometria and placentae (P < 0.05). Gestational day influenced endometrial expression of FGF7 (P < 0.001), and placental expression of FGF23 (P < 0.05). Immunohistochemistry confirmed that both FGF23 and KL proteins were expressed in endometria and placentae throughout gestation. The observed spatiotemporal profile of KL-FGF signaling suggests a potential role in the establishment of pregnancy and regulation of fetal growth. This study provides a platform for further mechanistic investigation into the role for KL-FGF signaling in the regulation of phosphate transport at the ovine maternal-conceptus interface.


Assuntos
Proteínas Klotho/genética , Redes e Vias Metabólicas , Minerais/metabolismo , Fosfatos/metabolismo , Carneiro Doméstico/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Animais , Feminino , Gravidez , Prenhez , Transdução de Sinais , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo
4.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467106

RESUMO

The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates.


Assuntos
Homeostase , Absorção Intestinal , Eliminação Intestinal , Fósforo na Dieta/metabolismo , Fósforo/deficiência , Animais , Calcitriol/sangue , Duodeno/metabolismo , Cabras , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo
5.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153158

RESUMO

It is important to explore the regulatory mechanism of phosphorus homeostasis in fish, which help avoid the risk of P toxicity and prevent P pollution in aquatic environment. The present study obtained the full-length cDNA sequences and the promoters of three SLC20 members (slc20a1a, slc20a1b and slc20a2) from grass carp Ctenopharyngodon idella, and explored their responses to inorganic phosphorus (Pi). Grass carp SLC20s proteins possessed conservative domains and amino acid sites relevant with phosphorus transport. The mRNAs of three slc20s appeared in the nine tissues, but their expression levels were tissue-dependent. The binding sites of three transcription factors (SREBP1, NRF2 and VDR) were predicted on the slc20s promoters. The mutation and EMSA analysis indicated that: (1) SREBP1 binding site (-783/-771 bp) negatively but VDR (-260/-253 bp) binding site positively regulated the activities of slc20a1a promoter; (2) SREBP1 (-1187/-1178 bp), NRF2 (-572/-561 bp) and VDR(615/-609 bp) binding sites positively regulated the activities of slc20a1b promoter; (3) SREBP1 (-987/-977 bp), NRF2 (-1469/-1459 bp) and VDR (-1124/-1117 bp) binding sites positively regulated the activities of the slc20a2 promoter. Moreover, Pi incubation significantly reduced the activities of three slc20s promoters, and Pi-induced transcriptional inactivation of slc20s promoters abolished after the mutation of the VDR element but not SREBP1 and NRF2 elements. Pi incubation down-regulated the mRNA levels of three slc20s. For the first time, our study elucidated the transcriptional regulatory mechanisms of SLC20s and their responses to Pi, which offered new insights into the Pi homeostatic regulation and provided the basis for reducing phosphorus discharge into the waters.


Assuntos
Carpas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Animais , Carpas/metabolismo , Clonagem Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/genética , Redes e Vias Metabólicas/genética , Fósforo/metabolismo , Fósforo/farmacologia , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Elementos de Resposta/genética , Análise de Sequência de DNA , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
6.
Future Oncol ; 15(34): 3909-3916, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31729262

RESUMO

The present article proposes that the association of inflammation with cancer is potentially mediated by the interaction of inflammatory hyperemia and hyperphosphatemia. Hyperemia increases blood flow rate and blood volume, and hyperphosphatemia is caused by elevated serum levels of dysregulated inorganic phosphate. It is hypothesized that the interaction of inflammatory hyperemia and hyperphosphatemia circulates increased amounts of inorganic phosphate to the tumor microenvironment, where increased uptake of inorganic phosphate through sodium-phosphate cotransporters is sequestered in cells. Elevated levels of intracellular phosphorus increase biosynthesis of ribosomal RNA, leading to increased protein synthesis that supports tumor growth. The present article also proposes that the interaction of inflammatory hyperemia and hyperphosphatemia may help explain a chemopreventive mechanism associated with NSAIDs.


Assuntos
Transformação Celular Neoplásica/imunologia , Hiperemia/imunologia , Hiperfosfatemia/imunologia , Inflamação/complicações , Neoplasias/imunologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Humanos , Hiperemia/sangue , Hiperemia/tratamento farmacológico , Hiperfosfatemia/sangue , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/imunologia , Neoplasias/patologia , Neoplasias/prevenção & controle , Fosfatos/sangue , Fosfatos/imunologia , Fosfatos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/imunologia , RNA Ribossômico/biossíntese , Fluxo Sanguíneo Regional/imunologia , Proteínas Cotransportadoras de Sódio-Fosfato/imunologia , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
7.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717287

RESUMO

Sodium/phosphate co-transporters are considered to be important mediators of phosphorus (P) homeostasis. The expression of specific sodium/phosphate co-transporters is routinely used as an immediate response to dietary interventions in different species. However, a general understanding of their tissue-specificity is required to elucidate their particular contribution to P homeostasis. In this study, the tissue-wide gene expression status of all currently annotated sodium/phosphate co-transporters were investigated in two pig trials focusing on a standard commercial diet (trial 1) or divergent P-containing diets (trial 2). A wide range of tissues including the gastrointestinal tract (stomach, duodenum, jejunum, ileum, caecum, and colon), kidney, liver, bone, muscle, lung, and aorta were analyzed. Both trials showed consistent patterns in the overall tissue-specific expression of P transporters. While SLC34A2 was considered as the most important intestinal P transporter in other species including humans, SLC34A3 appeared to be the most prominent intestinal P transporter in pigs. In addition, the P transporters of the SLC17 family showed basal expression in the pig intestine and might have a contribution to P homeostasis. The expression patterns observed in the distal colon provide evidence that the large intestine may also be relevant for intestinal P absorption. A low dietary P supply induced higher expressions of SLC20A1, SLC20A2, SLC34A1, and SLC34A3 in the kidney cortex. The results suggest that the expression of genes encoding transcellular P transporters is tissue-specific and responsive to dietary P supply, while underlying regulatory mechanisms require further analyses.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Especificidade de Órgãos/genética , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Suínos/genética , Animais , Dosagem de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo
8.
mSphere ; 4(2)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944211

RESUMO

Inorganic pyrophosphate (PPi) is a by-product of biosynthetic reactions and has bioenergetic and regulatory roles in a variety of cells. Here we show that PPi and other pyrophosphate-containing compounds, including polyphosphate (polyP), can stimulate sodium-dependent depolarization of the membrane potential and Pi conductance in Xenopus oocytes expressing a Saccharomyces cerevisiae or Trypanosoma brucei Na+/Pi symporter. PPi is not taken up by Xenopus oocytes, and deletion of the TbPho91 SPX domain abolished its depolarizing effect. PPi generated outward currents in Na+/Pi-loaded giant vacuoles prepared from wild-type or pho91Δ yeast strains expressing TbPHO91 but not from the pho91Δ strains. Our results suggest that PPi, at physiological concentrations, can function as a signaling molecule releasing Pi from S. cerevisiae vacuoles and T. brucei acidocalcisomes.IMPORTANCE Acidocalcisomes, first described in trypanosomes and known to be present in a variety of cells, have similarities with S. cerevisiae vacuoles in their structure and composition. Both organelles share a Na+/Pi symporter involved in Pi release to the cytosol, where it is needed for biosynthetic reactions. Here we show that PPi, at physiological cytosolic concentrations, stimulates the symporter expressed in either Xenopus oocytes or yeast vacuoles via its SPX domain, revealing a signaling role of this molecule.


Assuntos
Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Simportadores/genética , Trypanosoma brucei brucei/metabolismo , Vacúolos/metabolismo , Animais , Potenciais da Membrana , Oócitos/metabolismo , Fosfatos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Trypanosoma brucei brucei/genética , Xenopus/metabolismo
9.
Pediatr Nephrol ; 34(4): 549-559, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29275531

RESUMO

Renal phosphate handling critically determines plasma phosphate and whole body phosphate levels. Filtered phosphate is mostly reabsorbed by Na+-dependent phosphate transporters located in the brush border membrane of the proximal tubule: NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Here we review new evidence for the role and relevance of these transporters in inherited disorders of renal phosphate handling. The importance of NaPi-IIa and NaPi-IIc for renal phosphate reabsorption and mineral homeostasis has been highlighted by the identification of mutations in these transporters in a subset of patients with infantile idiopathic hypercalcemia and patients with hereditary hypophosphatemic rickets with hypercalciuria. Both diseases are characterized by disturbed calcium homeostasis secondary to elevated 1,25-(OH)2 vitamin D3 as a consequence of hypophosphatemia. In vitro analysis of mutated NaPi-IIa or NaPi-IIc transporters suggests defective trafficking underlying disease in most cases. Monoallelic pathogenic mutations in both SLC34A1 and SLC34A3 appear to be very frequent in the general population and have been associated with kidney stones. Consistent with these findings, results from genome-wide association studies indicate that variants in SLC34A1 are associated with a higher risk to develop kidney stones and chronic kidney disease, but underlying mechanisms have not been addressed to date.


Assuntos
Túbulos Renais Proximais/metabolismo , Fosfatos/metabolismo , Reabsorção Renal , Erros Inatos do Transporte Tubular Renal/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Raquitismo Hipofosfatêmico Familiar , Fator de Crescimento de Fibroblastos 23 , Predisposição Genética para Doença , Hereditariedade , Humanos , Mutação , Linhagem , Fenótipo , Prognóstico , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/fisiopatologia , Medição de Risco , Fatores de Risco , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo
11.
Endokrynol Pol ; 70(6): 496-503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891412

RESUMO

Phosphate plays a critical role in many vital cellular processes. Deviations from normal serum phosphate levels, including alterations in the extracellular phosphate/pyrophosphate ratio, can cause severe consequences, such as ectopic calcification. Cellular phosphate levels are tightly controlled by sodium phosphate cotransporters, underscoring their importance in cellular physiology. The role of sodium phosphate cotransporters in ectopic calcification requires further elucidation, taking into account their important role in the control of intracellular phosphate levels and the synthesis of ATP, the main source of extracellular pyrophosphate (a potent endogenous inhibitor of calcification). In this review, we discuss the roles of phosphate and pyrophosphate homeostasis in ectopic calcification, with a specific focus on phosphate transporters. We concentrate on the five known sodium-dependent phosphate transporters and review their localisation and regulation by external factors, and the effects observed in knockout studies and in naturally occurring mutations.


Assuntos
Calcinose/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Homeostase , Humanos , Fosfatos/metabolismo
12.
J Biol Chem ; 293(49): 19101-19112, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30315104

RESUMO

Acidocalcisomes of Trypanosoma brucei and the acidocalcisome-like vacuoles of Saccharomyces cerevisiae are acidic calcium compartments that store polyphosphate (polyP). Both organelles possess a phosphate-sodium symporter (TbPho91 and Pho91p in T. brucei and yeast, respectively), but the roles of these transporters in growth and orthophosphate (Pi) transport are unclear. We found here that Tbpho91-/- trypanosomes have a lower growth rate under phosphate starvation and contain larger acidocalcisomes that have increased Pi content. Heterologous expression of TbPHO91 in Xenopus oocytes followed by two-electrode voltage clamp recordings disclosed that myo-inositol polyphosphates stimulate both sodium-dependent depolarization of the oocyte membrane potential and Pi conductance. Deletion of the SPX domain in TbPho91 abolished this stimulation. Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate generated outward currents in Na+/Pi-loaded giant vacuoles prepared from WT or from TbPHO91-expressing pho91Δ strains but not from the pho91Δ yeast strains or from the pho91Δ strains expressing PHO91 or TbPHO91 with mutated SPX domains. Our results indicate that TbPho91 and Pho91p are responsible for vacuolar Pi and Na+ efflux and that myo-inositol polyphosphates stimulate the Na+/Pi symporter activities through their SPX domains.


Assuntos
Proteínas Fúngicas/metabolismo , Fosfatos de Inositol/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Oócitos/metabolismo , Domínios Proteicos , Proteínas de Protozoários/genética , Saccharomyces cerevisiae , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Trypanosoma brucei brucei , Xenopus laevis
13.
Biopharm Drug Dispos ; 39(2): 83-87, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29214648

RESUMO

We previously reported the contribution of sodium-phosphate cotransporter to the tubular reabsorption of lithium in rats. In the present study, the dose dependency of the renal handling of lithium was examined in rats. When lithium chloride at 1.25 mg/kg, 2.5 mg/kg and 25 mg/kg was intravenously injected as a bolus, the areas under the plasma concentration-time curve of lithium until 60 minutes were calculated to be 6.23 mEq·min/l, 8.77 mEq·min/l and 64.6 mEq·min/l, respectively. The renal clearance of lithium and its fractional excretion increased with increments in the dose administered. The renal clearance of lithium strongly correlated with the urinary excretion rate of phosphate in the 1.25 mg/kg group (r = 0.840) and 2.5 mg/kg group (r = 0.773), whereas this correlation was weak in the 25 mg/kg group (r = 0.306). The infusion of foscarnet, a typical inhibitor of sodium-phosphate cotransporter, decreased the fractional reabsorption of lithium in rats administered lithium chloride at 2.5 mg/kg, but did not affect it in rats administered 25 mg/kg. These results demonstrate the nonlinearity of the renal excretion of lithium in rats, with the saturation of lithium reabsorption by the sodium-phosphate cotransporter potentially being involved.


Assuntos
Túbulos Renais/metabolismo , Lítio/farmacocinética , Reabsorção Renal/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Relação Dose-Resposta a Droga , Foscarnet/farmacologia , Túbulos Renais/efeitos dos fármacos , Lítio/sangue , Lítio/urina , Masculino , Fosfatos/urina , Ratos , Proteínas Cotransportadoras de Sódio-Fosfato/antagonistas & inibidores
14.
Proc Natl Acad Sci U S A ; 114(10): E1786-E1795, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223522

RESUMO

Neurotransmitter:sodium symporters (NSSs) are integral membrane proteins responsible for the sodium-dependent reuptake of small-molecule neurotransmitters from the synaptic cleft. The symporters for the biogenic amines serotonin (SERT), dopamine (DAT), and norepinephrine (NET) are targets of multiple psychoactive agents, and their dysfunction has been implicated in numerous neuropsychiatric ailments. LeuT, a thermostable eubacterial NSS homolog, has been exploited as a model protein for NSS members to canvass the conformational mechanism of transport with a combination of X-ray crystallography, cysteine accessibility, and solution spectroscopy. Despite yielding remarkable insights, these studies have primarily been conducted with protein in the detergent-solubilized state rather than embedded in a membrane mimic. In addition, solution spectroscopy has required site-specific labeling of nonnative cysteines, a labor-intensive process occasionally resulting in diminished transport and/or binding activity. Here, we overcome these limitations by reconstituting unlabeled LeuT in phospholipid bilayer nanodiscs, subjecting them to hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS), and facilitating interpretation of the data with molecular dynamics simulations. The data point to changes of accessibility and dynamics of structural elements previously implicated in the transport mechanism, in particular transmembrane helices (TMs) 1a and 7 as well as extracellular loops (ELs) 2 and 4. The results therefore illuminate the value of this strategy for interrogating the conformational mechanism of the more clinically significant mammalian membrane proteins including SERT and DAT, neither of which tolerates complete removal of endogenous cysteines, and whose activity is heavily influenced by neighboring lipids.


Assuntos
Dopamina/química , Neurotransmissores/química , Serotonina/química , Proteínas Cotransportadoras de Sódio-Fosfato/química , Aminas Biogênicas/química , Aminas Biogênicas/metabolismo , Cristalografia por Raios X , Cisteína/química , Dopamina/metabolismo , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Neurotransmissores/metabolismo , Norepinefrina/química , Norepinefrina/metabolismo , Serotonina/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo
15.
J Anim Sci ; 95(1): 165-172, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28177365

RESUMO

For horses, distinct differences in intestinal phosphate transport have been postulated to account for the unique features of hind gut fermentation compared to other monogastric animals and ruminants. So far published data on mechanisms and underlying transport proteins involved in intestinal phosphate transport in the horse are still missing. Therefore we investigated intestinal phosphate transport in horses at both functional and molecular levels. Segmental diversity of intestinal phosphate transport along the intestinal axis was documented using the Ussing chamber technique. A transcellular phosphate secretion in the jejunum was confirmed. Furthermore, 2 sodium-dependent phosphate cotransporters, NaPiIIb and PiT1, were first detected in the equine intestine at mRNA level with PiT1 being expressed in both the small and large intestine, and NaPiIIb being solely expressed in the large intestine. In the colon, unidirectional net flux rates of phosphate were significantly greater compared to flux rates in other segments ( < 0.005) suggesting the colon as a major site for phosphate absorption in horses. Phosphate transport in the colon was mainly transcellular and mediated by a sodium-gradient as documented by Ussing chamber experiments and uptake of phosphate into colonic brush border membrane vesicles. In summary, the present study demonstrated mechanisms and transporters of intestinal phosphate transport in equine intestinal tissues with distinct differences between intestinal segments providing a new basis for a better understanding of intestinal phosphate transport in horses.


Assuntos
Cavalos/fisiologia , Absorção Intestinal/fisiologia , Transporte de Íons/fisiologia , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Mucosa Intestinal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética
16.
Exp Parasitol ; 173: 1-8, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27956087

RESUMO

Inorganic phosphate (Pi) is an essential nutrient for all organisms because it is required for a variety of biochemical processes, such as signal transduction and the synthesis of phosphate-containing biomolecules. Assays of 32Pi uptake performed in the absence or in the presence of Na+ indicated the existence of a Na+-dependent and a Na+-independent Pi transporter in Phytomonas serpens. Phylogenetic analysis of two hypothetical protein sequences of Phytomonas (EM1) showed similarities to the high-affinity Pi transporters of Saccharomyces cerevisiae: Pho84, a Na+-independent Pi transporter, and Pho89, a Na+-dependent Pi transporter. Plasma membrane depolarization by FCCP, an H+ ionophore, strongly decreased Pi uptake via both Na+-independent and Na+-dependent carriers, indicating that a membrane potential is essential for Pi influx. In addition, the furosemide-sensitive Na+-pump activity in the cells grown in low Pi conditions was found to be higher than the activity detected in the plasma membrane of cells cultivated at high Pi concentration, suggesting that the up-regulation of the Na+-ATPase pump could be related to the increase of Pi uptake by the Pho89p Na+:Pi symporter. Here we characterize for the first time two inorganic phosphate transporters powered by Na+ and H+ gradients and activated by low Pi availability in the phytopathogen P. serpens.


Assuntos
Fosfatos/metabolismo , Simportadores de Próton-Fosfato/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Trypanosomatina/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Cinética , Potenciais da Membrana , Simportadores de Próton-Fosfato/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Sódio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Trypanosomatina/genética , Regulação para Cima
17.
Physiol Rep ; 4(23)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27923977

RESUMO

The major site of fructose metabolism in the kidney is the proximal tubule (PT). To test whether insulin and/or IGF1 signaling in the PT is involved in renal structural/functional responses to dietary fructose, we bred mice with dual knockout (KO) of the insulin receptor (IR) and the IGF1 receptor (IGF1R) in PT by Cre-lox recombination, using a γ-glutamyl transferase promoter. KO mice had slightly (~10%) reduced body and kidney weights, as well as, a reduction in mean protein-to-DNA ratio in kidney cortex suggesting smaller cell size. Under control diet, IR and IGF1R protein band densities were 30-50% (P < 0.05) lower than WT, and the relative difference was greater in male animals. Male, but not female KO, also had significantly reduced band densities for Akt (protein kinase B), phosphorylated AktT308 and IRY1162/1163 A high-fructose diet (1-month) led to a significant increase in kidney weight in WT males (12%), but not in KO males or in either genotype of female mice. Kidney enlargement in the WT males was accompanied by a small, insignificant fall in protein-to-DNA ratio, supporting hyperplasia rather than hypertrophy. Fructose feeding of male WT mice led to significantly higher sodium bicarbonate exchanger (NBCe1), sodium hydrogen exchanger (NHE3), sodium phosphate co-transporter (NaPi-2), and transforming growth factor-ß (TGF-ß) abundances, as compared to male KO, suggesting elevated transport capacity and an early feature of fibrosis may have accompanied the renal enlargement. Overall, IR and/or IGF1R appear to have a role in PT cell size and enlargement in response to high-fructose diet.


Assuntos
Frutose/farmacologia , Túbulos Renais Proximais/metabolismo , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Animais , Dieta , Feminino , Frutose/administração & dosagem , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Receptor IGF Tipo 1/deficiência , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/deficiência , Receptor de Insulina/metabolismo , Fatores Sexuais , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
J Nutr Sci Vitaminol (Tokyo) ; 61 Suppl: S119-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26598821

RESUMO

Inorganic phosphate (Pi) is an essential compound for several biologic functions. Pi levels outside the normal range, however, contribute to several pathological processes. Hypophosphatemia leads to bone abnormalities, such as rickets/osteomalacia. Hyperphosphatemia contributes to vascular calcification in patients with chronic kidney disease and hemodialysis patients and is independently associated with cardiac mortality.Pi homeostasis is regulated by the coordinated function of renal and intestinal sodium-dependent phosphate (NaPi) transporters with dietary Pi, parathyroid hormone, 1,25-dihydroxyvitamin D3, and fibroblast growth factor 23. The type II NaPi transporter/SLC34 family, with three members identified to date, is mainly responsible for Pi homeostasis in the body. SLC34A1 and SCL34A3 are predominantly expressed in the kidney, whereas SLC34A2 is expressed in the small intestine. The role of each SLC34 in the body was recently established by studies of gene-targeted mice. Mutation of SLC34A1 causes Fanconi syndrome and mutation of SLC34A3 causes autosomal recessive hereditary hypophosphatemic rickets with hypercalciuria. SLC34A2 is thought to be a major intestinal NaPi transporter and mutation of SLC34A2 causes pulmonary alveolar microlithiasis. A detailed understanding of Pi regulation in the body is important toward maintaining health.


Assuntos
Homeostase , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Animais , Doenças Ósseas/etiologia , Humanos , Nefropatias/etiologia , Pneumopatias/etiologia , Sódio/metabolismo
19.
Curr Opin Nephrol Hypertens ; 24(2): 111-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25602517

RESUMO

PURPOSE OF REVIEW: NEDD4-2 is an ubiquitin-protein ligase that was originally identified as an interactor of the epithelial Na+ channel (ENaC); this interaction is defective in Liddle's syndrome, causing elevated ENaC activity and salt-sensitive hypertension. In this review we aim to highlight progress achieved in recent years demonstrating that NEDD4-2 is involved in the control of Na+ transporters that are different from ENaC, but which also play a role in salt-sensitive hypertension. RECENT FINDINGS: It has been shown that NEDD4-2 interacts with ubiquitylates and negatively regulates the thiazide-sensitive NCC (Na+,Cl- -cotransporter), both in vitro and in vivo in inducible, nephron-specific Nedd4-2 knockout mice. Moreover, evidence has been provided that NEDD4-2 is also involved in the regulation of human NHE3 (Na+,H+-exchanger 3) and NKCC2 (Na+,K+,2Cl- -cotransporter 2). SUMMARY: The emerging role of NEDD4-2 in the regulation of different Na+ transporters along the nephron and the identification of human polymorphisms in the NEDD4-2 gene (Nedd4L) related to salt-sensitive hypertension makes this ubiquitin-protein ligase an interesting target for the development of antihypertensive drugs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Canais Epiteliais de Sódio/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Anti-Hipertensivos/uso terapêutico , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Hipertensão/tratamento farmacológico , Ubiquitina-Proteína Ligases Nedd4 , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Ubiquitina-Proteína Ligases/genética
20.
J Proteome Res ; 13(11): 4635-46, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25152327

RESUMO

Dementia is a major public health burden characterized by impaired cognition and loss of function. There are limited treatment options due to inadequate understanding of its pathophysiology and underlying causative mechanisms. Discovery-driven iTRAQ-based quantitative proteomics techniques were applied on frozen brain samples to profile the proteome from vascular dementia (VaD) and age-matched nondementia controls to elucidate the perturbed pathways contributing to pathophysiology of VaD. The iTRAQ quantitative data revealed significant up-regulation of protein-l-isoaspartate O-methyltransferase and sodium-potassium transporting ATPase, while post-translational modification analysis suggested deamidation of catalytic and regulatory subunits of sodium-potassium transporting ATPase. Spontaneous protein deamidation of labile asparagines, generating abnormal l-isoaspartyl residues, is associated with cell aging and dementia due to Alzheimer's disease and may be a cause of neurodegeneration. As ion channel proteins play important roles in cellular signaling processes, alterations in their function by deamidation may lead to perturbations in membrane excitability and neuronal function. Structural modeling of sodium-potassium transporting ATPase revealed the close proximity of these deamidated residues to the catalytic site during E2P confirmation. The deamidated residues may disrupt electrostatic interaction during E1 phosphorylation, which may affect ion transport and signal transduction. Our findings suggest impaired regulation and compromised activity of ion channel proteins contribute to the pathophysiology of VaD.


Assuntos
Demência Vascular/metabolismo , Modelos Moleculares , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato/metabolismo , Amidas/metabolismo , Cromatografia Líquida , Biologia Computacional , Humanos , Fosforilação , Eletricidade Estática , Espectrometria de Massas em Tandem , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA