Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Med Sci ; 19(1): 164-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975310

RESUMO

Over the past two decades, the development of targeted immunotherapeutics for relapsing-remitting multiple sclerosis has been successfully orchestrated through the efficacious modulation of neuroinflammatory outcomes demonstrated in the experimental autoimmune encephalomyelitis (EAE) model. In this model, the focus of developing immunomodulatory therapeutics has been demonstrated through their effectiveness in modifying the pro-inflammatory Th1 and Th17-dependent neuropathological outcomes of demyelination, oligodendrocytopathy and axonal dystrophy. However, recent successful preclinical and clinical trials have advocated for the significance of B cell-dependent immunopathogenic responses and has led to the development of novel biologicals that target specific B cell phenotypes. In this context, a new molecule, B-cell activating factor (BAFF), has emerged as a positive regulator of B cell survival and differentiation functioning through various signaling pathways and potentiating the activity of various receptor complexes through pleiotropic means. One possible cognate receptor for BAFF includes the Nogo receptor (NgR) and its homologs, previously established as potent inhibitors of axonal regeneration during central nervous system (CNS) injury and disease. In this review we provide current evidence for BAFF-dependent signaling through the NgR multimeric complex, elucidating their association within the CNS compartment and underlying the importance of these potential pathogenic molecular regulators as possible therapeutic targets to limit relapse rates and potentially MS progression.


Assuntos
Fator Ativador de Células B/fisiologia , Linfócitos B/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Animais , Autoimunidade , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/uso terapêutico , Humanos , Agentes de Imunomodulação/uso terapêutico , Esclerose Múltipla/terapia , Proteínas Nogo/fisiologia , Transdução de Sinais
2.
J Mol Neurosci ; 69(3): 360-370, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31286407

RESUMO

Intracerebral hemorrhage (ICH) leads to widespread pathological lesions in the brain, especially impacting neuronal survival and axonal regeneration. This study aimed to elucidate whether the Nogo-A (a myelin-related protein)/paired immunoglobulin-like receptor B (Pir-B)/tropomyosin receptor kinase B (TrkB) pathway could exert a regulatory effect in ICH. An ICH model was first established in Sprague Dawley rats, followed by different administrations of vehicle, k252a, or NSC 87877. The Morris water maze test was performed to observe ICH-induced cognitive dysfunction in rats. Rats in the ICH + NSC 87877 group showed better cognitive performance compared with those injected with vehicle or k252a. Neurobehavioral scores were identical. By harvesting brain tissues at different time points after ICH, we detected the expression levels of Nogo-A and PirB with western blot and immunofluorescence and found that they were markedly upregulated at 48 h after ICH. TUNEL and Fluoro-Jade B staining showed that NSC 87877 treatment attenuated ICH-induced apoptosis and neuronal death, whereas k252a treatment aggravated these pathological changes. The expression levels of growth-associated protein 43 (GAP43) and neurofilament 200 (NF200) were higher in the ICH + NSC 87877 group compared with the ICH + vehicle group, but were lower in the ICH + k252a group. Finally, we confirmed the protective role of p-TrkB/TrkB in ICH by western blot. To sum up, our study identified the inhibitory role of the Nogo-A/PirB/TrkB pathway in ICH; however, p-TrkB/TrkB may serve as a potential target for secondary brain injury post-ICH.


Assuntos
Hemorragia Cerebral/fisiopatologia , Crescimento Neuronal/fisiologia , Neurônios/fisiologia , Proteínas Nogo/fisiologia , Receptor trkB/fisiologia , Receptores Imunológicos/fisiologia , Transdução de Sinais , Animais , Apoptose , Encéfalo/patologia , Carbazóis/toxicidade , Morte Celular , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/patologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/prevenção & controle , Alcaloides Indólicos/toxicidade , Masculino , Aprendizagem em Labirinto , Atividade Motora , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Nogo/biossíntese , Quinolinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/biossíntese , Regeneração , Regulação para Cima
3.
J Cereb Blood Flow Metab ; 37(2): 614-631, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27927704

RESUMO

Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation µCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Neovascularização Fisiológica , Proteínas Nogo/fisiologia , Animais , Sistema Nervoso Central/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Deleção de Genes , Imageamento Tridimensional/métodos , Camundongos , Proteínas Nogo/genética
4.
Genetics ; 205(1): 295-302, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821431

RESUMO

Nogo-A is a membrane-bound protein that functions to inhibit neuronal migration, adhesion, and neurite outgrowth during development. In the mature nervous system, Nogo-A stabilizes neuronal wiring to inhibit neuronal plasticity and regeneration after injury. Here, we show that RET-1, the sole Nogo-A homolog in Caenorhabditis elegans, is required to control developmental wiring of a specific subset of neurons. In ret-1 deletion mutant animals, specific ventral nerve cord axons are misguided where they fail to respect the ventral midline boundary. We found that ret-1 is expressed in multiple neurons during development, and, through mosaic analysis, showed that ret-1 controls axon guidance in a cell-autonomous manner. Finally, as in mammals, ret-1 regulates ephrin expression, and dysregulation of the ephrin ligand VAB-2 is partially responsible for the ret-1 mutant axonal defects. Together, our data present a previously unidentified function for RET-1 in the nervous system of C. elegans.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Neurônios/fisiologia , Proteínas Nogo/fisiologia , Animais , Axônios/metabolismo , Axônios/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Efrinas/metabolismo , Proteínas de Membrana/genética , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nogo/biossíntese , Proteínas Nogo/genética , Proteínas Nogo/metabolismo
5.
Sci Rep ; 6: 39586, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000762

RESUMO

Mitral cells are major projection neurons of the olfactory bulb (OB) that form an axonal bundle known as the lateral olfactory tract (LOT). After axonal bundle formation, collateral branches sprout from primary axons of the LOT. Recently, we identified LOT usher substance (LOTUS) as an endogenous Nogo receptor-1 (NgR1) antagonist and demonstrated that LOTUS contributes to the formation of the LOT axonal bundle. Immunoblots revealed that the expression level of Nogo-A in the OB developmentally increased during axonal collateral formation. Next, we found that the axonal collateral branches were increased in cultured OB neurons from LOTUS-knockout (KO) mice, whereas they were decreased in cultured OB neurons from NgR1-KO mice. Knockdown of Nogo-A in cultured OB neurons reduced the number of axonal collateral branches, suggesting that endogenous Nogo-A induces axonal branching. Finally, the collateral branches of the LOT were increased in LOTUS-KO mice, whereas those in NgR1-KO mice were decreased. Moreover, the abnormal increase of axonal branching observed in LOTUS-KO mice was rescued in the double mutant of LOTUS- and NgR1-KO mice. These findings suggest that Nogo-A and NgR1 interactions may contribute to axonal branching in LOT development.


Assuntos
Axônios/fisiologia , Proteínas Nogo/fisiologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/fisiologia , Transdução de Sinais , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neurônios/fisiologia , Receptor Nogo 1/fisiologia , Prosencéfalo/fisiologia
7.
Oncol Rep ; 35(6): 3395-402, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27109183

RESUMO

Nogo or reticulon-4 (RTN4), also known as neurite outgrowth inhibitor, is a member of the reticulon family of genes. Nogo-A, one of the three isoforms, is enriched in the central nervous system (CNS). The extracellular domain of Nogo-A, Nogo-66, has neurite growth inhibitory activity that is specific for neurons and is mediated by the Nogo receptor. However, most of its functions are not known yet. We investigated whether Nogo-A modulates the migration and invasion of a glioblastoma cell line, as well as the factors that have an effect on Nogo-A. The expression of Nogo-A was evaluated using western blotting and immunohistochemistry in human brain tumor specimens. U87MG cells were transfected with a sense-Nogo-A cDNA construct (U87-Nogo-A cells expressing Nogo-A) and an empty vector (U87MG-E cells not expressing Nogo-A). The migration and invasion abilities of these cells were investigated using simple scratch and Matrigel invasion assays. Morphologic and cytoskeletal changes were documented by confocal microscopy. The proliferation rate was estimated using doubling time assay. The effects of Nogo-A on Rho activity and phosphorylated cofilin were determined by a Rho activity assay and western blotting. Among primary brain tumors, Nogo-A expression was found in a higher percentage of oligodendrogliomas (90.0%) compared with the percentage in the glioblastomas (68.4%). In addition, the percentage in mixed gliomas was 42.9%, while it was not expressed in pituitary adenomas or schwannomas. The migration and invasion abilities of the U87-Nogo-A cells were decreased compared with the control. In the U87-Nogo-A cell line, Rho activity and phosphorylated cofilin expression were also decreased and morphology became more flat in comparison with the U87MG-E cell line. Nogo-A may inhibit the migration and invasion of human malignant glioma cells via the downregulation of RhoA-cofilin signaling.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas Nogo/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/análise , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Invasividade Neoplásica , Proteínas Nogo/análise , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA