Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110499

RESUMO

Two different models have been proposed to explain how the endpoints of chromatin looped domains ('TADs') in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the 'loop-extrusion' and the 'boundary-pairing' models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.


Assuntos
Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Cromatina/química , Cromatina/metabolismo , Coesinas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Estruturas Cromossômicas , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química
2.
EMBO Rep ; 25(8): 3348-3372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38951710

RESUMO

The centromere, defined by the enrichment of CENP-A (a Histone H3 variant) containing nucleosomes, is a specialised chromosomal locus that acts as a microtubule attachment site. To preserve centromere identity, CENP-A levels must be maintained through active CENP-A loading during the cell cycle. A central player mediating this process is the Mis18 complex (Mis18α, Mis18ß and Mis18BP1), which recruits the CENP-A-specific chaperone HJURP to centromeres for CENP-A deposition. Here, using a multi-pronged approach, we characterise the structure of the Mis18 complex and show that multiple hetero- and homo-oligomeric interfaces facilitate the hetero-octameric Mis18 complex assembly composed of 4 Mis18α, 2 Mis18ß and 2 Mis18BP1. Evaluation of structure-guided/separation-of-function mutants reveals structural determinants essential for cell cycle controlled Mis18 complex assembly and centromere maintenance. Our results provide new mechanistic insights on centromere maintenance, highlighting that while Mis18α can associate with centromeres and deposit CENP-A independently of Mis18ß, the latter is indispensable for the optimal level of CENP-A loading required for preserving the centromere identity.


Assuntos
Proteína Centromérica A , Centrômero , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/química , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Ligação Proteica , Ciclo Celular/genética , Modelos Moleculares , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Nucleossomos/metabolismo , Nucleossomos/química , Proteínas Adaptadoras de Transdução de Sinal
3.
Commun Biol ; 7(1): 881, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030299

RESUMO

DNA-loop extrusion is considered to be a universal principle of structural maintenance of chromosome (SMC) proteins with regard to chromosome organization. Despite recent advancements in structural dynamics studies that involve the use of cryogenic-electron microscopy (Cryo-EM), atomic force microscopy (AFM), etc., the precise molecular mechanism underlying DNA-loop extrusion by SMC proteins remains the subject of ongoing discussions. In this context, we propose a scrunching model that incorporates the anisotropic motion of SMC folding with a baton-pass mechanism, offering a potential explanation of how a "DNA baton" is transferred from the hinge domain to a DNA pocket via an anisotropic hinge motion. This proposed model provides insights into how SMC proteins unidirectionally extrude DNA loops in the direction of loop elongation while also maintaining the stability of a DNA loop throughout the dynamic process of DNA-loop extrusion.


Assuntos
DNA , DNA/química , DNA/genética , Anisotropia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Conformação de Ácido Nucleico , Modelos Moleculares , Microscopia Crioeletrônica , Microscopia de Força Atômica
4.
Cell Rep ; 43(7): 114459, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38985674

RESUMO

Glycine- and arginine-rich (GAR) motifs, commonly found in RNA-binding and -processing proteins, can be symmetrically (SDMA) or asymmetrically (ADMA) dimethylated at the arginine residue by protein arginine methyltransferases. Arginine-methylated protein motifs are usually read by Tudor domain-containing proteins. Here, using a GFP-Trap, we identify a non-Tudor domain protein, squamous cell carcinoma antigen recognized by T cells 3 (SART3), as a reader for SDMA-marked GAR motifs. Structural analysis and mutagenesis of SART3 show that aromatic residues lining a groove between two adjacent aromatic-rich half-a-tetratricopeptide (HAT) repeat domains are essential for SART3 to recognize and bind to SDMA-marked GAR motif peptides, as well as for the interaction between SART3 and the GAR-motif-containing proteins fibrillarin and coilin. Further, we show that the loss of this reader ability affects RNA splicing. Overall, our findings broaden the range of potential SDMA readers to include HAT domains.


Assuntos
Motivos de Aminoácidos , Arginina , Glicina , Arginina/metabolismo , Arginina/química , Humanos , Glicina/metabolismo , Glicina/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ligação Proteica , Splicing de RNA , Células HEK293 , Metilação , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/química
5.
Biochemistry (Mosc) ; 89(4): 585-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831498

RESUMO

Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. Capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are, in fact, motor proteins with a very peculiar movement pattern leading to formation of DNA loops. This specific process has been called loop extrusion. Extrusion underlies multiple functions of cohesin beyond cohesion, but molecular mechanism of the process remains a mystery. In this review, we summarized the data on molecular architecture of cohesin, effect of ATP hydrolysis cycle on this architecture, and known modes of cohesin-DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in the not-so-distant future.


Assuntos
Coesinas , DNA , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Cromátides/metabolismo , Cromátides/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Coesinas/química , Coesinas/metabolismo , DNA/metabolismo , DNA/química
6.
Biochemistry (Mosc) ; 89(4): 601-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831499

RESUMO

The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.


Assuntos
Fenômenos Fisiológicos Celulares , Coesinas , Animais , Humanos , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Coesinas/metabolismo , DNA/metabolismo , DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/química
7.
Protein Sci ; 33(7): e5079, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38895997

RESUMO

Heterochromatin protein 1 alpha (HP1α) is an evolutionarily conserved protein that binds chromatin and is important for gene silencing. The protein comprises 191 residues arranged into three disordered regions and two structured domains, the chromo and chromoshadow domain, which associates into a homodimer. While high-resolution structures of the isolated domains of HP1 proteins are known, the structural properties of full-length HP1α remain largely unknown. Using a combination of NMR spectroscopy and structure predictions by AlphaFold2 we provide evidence that the chromo and chromoshadow domain of HP1α engage in direct contacts resulting in a compact chromo/chromoshadow domain arrangement. We further show that HP1ß and HP1γ have increased interdomain dynamics when compared to HP1α which may contribute to the distinct roles of different Hp1 isoforms in gene silencing and activation.


Assuntos
Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Homólogo 5 da Proteína Cromobox/química , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Conformação Proteica
8.
Chromosoma ; 133(3): 169-181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38856923

RESUMO

Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.


Assuntos
Centrômero , Cromatina , Proteínas Cromossômicas não Histona , Vertebrados , Centrômero/metabolismo , Centrômero/ultraestrutura , Animais , Cromatina/metabolismo , Cromatina/genética , Cromatina/ultraestrutura , Cromatina/química , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Vertebrados/genética , Proteína Centromérica A/metabolismo , Proteína Centromérica A/genética , Coesinas , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Proteína B de Centrômero/metabolismo , Proteína B de Centrômero/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestrutura , Adenosina Trifosfatases
9.
Chem Commun (Camb) ; 60(52): 6611-6614, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38845591

RESUMO

We developed a centromere-associated protein E (CENP-E) inhibitor employing trans to cis photoisomerization with 405 nm visible light illumination and fast thermal relaxation. This photoswitching characteristic of the inhibitor enabled selective blockage or release of the motion of particular chromosomes within a single mitotic cell. Using this technique, we successfully demonstrated targeted chromosome gain and loss in daughter cells by introducing asymmetric chromosome segregation.


Assuntos
Proteínas Cromossômicas não Histona , Luz , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Humanos , Processos Fotoquímicos , Células HeLa , Compostos Azo/química , Compostos Azo/farmacologia , Estrutura Molecular , Segregação de Cromossomos/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 121(21): e2401494121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753513

RESUMO

In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross-over between two and four at contour lengths on the order of 30 kilo-base pairs. The anomalously high fractal dimension [Formula: see text] is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times ([Formula: see text]) longer than tens of minutes to be proportional to [Formula: see text]. We validate our results with hybrid molecular dynamics-Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromossômicas não Histona , Coesinas , Interfase , Cromatina/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Humanos , Animais , Segregação de Cromossomos/fisiologia
11.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744280

RESUMO

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Assuntos
Centrômero , Coesinas , Cinetocoros , Mitose , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Galinhas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
12.
Nucleic Acids Res ; 52(10): 6017-6035, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38709902

RESUMO

Archaeal transcription is carried out by a multi-subunit RNA polymerase (RNAP) that is highly homologous in structure and function to eukaryotic RNAP II. Among the set of basal transcription factors, only Spt5 is found in all domains of life, but Spt5 has been shaped during evolution, which is also reflected in the heterodimerization of Spt5 with Spt4 in Archaea and Eukaryotes. To unravel the mechanistic basis of Spt4/5 function in Archaea, we performed structure-function analyses using the archaeal transcriptional machinery of Pyrococcus furiosus (Pfu). We report single-particle cryo-electron microscopy reconstructions of apo RNAP and the archaeal elongation complex (EC) in the absence and presence of Spt4/5. Surprisingly, Pfu Spt4/5 also binds the RNAP in the absence of nucleic acids in a distinct super-contracted conformation. We show that the RNAP clamp/stalk module exhibits conformational flexibility in the apo state of RNAP and that the enzyme contracts upon EC formation or Spt4/5 engagement. We furthermore identified a contact of the Spt5-NGN domain with the DNA duplex that stabilizes the upstream boundary of the transcription bubble and impacts Spt4/5 activity in vitro. This study, therefore, provides the structural basis for Spt4/5 function in archaeal transcription and reveals a potential role beyond the well-described support of elongation.


Assuntos
Proteínas Arqueais , RNA Polimerases Dirigidas por DNA , Modelos Moleculares , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Ligação Proteica , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
13.
Structure ; 32(6): 690-705.e6, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38565139

RESUMO

The centromere is epigenetically marked by a histone H3 variant-CENP-A. The budding yeast CENP-A called Cse4, consists of an unusually long N-terminus that is known to be involved in kinetochore assembly. Its disordered chaperone, Scm3 is responsible for the centromeric deposition of Cse4 as well as in the maintenance of a segregation-competent kinetochore. In this study, we show that the Cse4 N-terminus is intrinsically disordered and interacts with Scm3 at multiple sites, and the complex does not gain any substantial structure. Additionally, the complex forms a synergistic association with an essential inner kinetochore component (Ctf19-Mcm21-Okp1-Ame1), and a model has been suggested to this effect. Thus, our study provides mechanistic insights into the Cse4 N-terminus-chaperone interaction and also illustrates how intrinsically disordered proteins mediate assembly of complex multiprotein networks, in general.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Cinetocoros , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinetocoros/metabolismo , Cinetocoros/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Modelos Moleculares , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteína Centromérica A/metabolismo , Proteína Centromérica A/química , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas do Citoesqueleto , Proteínas Associadas aos Microtúbulos
14.
Biophys J ; 123(11): 1508-1518, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38664966

RESUMO

Biomolecular condensates have emerged as a powerful new paradigm in cell biology with broad implications to human health and disease, particularly in the nucleus where phase separation is thought to underly elements of chromatin organization and regulation. Specifically, it has been recently reported that phase separation of heterochromatin protein 1alpha (HP1α) with DNA contributes to the formation of condensed chromatin states. HP1α localization to heterochromatic regions is mediated by its binding to specific repressive marks on the tail of histone H3, such as trimethylated lysine 9 on histone H3 (H3K9me3). However, whether epigenetic marks play an active role in modulating the material properties of HP1α and dictating emergent functions of its condensates remains to be understood. Here, we leverage a reductionist system, composed of modified and unmodified histone H3 peptides, HP1α, and DNA, to examine the contribution of specific epigenetic marks to phase behavior of HP1α. We show that the presence of histone peptides bearing the repressive H3K9me3 is compatible with HP1α condensates, whereas peptides containing unmodified residues or bearing the transcriptional activation mark H3K4me3 are incompatible with HP1α phase separation. Using fluorescence microscopy and rheological approaches, we further demonstrate that H3K9me3 histone peptides modulate the dynamics and viscoelastic network properties of HP1α condensates in a concentration-dependent manner. Additionally, in cells exposed to uniaxial strain, we find there to be a decreased ratio of nuclear H3K9me3 to HP1α. These data suggest that HP1α-DNA condensates are viscoelastic materials, whose properties may provide an explanation for the dynamic behavior of heterochromatin in cells and in response to mechanostimulation.


Assuntos
Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona , Epigênese Genética , Histonas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Histonas/metabolismo , Histonas/química , Humanos , DNA/metabolismo , DNA/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química
15.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
16.
Protein Sci ; 33(4): e4937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501488

RESUMO

Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.


Assuntos
Clostridium thermocellum , Coesinas , Clostridium thermocellum/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Complexos Multienzimáticos , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA