Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Nat Commun ; 15(1): 3736, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744818

RESUMO

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Assuntos
Mitose , Proteínas Inibidoras de STAT Ativados , Humanos , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Animais , Linhagem Celular Tumoral , Camundongos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Interferência de RNA , Fuso Acromático/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Complexo de Endopeptidases do Proteassoma/metabolismo , Sumoilação , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Feminino
2.
PLoS Pathog ; 20(5): e1012058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768227

RESUMO

Viral disruption of innate immune signaling is a critical determinant of productive infection. The Human Cytomegalovirus (HCMV) UL26 protein prevents anti-viral gene expression during infection, yet the mechanisms involved are unclear. We used TurboID-driven proximity proteomics to identify putative UL26 interacting proteins during infection to address this issue. We find that UL26 forms a complex with several immuno-regulatory proteins, including several STAT family members and various PIAS proteins, a family of E3 SUMO ligases. Our results indicate that UL26 prevents STAT phosphorylation during infection and antagonizes transcriptional activation induced by either interferon α (IFNA) or tumor necrosis factor α (TNFα). Additionally, we find that the inactivation of PIAS1 sensitizes cells to inflammatory stimulation, resulting in an anti-viral transcriptional environment similar to ΔUL26 infection. Further, PIAS1 is important for HCMV cell-to-cell spread, which depends on the presence of UL26, suggesting that the UL26-PIAS1 interaction is vital for modulating intrinsic anti-viral defense.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Proteínas Inibidoras de STAT Ativados , Proteínas Virais , Humanos , Citomegalovirus/imunologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Regulação Viral da Expressão Gênica , Imunidade Inata
3.
Sci Signal ; 17(831): eadg7867, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593156

RESUMO

Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of Ifna and Ifnb. Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo. IAV infection induced Miz1 accumulation by promoting the cullin-4B (CUL4B)-mediated ubiquitylation and degradation of the E3 ubiquitin ligase Mule (Mcl-1 ubiquitin ligase E3; also known as Huwe1 or Arf-BP1), which targets Miz1 for degradation. As a result, Miz1 accumulation limited type I IFN production and favored viral replication. This study reveals a previously unrecognized function of Miz1 in regulating antiviral defense and a potential mechanism for influenza viruses to evade host immune defense.


Assuntos
Vírus da Influenza A , Influenza Humana , Interferon Tipo I , Camundongos , Animais , Humanos , Vírus da Influenza A/fisiologia , Ubiquitinação , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Replicação Viral , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Influenza Humana/genética , Interferons/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
4.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456949

RESUMO

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Assuntos
Isquemia Encefálica , Sumoilação , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Cognição , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
5.
Biomed Pharmacother ; 173: 116338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417290

RESUMO

Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70ß, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/uso terapêutico
6.
mBio ; 15(2): e0316823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236021

RESUMO

YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) is a member of the YTH protein family that binds to N6-methyladenosine (m6A)-modified RNA, regulating RNA stability and restricting viral replication, including Epstein-Barr virus (EBV). PIAS1 is an E3 small ubiquitin-like modifier (SUMO) ligase known as an EBV restriction factor, but its role in YTHDF2 SUMOylation remains unclear. In this study, we investigated the functional regulation of YTHDF2 by PIAS1. We found that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues (K281, K571, and K572). Importantly, PIAS1 synergizes with wild-type YTHDF2, but not a SUMOylation-deficient mutant, to limit EBV lytic replication. Mechanistically, YTHDF2 lacking SUMOylation exhibits reduced binding to EBV transcripts, leading to increased viral mRNA stability. Furthermore, PIAS1 mediates SUMOylation of YTHDF2's paralogs, YTHDF1 and YTHDF3, to restrict EBV replication. These results collectively uncover a unique mechanism whereby YTHDF family proteins control EBV replication through PIAS1-mediated SUMOylation, highlighting the significance of SUMOylation in regulating viral mRNA stability and EBV replication.IMPORTANCEm6A RNA modification pathway plays important roles in diverse cellular processes and viral life cycle. Here, we investigated the relationship between PIAS1 and the m6A reader protein YTHDF2, which is involved in regulating RNA stability by binding to m6A-modified RNA. We found that both the N-terminal and C-terminal regions of YTHDF2 interact with PIAS1. We showed that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues. We also demonstrated that PIAS1 enhances the anti-EBV activity of YTHDF2. We further revealed that PIAS1 mediates the SUMOylation of other YTHDF family members, namely, YTHDF1 and YTHDF3, to limit EBV replication. These findings together illuminate an important regulatory mechanism of YTHDF proteins in controlling viral RNA decay and EBV replication through PIAS1-mediated SUMOylation.


Assuntos
Adenina/análogos & derivados , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/fisiologia , Sumoilação , RNA Viral/genética , RNA Viral/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Estabilidade de RNA , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
J Nat Med ; 78(2): 285-295, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082192

RESUMO

The natural product Honokiol exhibits robust antitumor activity against a range of cancers, and it has also received approval to undergo phase I clinical trial testing. We confrmed that honokiol can promote the apoptotic death of tumor cells through cell experiments. Then siRNA constructs specific for PIAS3, PIAS3 overexpression plasmid and the mutation of the STAT3 Tyr705 residue were used to confirm the mechanism of Honokiol-induced apoptosis. Finally, we confrmed that honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation through the in vivo and in vitro experiments. Honokiol was ultimately found to reduce tumor cell viability by promoting apoptosis through a mechanism dependent on the ability of Honokiol to promote PIAS3 upregulation and the selective inhibition of p-STAT3 (Tyr705) without affecting p-STAT3 (Ser727) or p-STAT1 (Tyr701) levels. PIAS3 knockdown and overexpression in tumor cells altered STAT3 activation and associated DNA binding activity through the control of Tyr705 phosphorylation via PIAS3-STAT3 complex formation, ultimately shaping Honokiol-induced tumor cell apoptosis. Honokiol was also confirmed to significantly prolong the survival of mice bearing xenograft tumors in a PIAS3-dependent fashion. Together, these findings highlight a novel pathway through which Honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation and promoting the apoptotic death of tumor cells.


Assuntos
Compostos Alílicos , Apoptose , Compostos de Bifenilo , Fenóis , Tirosina , Humanos , Animais , Camundongos , Fosforilação , Regulação para Cima , Linhagem Celular Tumoral , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
8.
FASEB J ; 38(1): e23362, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102979

RESUMO

Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.


Assuntos
Homeostase , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
9.
J Hepatol ; 79(2): 403-416, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37040844

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a chronic inflammatory disease that can further progress to cirrhosis and hepatocellular carcinoma. However, the key molecular mechanisms behind this process have not been clarified. METHODS: We analyzed human NASH and normal liver tissue samples by RNA-sequencing and liquid chromatography-mass spectrometry, identifying hepatocyte cytosolic protein Myc-interacting zinc-finger protein 1 (Miz1) as a potential target in NASH progression. We established a Western diet+fructose-induced NASH model in hepatocyte-specific Miz1 knockout and adeno-associated virus type 8-overexpressing mice. Human NASH liver organoids were used to confirm the mechanism, and immunoprecipitation and mass spectrometry were used to detect proteins that could interact with Miz1. RESULTS: We demonstrate that Miz1 is reduced in hepatocytes in human NASH. Miz1 is shown to bind to peroxiredoxin 6 (PRDX6), retaining it in the cytosol, blocking its interaction with mitochondrial Parkin at Cys431, and inhibiting Parkin-mediated mitophagy. In NASH livers, loss of hepatocyte Miz1 results in PRDX6-mediated inhibition of mitophagy, increased dysfunctional mitochondria in hepatocytes, and production of proinflammatory cytokines, including TNFα, by hepatic macrophages. Crucially, the increased production of TNFα results in a further reduction in hepatocyte Miz1 by E3-ubiquitination. This produces a positive feedback loop of TNFα-mediated hepatocyte Miz1 degradation, resulting in PRDX6-mediated inhibition of hepatocyte mitophagy, with the accumulation of dysfunctional mitochondria in hepatocytes and increased macrophage TNFα production. CONCLUSIONS: Our study identified hepatocyte Miz1 as a suppressor of NASH progression via its role in mitophagy; we also identified a positive feedback loop by which TNFα production induces degradation of cytosolic Miz1, which inhibits mitophagy and thus leads to increased macrophage TNFα production. Interruption of this positive feedback loop could be a strategy to inhibit the progression of NASH. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) is a chronic inflammatory disease that can further develop into cirrhosis and hepatocellular carcinoma. However, the key molecular mechanism of this process has not been fully clarified. Herein, we identified a positive feedback loop of macrophage TNFα-mediated hepatocyte Miz1 degradation, resulting in PRDX6-mediated inhibition of hepatocyte mitophagy, aggravation of mitochondrial damage and increased macrophage TNFα production. Our findings not only provide mechanistic insight into NASH progression but also provide potential therapeutic targets for patients with NASH. Our human NASH liver organoid culture is therefore a useful platform for exploring treatment strategies for NASH development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Fator de Necrose Tumoral alfa/metabolismo , Mitofagia , Retroalimentação , Hepatócitos/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/uso terapêutico
10.
Cells ; 12(3)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36766713

RESUMO

Conjugation with the small ubiquitin-like modifier (SUMO) modulates protein interactions and localisation. The kinase Aurora B, a key regulator of mitosis, was previously identified as a SUMOylation target in vitro and in assays with overexpressed components. However, where and when this modification genuinely occurs in human cells was not ascertained. Here, we have developed intramolecular Proximity Ligation Assays (PLA) to visualise SUMO-conjugated Aurora B in human cells in situ. We visualised Aurora B-SUMO products at centromeres in prometaphase and metaphase, which declined from anaphase onwards and became virtually undetectable at cytokinesis. In the mitotic window in which Aurora B/SUMO products are abundant, Aurora B co-localised and interacted with NUP358/RANBP2, a nucleoporin with SUMO ligase and SUMO-stabilising activity. Indeed, in addition to the requirement for the previously identified PIAS3 SUMO ligase, we found that NUP358/RANBP2 is also implicated in Aurora B-SUMO PLA product formation and centromere localisation. In summary, SUMOylation marks a distinctive window of Aurora B functions at centromeres in prometaphase and metaphase while being dispensable for functions exerted in cytokinesis, and RANBP2 contributes to this control, adding a novel layer to modulation of Aurora B functions during mitosis.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Sumoilação , Humanos , Centrômero/metabolismo , Ligases/metabolismo , Mitose , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo
11.
Lab Invest ; 103(1): 100011, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748193

RESUMO

SUMOylation, one of the most important posttranslational modifications of proteins, plays an essential role in various biological processes; however, enzymes that control SUMOylation in hepatocellular carcinoma (HCC) are still unclear. Comprehensive exploration of the expression and clinical significance of SUMO enzymes in HCC would be of great value. Here, we obtained the gene expression profile of each small ubiquitin-like modifier (SUMO) protein and the corresponding clinical information from The Cancer Genome Atlas. We found that all SUMO enzymes were significantly increased in HCC tissues compared with that in adjacent nontumorous tissues. We identified a 6-gene prognostic signature, including SAE1, PIAS2, PIAS3, SENP3, SENP5, and UBC9, that could effectively predict the overall survival in patients with HCC. Specifically, SAE1 was the most valuable prognostic indicator. In 282 clinical samples, we found that SAE1 was closely related to the clinicopathologic parameters and prognosis of patients with HCC. In vitro and in vivo studies showed that SAE1 knockdown inhibits the proliferation, migration, and invasion of HCC cells. Mechanistically, we confirmed that SAE1 plays a role in driving HCC progression, which is largely dependent on the SUMOylation of mTOR signaling. In conclusion, our study revealed that the expression of SUMO enzymes, especially SAE1, is highly associated with HCC development and acts as a promising prognostic predictor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enzimas Ativadoras de Ubiquitina , Humanos , Carcinoma Hepatocelular/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Neoplasias Hepáticas/genética , Chaperonas Moleculares/genética , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação , Serina-Treonina Quinases TOR/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas
12.
Nat Commun ; 14(1): 102, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609656

RESUMO

The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. Here we identify two Brucella abortus effectors, NyxA and NyxB, that interfere with host protease SENP3, and this facilitates intracellular replication of the pathogen. The translocated Nyx effectors directly interact with SENP3 via a defined acidic patch (identified from the crystal structure of NyxB), preventing nucleolar localisation of SENP3 at late stages of infection. By sequestering SENP3, the effectors promote cytoplasmic accumulation of nucleolar AAA-ATPase NVL and ribosomal protein L5 (RPL5) in effector-enriched structures in the vicinity of replicating bacteria. The shuttling of ribosomal biogenesis-associated nucleolar proteins is inhibited by SENP3 and requires the autophagy-initiation protein Beclin1 and the SUMO-E3 ligase PIAS3. Our results highlight a nucleomodulatory function of two Brucella effectors and reveal that SENP3 is a crucial regulator of the subcellular localisation of nucleolar proteins during Brucella infection, promoting intracellular replication of the pathogen.


Assuntos
Brucelose , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Brucella abortus/metabolismo , Nucléolo Celular/metabolismo , Brucelose/microbiologia , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
13.
Cell Rep ; 42(2): 112041, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36708515

RESUMO

Succinate dehydrogenase (SDH) is a heterotetrameric enzyme complex belonging to the mitochondrial respiratory chain and uniquely links the tricarboxylic acid (TCA) cycle with oxidative phosphorylation. Cancer-related SDH mutations promote succinate accumulation, which is regarded as an oncometabolite. Post-translational modifications of SDH complex components are known to regulate SDH activity, although the contribution of SUMOylation remains unclear. Here, we show that SDHA is SUMOylated by PIAS3 and deSUMOylated by SENP2, events dictating the assembly and activity of the SDH complex. Moreover, CBP acetylation of SENP2 negatively regulates its deSUMOylation activity. Under glutamine deprivation, CBP levels decrease, and the ensuing SENP2 activation and SDHA deSUMOylation serve to concurrently dampen the TCA cycle and electron transport chain (ETC) activity. Along with succinate accumulation, this mechanism avoids excessive reactive oxygen species (ROS) production to promote cancer cell survival. This study elucidates a major function of mitochondrial-localized SENP2 and expands our understanding of the role of SUMOylation in resolving metabolic stress.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neoplasias/metabolismo , Ácido Succínico/metabolismo , Estresse Fisiológico , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Cisteína Endopeptidases/metabolismo
14.
Cancer Lett ; 555: 216025, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36538983

RESUMO

Targeting KRAS-mutated non-small-cell lung cancer (NSCLC) remains clinically challenging. Here we show that loss of function of Miz1 inhibits lung tumorigenesis in a mouse model of oncogenic KRAS-driven lung cancer. In vitro, knockout or silencing of Miz1 decreases cell proliferation, clonogenicity, migration, invasion, or anchorage-independent growth in mutant (MT) KRAS murine or human NSCLC cells but has unremarkable impact on non-tumorigenic cells or wild-type (WT) KRAS human NSCLC cells. RNA-sequencing reveals Protocadherin-10 (Pcdh10) as the top upregulated gene by Miz1 knockout in MT KRAS murine lung tumor cells. Chromatin immunoprecipitation shows Miz1 binding on the Pcdh10 promoter in MT KRAS lung tumor cells but not non-tumorigenic cells. Importantly, silencing of Pcdh10 rescues cell proliferation and clonogenicity in Miz1 knockout/knockdown MT KRAS murine or human tumor cells, and rescues allograft tumor growth of Miz1 knockout tumor cells in vivo. Miz1 is upregulated in MT KRAS lung tumor tissues compared with adjacent non-involved tissues in mice. Consistent with this, Miz1 is upregulated while Pcdh10 is downregulated in human lung adenocarcinomas (LUAD) compared with normal tissues, and high Miz1 levels or low Pcdh10 levels are associated with poor survival in lung cancer patients. Furthermore, the Miz1 signature is associated with worse survival in MT but not WT KRAS LUAD, and Pcdh10 is downregulated in MT compared to WT KRAS LUAD. Taken together, our studies implicate the Miz1/Pcdh10 axis in oncogenic KRAS-driven lung tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Protocaderinas , Ubiquitina-Proteína Ligases/metabolismo
15.
J Physiol Biochem ; 79(1): 83-105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36194366

RESUMO

Long noncoding RNAs (lncRNAs) are emerging regulators of vascular diseases, yet their role in diabetic vascular calcification/aging remains poorly understood. In this study, we identified a down-expressed lncRNA SNHG1 in high glucose (HG)-induced vascular smooth muscle cells (HA-VSMCs), which induced excessive autophagy and promoted HA-VSMCs calcification/senescence. Overexpression of SNHG1 alleviated HG-induced HA-VSMCs calcification/senescence. The molecular mechanisms of SNHG1 in HA-VSMCs calcification/senescence were explored by RNA pull-down, RNA immunoprecipitation, RNA stability assay, luciferase reporter assay, immunoprecipitation and Western blot assays. In one mechanism, SNHG1 directly interacted with Bhlhe40 mRNA 3'-untranslated region and increased Bhlhe40 mRNA stability and expression. In another mechanism, SNHG1 enhanced Bhlhe40 protein SUMOylation by serving as a scaffold to facilitate the binding of SUMO E3 ligase PIAS3 and Bhlhe40 protein, resulting in increased nuclear translocation of Bhlhe40 protein. Moreover, Bhlhe40 suppressed the expression of Atg10, which is involved in the process of autophagosome formation. Collectively, the protective effect of SNHG1 on HG-induced HA-VSMCs calcification/senescence is accomplished by stabilizing Bhlhe40 mRNA and promoting the nuclear translocation of Bhlhe40 protein. Our study could provide a novel approach for diabetic vascular calcification/aging.


Assuntos
Proteínas Relacionadas à Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , MicroRNAs , RNA Longo não Codificante , Calcificação Vascular , Humanos , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia , Glucose/metabolismo , Proteínas de Homeodomínio , MicroRNAs/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/farmacologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/farmacologia , RNA Longo não Codificante/metabolismo
17.
FASEB J ; 36(11): e22592, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36251411

RESUMO

Cell heterogeneity has impeded the accurate interpretation of the bulk transcriptome data from patients with diabetic nephropathy (DN). We performed an analysis by integrating bulk and single-cell transcriptome datasets to uncover novel mechanisms leading to DN, especially in the podocytes. Microdissected glomeruli and tubules transcriptome datasets were selected from Gene Expression Omnibus (GEO). Then the consistency between datasets was evaluated. The analysis of the bulk dataset and single-nucleus RNA dataset was integrated to reveal the cell type-specific responses to DN. The candidate genes were validated in kidney tissues from DN patients and diabetic mice. We compared 4 glomerular and 4 tubular datasets and found considerable discrepancies among datasets regarding the deferentially expressed genes (DEGs), involved signaling pathways, and the hallmark enrichment profiles. Deconvolution of the bulk data revealed that the variations in cell-type proportion contributed greatly to this discrepancy. The integrative analysis uncovered that the dysregulation of spermatogenesis-related genes, including TEKT2 and PIAS2, was involved in the development of DN. Importantly, the mRNA level of TEKT2 was negatively correlated with the mRNA levels of NPHS1 (r = -.66, p < .0001) and NPHS2 (r = -.85, p < .0001) in human diabetic glomeruli. Immunostaining confirmed that the expression of TEKT2 and PIAS2 were up-regulated in podocytes of DN patients and diabetic mice. Knocking down TEKT2 resisted high glucose-induced cytoskeletal remodeling and down-regulation of NPHS1 protein in the cultured podocyte. In conclusion, the integrative strategy can help us efficiently use the publicly available transcriptomics resources. Using this approach and combining it with classical research methods, we identified TEKT2 and PIAS2, two spermatogenesis-related genes involved in the pathogenesis of DN. Furthermore, TEKT2 is involved in this pathogenesis by regulating the podocyte cytoskeleton.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Proteínas dos Microtúbulos , Podócitos , Proteínas Inibidoras de STAT Ativados , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Podócitos/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Proteínas dos Microtúbulos/metabolismo
18.
Nat Commun ; 13(1): 5133, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050397

RESUMO

DNA end resection is delicately regulated through various types of post-translational modifications to initiate homologous recombination, but the involvement of SUMOylation in this process remains incompletely understood. Here, we show that MRE11 requires SUMOylation to shield it from ubiquitin-mediated degradation when resecting damaged chromatin. Upon DSB induction, PIAS1 promotes MRE11 SUMOylation on chromatin to initiate DNA end resection. Then, MRE11 is deSUMOylated by SENP3 mainly after it has moved away from DSB sites. SENP3 deficiency results in MRE11 degradation failure and accumulation on chromatin, causing genome instability. We further show that cancer-related MRE11 mutants with impaired SUMOylation exhibit compromised DNA repair ability. Thus, we demonstrate that MRE11 SUMOylation in coordination with ubiquitylation is dynamically controlled by PIAS1 and SENP3 to facilitate DNA end resection and maintain genome stability.


Assuntos
Cromatina , Proteína Homóloga a MRE11 , Sumoilação , Ubiquitinação , Cisteína Endopeptidases/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica , Homeostase , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação/genética , Sumoilação/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia
19.
Dis Markers ; 2022: 4988539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092961

RESUMO

Recently, attentions have come to the alleviatory effect of protein inhibitor of activated STAT1 (PIAS1) in hepatic ischemia-reperfusion injury (HIRI), but the underlying molecular mechanistic actions remain largely unknown, which were illustrated in the present study. Microarray-based analysis predicted a possible regulatory mechanism involving the PIAS1/NFATc1/HDAC1/IRF-1/p38 MAPK signaling axis in HIRI. Then, growth dynamics of hypoxia/reoxygenation- (H/R-) exposed hepatocytes and liver injury of HIRI-like mice were delineated after the alteration of the PIAS1 expression. We validated that PIAS1 downregulation occurred in H/R-exposed hepatocytes and HIRI-like mice, while the expression of NFATc1, HDAC1, and IRF-1 and phosphorylation levels of p38 were increased. PIAS1 inactivated p38 MAPK signaling by inhibiting HDAC1-mediated IRF-1 through NFATc1 SUMOylation, thereby repressing the inflammatory response and apoptosis of hepatocytes in vitro, and alleviated liver injury in vivo. Collectively, the NFATc1/HDAC1/IRF-1/p38 MAPK signaling axis is highlighted as a promising therapeutic target for potentiating hepatoprotective effects of PIAS1 against HIRI.


Assuntos
Traumatismo por Reperfusão , Sumoilação , Animais , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA