Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 525-537, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38414349

RESUMO

The BCR-ABL fusion gene, formed by the fusion of the breakpoint cluster region protein ( BCR) and the Abl Oncogene 1, Receptor Tyrosine Kinase ( ABL) genes, encodes the BCR-ABL oncoprotein, which plays a crucial role in leukemogenesis. Current therapies have limited efficacy in patients with chronic myeloid leukemia (CML) because of drug resistance or disease relapse. Identification of novel strategies to treat CML is essential. This study aims to explore the efficiency of novel CRISPR-associated protein 9 (Cas9)/dual-single guide RNA (sgRNA)-mediated disruption of the BCR-ABL fusion gene by targeting BCR and cABL introns. A co-expression vector for Cas9 green fluorescent protein (GFP)/dual-BA-sgRNA targeting BCR and cABL introns is constructed to produce lentivirus to affect BCR-ABL expression in CML cells. The effects of dual-sgRNA virus-mediated disruption of BCR-ABL are analyzed via the use of a genomic sequence and at the protein expression level. Cell proliferation, cell clonogenic ability, and cell apoptosis are assessed after dual sgRNA virus infection, and phosphorylated BCR-ABL and its downstream signaling molecules are detected. These effects are further confirmed in a CML mouse model via tail vein injection of Cas9-GFP/dual-BA-sgRNA virus-infected cells and in primary cells isolated from patients with CML. Cas9-GFP/dual-BA-sgRNA efficiently disrupts BCR-ABL at the genomic sequence and gene expression levels in leukemia cells, leading to blockade of the BCR-ABL tyrosine kinase signaling pathway and disruption of its downstream molecules, followed by cell proliferation inhibition and cell apoptosis induction. This method prolongs the lifespan of CML model mice. Furthermore, the effect is confirmed in primary cells derived from patients with CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , RNA Guia de Sistemas CRISPR-Cas , Animais , Humanos , Camundongos , Apoptose/genética , Proliferação de Células/genética , Sistemas CRISPR-Cas , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Genes abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Proteínas Proto-Oncogênicas c-bcr/genética , Proteínas Proto-Oncogênicas c-bcr/metabolismo
2.
BMC Cancer ; 22(1): 137, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114947

RESUMO

BACKGROUND: Telomeres are protective structures at chromosome ends which shorten gradually with increasing age. In chronic lymphocytic leukemia (CLL), short telomeres have been associated with unfavorable disease outcome, but the link between clonal evolution and telomere shortening remains unresolved. METHODS: We investigated relative telomere length (RTL) in a well-characterized cohort of 198 CLL patients by qPCR and focused in detail on a subgroup 26 patients who underwent clonal evolution of TP53 mutations (evolTP53). In the evolTP53 subgroup we explored factors influencing clonal evolution and corresponding changes in telomere length through measurements of telomerase expression, lymphocyte doubling time, and BCR signaling activity. RESULTS: At baseline, RTL of the evolTP53 patients was scattered across the entire RTL spectrum observed in our CLL cohort. RTL changed in the follow-up samples of 16/26 (62%) evolTP53 cases, inclining to reach intermediate RTL values, i.e., longer telomeres shortened compared to baseline while shorter ones prolonged. For the first time we show that TP53 clonal shifts are linked to RTL change, including unexpected RTL prolongation. We further investigated parameters associated with RTL changes. Unstable telomeres were significantly more frequent among younger patients (P = 0.032). Shorter telomeres were associated with decreased activity of the B-cell receptor signaling components p-ERK1/2, p-ZAP-70/SYK, and p-NFκB (P = 0.04, P = 0.01, and P = 0.02, respectively). CONCLUSIONS: Our study revealed that changes of telomere length reflect evolution in leukemic subclone proportion, and are associated with specific clinico-biological features of the explored cohort.


Assuntos
Evolução Clonal/genética , Leucemia Linfocítica Crônica de Células B/genética , Telômero/ultraestrutura , Proteína Supressora de Tumor p53/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Transdução de Sinais , Telomerase/genética
3.
J Pharm Pharmacol ; 74(1): 103-111, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34109977

RESUMO

OBJECTIVES: Leukemia is one of the severe cancer types all around the globe. Even though some chemotherapeutic drugs are available for treating leukemia, they have various side effects. As an alternative approach, herbal drugs are focused on current research to overcome leukemia. The present work was conducted to investigate the antileukemic mechanism of active phytochemical vitexin, which was isolated from ethno-medicine (Prosopis cineraria leaf) used by traditional healers of West Bengal, India. METHODS: Antiproliferative mechanisms of selected phyto-compound against K-562 cells were evaluated using cellular uptake, morphological changes, DNA fragmentation, mitochondrial membrane potential and signaling pathways analysis. KEY FINDINGS: Vitexin exhibited cytotoxicity by reducing mitochondrial membrane potential (32.40%) and causing DNA fragmentation (84.15%). The western blotting study indicated inhibition of cell survival proteins (BCR, ABL, H-RAS, N-RAS, K-RAS and RAF) and expression of apoptotic proteins (p38, BAX and caspase-9) in leukemia cells upon treatment with vitexin. CONCLUSIONS: Based on the results, presently investigated phyto-compound vitexin could be considered for developing safe and natural drugs to treat leukemia after conducting suitable preclinical and clinical trials.


Assuntos
Apigenina/farmacologia , Proteínas Oncogênicas v-abl/metabolismo , Prosopis , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Neurogastroenterol Motil ; 33(12): e14190, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34190380

RESUMO

BACKGROUND: The breakpoint cluster region (BCR) is a protein that originally forms a fusion protein with c-Abl tyrosine kinase and induces leukemia. Researchers have shown that BCR is enriched in the central nervous system and may contribute to neurological disorders. We aimed to investigate the physiological function of BCR in neural development in the gastrointestinal (GI) tract and brain. METHODS: Whole-exome sequencing was used to screen for mutations in the BCR. Bcr knockout mice (Bcr-/- , ΔExon 2-22) were generated using the CRISPR/Cas9 system. Transit of carmine red dye and glass bead expulsion assays were used to record total and proximal GI transit and distal colonic transit. KEY RESULTS: In an infant with pediatric intestinal pseudo-obstruction, we found a heterozygous de novo mutation (NM_004327.3:c.3072+1G>A) in BCR. Bcr deficiency mice (Bcr-/- ) exhibited growth retardation and impaired gastrointestinal motility. Bcr-/- mice had a prolonged average total GI transit time with increased distal colonic transit and proximal GI transit in isolation. Morphology analysis indicated that Bcr-/- mice had a less number of neurons in the submucosal plexus and myenteric plexus. Bcr-/- mice exhibited apparent structural defects in the brain, particularly in the cortex. Additionally, Bcr- depletion in the mouse cortex altered the expression of Ras homologous (Rho) family small GTPases. CONCLUSIONS AND INFERENCES: BCR mutations are associated with intestinal obstruction in children. Loss of Bcr can cause intestinal dysmotility and brain developmental defects may via regulation of Rho GTPases.


Assuntos
Encéfalo/metabolismo , Gastroenteropatias/genética , Motilidade Gastrointestinal/genética , Pseudo-Obstrução Intestinal/genética , Proteínas Proto-Oncogênicas c-bcr/genética , Animais , Feminino , Gastroenteropatias/metabolismo , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/fisiopatologia , Trânsito Gastrointestinal/genética , Humanos , Pseudo-Obstrução Intestinal/metabolismo , Pseudo-Obstrução Intestinal/patologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo
5.
Cell Death Differ ; 28(9): 2616-2633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33879857

RESUMO

Chemokines are important regulators of the immune system, inducing specific cellular responses by binding to receptors on immune cells. In SLE patients, decreased expression of CCL2 on mesenchymal stem cells (MSC) prevents inhibition of B-cell proliferation, causing the characteristic autoimmune phenotype. Nevertheless, the intrinsic role of CCL2 on B-cell autoimmunity is unknown. In this study using Ccl2 KO mice, we found that CCL2 deficiency enhanced BCR signaling by upregulating the phosphorylation of the MST1-mTORC1-STAT1 axis, which led to reduced marginal zone (MZ) B cells and increased germinal center (GC) B cells. The abnormal differentiation of MZ and GC B cells were rescued by in vivo inhibition of mTORC1. Additionally, the inhibition of MST1-mTORC1-STAT1 with specific inhibitors in vitro also rescued the BCR signaling upon antigenic stimulation. The deficiency of CCL2 also enhanced the early activation of B cells including B-cell spreading, clustering and signalosome recruitment by upregulating the DOCK8-WASP-actin axis. Our study has revealed the intrinsic role and underlying molecular mechanism of CCL2 in BCR signaling, B-cell differentiation, and humoral response.


Assuntos
Quimiocina CCL2/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Quimiocinas , Humanos , Camundongos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
6.
Exp Oncol ; 43(1): 73-76, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33785719

RESUMO

AIM: To study cellular localization of full-length breakpoint cluster region (BCR), Pleckstrin homology domain of BCR and cortactin and determine whether they can coexist in cell nucleus. MATERIALS AND METHODS: HEK293T cell line was transfected with pECFP-BCR, pEGFP-PH and pmTagRFP-N1-CTTN using polyethyleneimine. Live cells were imaged in cell culture dishes with glass coverslip attached to the bottom with Leica SP8 STED 3D confocal microscope in the environmental chamber. Obtained images were processed and analyzed with Fiji software. RESULTS: We identified colocalization of full-length BCR and cortactin in nucleus of cell undergoing terminal phase of cell division. We did not observe nuclear localization of cortactin in non-dividing cell. Both Pleckstrin homology domain and full-length BCR exhibited cytoplasmic as well as nuclear localization. CONCLUSIONS: Colocalization of BCR with cortactin in cell nucleus indicates their potential role in regulation of actin network allowing for the maintenance of nuclear architecture and DNA integrity.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Cortactina/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Células HEK293 , Humanos
7.
Blood ; 137(18): 2544-2557, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33534893

RESUMO

Patients with chronic graft-versus-host disease (cGVHD) have increased B cell-activating factor (BAFF) levels, but whether BAFF promotes disease after allogeneic bone marrow transplantation (allo-BMT) remains unknown. In a major histocompatibility complex-mismatched model with cGVHD-like manifestations, we first examined B-lymphopenic µMT allo-BMT recipients and found that increased BAFF levels in cGVHD mice were not merely a reflection of B-cell number. Mice that later developed cGVHD had significantly increased numbers of recipient fibroblastic reticular cells with higher BAFF transcript levels. Increased BAFF production by donor cells also likely contributed to cGVHD, because BAFF transcript in CD4+ T cells from diseased mice and patients was increased. cGVHD manifestations in mice were associated with high BAFF/B-cell ratios and persistence of B-cell receptor (BCR)-activated B cells in peripheral blood and lesional tissue. By employing BAFF transgenic (Tg) mice donor cells, we addressed whether high BAFF contributed to BCR activation in cGVHD. BAFF increased NOTCH2 expression on B cells, augmenting BCR responsiveness to surrogate antigen and NOTCH ligand. BAFF Tg B cells had significantly increased protein levels of the proximal BCR signaling molecule SYK, and high SYK protein was maintained by BAFF after in vitro BCR activation or when alloantigen was present in vivo. Using T cell-depleted (BM only) BAFF Tg donors, we found that BAFF promoted cGVHD manifestations, circulating GL7+ B cells, and alloantibody production. We demonstrate that pathologic production of BAFF promotes an altered B-cell compartment and augments BCR responsiveness. Our findings compel studies of therapeutic targeting of BAFF and BCR pathways in patients with cGVHD.


Assuntos
Fator Ativador de Células B/metabolismo , Transplante de Medula Óssea/efeitos adversos , Doença Enxerto-Hospedeiro/patologia , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Receptor Notch2/metabolismo , Quinase Syk/metabolismo , Linfócitos T/imunologia , Animais , Fator Ativador de Células B/genética , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Isoanticorpos/imunologia , Isoantígenos/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcr/genética , Receptor Notch2/genética , Quinase Syk/genética , Transplante Homólogo
8.
Eur J Med Chem ; 204: 112636, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32731189

RESUMO

Spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK) are attractive targets in human haematological malignancies with excessively activated B-cell receptor (BCR) signalling pathways. Entospletinib is a SYK inhibitor that has been evaluated as a clinical candidate. We designed and prepared five isosteres in which the imidazo[1,2-a]pyrazine scaffold of entospletinib was altered to pyrazolo[3,4-d]pyrimidine, pyrrolo[3,2-d]pyrimidine, imidazo[4,5-b]pyridine, imidazo[4,5-c]pyridine and purine. The last two isosteres were the most potent SYK inhibitors, with IC50 values in the mid-nanomolar range. Importantly, three compounds also inhibited BTK more effectively than did entospletinib. Further experiments then showed that BCR signalling was suppressed in Ramos cells by the potent compounds. Preliminary kinase inhibition screening also revealed LCK and SRC as additional targets. Our results further support the hypothesis that multikinase targeting compounds could produce more robust responses in the treatment of B lymphoid neoplasms.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Indazóis/administração & dosagem , Fosforilação , Inibidores de Proteínas Quinases/administração & dosagem , Pirazinas/administração & dosagem
9.
Cell Signal ; 73: 109673, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32470518

RESUMO

Activation process of mature B cell is predominantly driven by specific BCR-mediated pathways, switched on and off all through late B cell differentiation stages. Mice deficient for APS, a member of the Lnk/SH2B family of adaptor proteins, showed that this adaptor plays a BCR-mediated regulatory role in mature B cells. However, the intermediates involved in this adaptor modulating functions in B cells are still unknown. In the present study, we investigated the role of APS in regulating BCR signalling notably through cytoskeleton remodeling in mature B cells. Herein, we showed that APS function is stage specific, as it exclusively intervenes in mature B cells. Upon activation, APS colocalizes with the BCR and associates with important regulators of BCR signalling, such as Syk and Cbl kinase. Importantly, APS interferes, as a scaffold protein, with the stability of Syk kinase by recruiting Cbl. This function is mainly mediated by APS SH2 domain, which regulates BCR-evoked cell dynamics. Our findings thus reveal that APS plays a regulatory role in BCR-induced responses by specifically modulating its interacting partners, which positions APS as a relevant modulator of BCR signalling in mature B cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos B , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
10.
Artigo em Inglês | MEDLINE | ID: mdl-31980503

RESUMO

8p11 myeloproliferative syndrome (EMS) represents a unique World Health Organization (WHO)-classified hematologic malignancy defined by translocations of the FGFR1 receptor. The syndrome is a myeloproliferative neoplasm characterized by eosinophilia and lymphadenopathy, with risk of progression to either acute myeloid leukemia (AML) or T- or B-lymphoblastic lymphoma/leukemia. Within the EMS subtype, translocations between breakpoint cluster region (BCR) and fibroblast growth factor receptor 1 (FGFR1) have been shown to produce a dominant fusion protein that is notoriously resistant to tyrosine kinase inhibitors (TKIs). Here, we report two cases of BCR-FGFR1+ EMS identified via RNA sequencing (RNA-seq) and confirmed by fluorescence in situ hybridization (FISH). Sanger sequencing revealed that both cases harbored the exact same breakpoint. In the first case, the patient presented with AML-like disease, and in the second, the patient progressed to B-cell acute lymphoblastic leukemia (B-ALL). Additionally, we observed that that primary leukemia cells from Case 1 demonstrated sensitivity to the tyrosine kinase inhibitors ponatinib and dovitinib that can target FGFR1 kinase activity, whereas primary cells from Case 2 were resistant to both drugs. Taken together, these results suggest that some but not all BCR-FGFR1 fusion positive leukemias may respond to TKIs that target FGFR1 kinase activity.


Assuntos
Leucemia/diagnóstico , Leucemia/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-bcr/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Biomarcadores Tumorais , Biópsia , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Gerenciamento Clínico , Suscetibilidade a Doenças , Evolução Fatal , Feminino , Humanos , Hibridização in Situ Fluorescente , Cariótipo , Leucemia/terapia , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Análise de Sequência de DNA , Translocação Genética , Resultado do Tratamento
11.
Haematologica ; 105(5): 1262-1273, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31439673

RESUMO

Mutation and translocation of fibroblast growth factor receptors often lead to aberrant signaling and cancer. This work focuses on the t(8;22)(p11;q11) chromosomal translocation which creates the breakpoint cluster region (BCR) fibroblast growth factor receptor1 (FGFR1) (BCR-FGFR1) fusion protein. This fusion occurs in stem cell leukemia/lymphoma, which can progress to atypical chronic myeloid leukemia, acute myeloid leukemia, or B-cell lymphoma. This work focuses on the biochemical characterization of BCR-FGFR1 and identification of novel therapeutic targets. The tyrosine kinase activity of FGFR1 is required for biological activity as shown using transformation assays, interleukin-3 independent cell proliferation, and liquid chromatography/mass spectroscopy analyses. Furthermore, BCR contributes a coiled-coil oligomerization domain, also essential for oncogenic transformation by BCR-FGFR1. The importance of salt bridge formation within the coiled-coil domain is demonstrated, as disruption of three salt bridges abrogates cellular transforming ability. Lastly, BCR-FGFR1 acts as a client of the chaperonin heat shock protein 90 (Hsp90), suggesting that BCR-FGFR1 relies on Hsp90 complex to evade proteasomal degradation. Transformed cells expressing BCR-FGFR1 are sensitive to the Hsp90 inhibitor Ganetespib, and also respond to combined treatment with Ganetespib plus the FGFR inhibitor BGJ398. Collectively, these data suggest novel therapeutic approaches for future stem cell leukemia/lymphoma treatment: inhibition of BCR oligomerization by disruption of required salt bridges; and inhibition of the chaperonin Hsp90 complex.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-bcr , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Chaperoninas , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-bcr/genética , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Translocação Genética
12.
Int J Cancer ; 146(8): 2243-2254, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31525277

RESUMO

Constitutive activation of FGFR1, as a result of diverse chromosome translocations, is the hallmark of stem cell leukemia/lymphoma syndrome. The BCR-FGFR1 variant is unique in that the BCR component contributes a serine-threonine kinase (STK) to the N-terminal end of the chimeric FGFR1 kinase. We have deleted the STK domain and mutated the critical Y177 residue and demonstrate that the transforming activity of these mutated genes is reduced compared to the BCR-FGFR1 parental kinase. In addition, we demonstrate that deletion of the FGFR1 tyrosine kinase domain abrogates transforming ability, which is not compensated for by BCR STK activity. Unbiased screening for proteins that are inactivated as a result of loss of the BCR STK identified activated S6 kinase and SHP2 kinase. Genetic and pharmacological inhibition of SHP2 function in SCLL cells expressing BCR-FGFR1 in vitro leads to reduced viability and increased apoptosis. In vivo treatment of SCLL in mice with SHP099 leads to suppression of leukemogenesis, supporting an important role for SHP2 in FGFR1-driven leukemogenesis. In combination with the BGJ398 FGFR1 inhibitor, cell viability in vitro is further suppressed and acts synergistically with SHP099 in vivo suggesting a potential combined targeted therapy option in this subtype of SCLL disease.


Assuntos
Leucemia/metabolismo , Linfoma/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Transformação Celular Neoplásica , Sinergismo Farmacológico , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Leucemia/tratamento farmacológico , Leucemia/genética , Leucemia/patologia , Linfoma/tratamento farmacológico , Linfoma/genética , Linfoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Fusão Oncogênica/genética , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogênicas c-bcr/biossíntese , Proteínas Proto-Oncogênicas c-bcr/genética , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/biossíntese , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
13.
Cytokine ; 125: 154817, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472403

RESUMO

B cells are important modulators of immune responses both in autoimmunity and cancer. We have previously shown that B regulatory (Breg) cells promote pancreatic cancer via production of IL35, a heterodimeric cytokine comprised of the subunits p35 (Il12a) and Ebi3. However, it is not known how production of IL35 is regulated in vivo in the context of cancer-associated inflammation. To begin addressing this question, we have generated a knock-in mouse model, Il12aGFP, where an IRES-emGFP gene was inserted within the 3' UTR of the Il12a locus. EmGFP signal in B cells from the Il12aGFP mice correlated with expression of p35 mRNA and protein. Using this model, we observed that in addition to Bregs, expression of GFP (p35) is upregulated in several other B cell subtypes in response to cancer. We assessed the expression of the other IL35 subunit, Ebi3, using a published tdTomato reporter model. We determined that Ebi3 expression was more tightly regulated in vivo and in vitro, suggesting that stimuli affecting Ebi3 upregulation are more likely to result in production of full IL35 heterodimer. We were also able to detect GFP and Tomato signal in myeloid & T cell lineages suggesting that these reporter models could also be used for tracking IL12-, IL27- and IL35-producing cells. Furthermore, using primary B cells isolated from reporter mice, we identified BCR, CD40 and TLR pathways as potential drivers of IL35 expression. These findings highlight the importance of pancreatic cancer-associated inflammatory processes as drivers of cytokine expression and provide a tool to dissect both disease-associated regulation of IL12- and IL35-competent lineage cells as well as establish assays for pharmacological targeting of individual subunits of heterodimeric IL12 family cytokines.


Assuntos
Linfócitos B Reguladores/imunologia , Subunidade p35 da Interleucina-12/metabolismo , Interleucinas/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Receptores de Citocinas/metabolismo , Animais , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Subunidade p35 da Interleucina-12/genética , Interleucinas/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Receptores Toll-Like/metabolismo , Regulação para Cima
14.
Asian Pac J Cancer Prev ; 20(11): 3399-3406, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759365

RESUMO

BACKGROUND: Targeted therapy in the form of highly selective tyrosine kinase inhibitors (TKIs) has transformed the treatment of chronic myeloid leukemia (CML). However, mutations in the kinase domain contribute to drug resistance against TKIs which compromises the treatment response. Our aim is to explore regions outside the BCR-ABL oncoprotein to identify potential therapeutic targets to curb drug resistance by targeting growth factor receptor-bound protein-2 (Grb-2) which binds to BCR-ABL at the phosphorylated tyrosine (Y177) thereby activating the Ras and PI3K/AKT signaling pathway. METHODS: We have used in silico methods to repurpose drugs for identifying their potential to inhibit the binding of Grb-2 with Y177 by occupying the active binding site of the BCR domain. RESULTS: Differentially expressed genes from GEO dataset were found to be associated with hematopoietic cell lineage, NK cell-mediated cytotoxicity, NF-κB and chemokine signaling, cytokine-cytokine receptor interaction, histidine metabolism and transcriptional misregulation in cancer. The fold recognition method of SPARKS-X tool was used to model the BCR domain (Z-score = 8.21). Connectivity Map generated a drug list based on the gene expression profile, which were docked with BCR. Schrodinger XP glide docking identified Diphosphopyridine nucleotide, Hesperidin, Butirosin, Ovoflavin, and Nor-dihydroguaiaretic acid to show strong interaction in close proximity to the active binding pocket containing Y177 of the target protein and was further validated using iGEMDOCK and Parallelized Open Babel and AutoDock suite Pipeline (POAP). CONCLUSION: Our study not only extends our current knowledge about repurposing drugs for newer indications but also provides a route towards combinatorial therapy with standard drugs used for CML treatment. However, the efficacy of these repurposed drugs needs to be further investigated using in vitro and in vivo studies.
.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Reposicionamento de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Elife ; 82019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31461398

RESUMO

Dendritic arbor architecture profoundly impacts neuronal connectivity and function, and aberrant dendritic morphology characterizes neuropsychiatric disorders. Here, we identify the adhesion-GPCR BAI1 as an important regulator of dendritic arborization. BAI1 loss from mouse or rat hippocampal neurons causes dendritic hypertrophy, whereas BAI1 overexpression precipitates dendrite retraction. These defects specifically manifest as dendrites transition from growth to stability. BAI1-mediated growth arrest is independent of its Rac1-dependent synaptogenic function. Instead, BAI1 couples to the small GTPase RhoA, driving late RhoA activation in dendrites coincident with growth arrest. BAI1 loss lowers RhoA activation and uncouples it from dendrite dynamics, causing overgrowth. None of BAI1's known downstream effectors mediates BAI1-dependent growth arrest. Rather, BAI1 associates with the Rho-GTPase regulatory protein Bcr late in development and stimulates its cryptic RhoA-GEF activity, which functions together with its Rac1-GAP activity to terminate arborization. Our results reveal a late-acting signaling pathway mediating a key transition in dendrite development.


Assuntos
Proteínas Angiogênicas/metabolismo , Proliferação de Células , Dendritos/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Camundongos , Ratos
16.
Elife ; 82019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433296

RESUMO

In mice, neonatally-developing, self-reactive B-1 cells generate steady levels of natural antibodies throughout life. B-1 cells can, however, also rapidly respond to infections with increased local antibody production. The mechanisms regulating these two seemingly very distinct functions are poorly understood, but have been linked to expression of CD5, an inhibitor of BCR-signaling. Here we demonstrate that TLR-mediated activation of CD5+ B-1 cells induced the rapid reorganization of the IgM-BCR complex, leading to the eventual loss of CD5 expression, and a concomitant increase in BCR-downstream signaling, both in vitro and in vivo after infections of mice with influenza virus and Salmonella typhimurium. Both, initial CD5 expression and TLR-mediated stimulation, were required for the differentiation of B-1 cells to IgM-producing plasmablasts after infections. Thus, TLR-mediated signals support participation of B-1 cells in immune defense via BCR-complex reorganization.


Assuntos
Subpopulações de Linfócitos B/imunologia , Imunoglobulina M/metabolismo , Fatores Imunológicos/metabolismo , Orthomyxoviridae/imunologia , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Salmonella typhimurium/imunologia , Receptores Toll-Like/metabolismo , Animais , Antígenos CD5/metabolismo , Modelos Animais de Doenças , Camundongos , Infecções por Orthomyxoviridae/imunologia , Salmonelose Animal/imunologia
17.
Elife ; 82019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433298

RESUMO

B-1a cells play an important role in mediating tissue homeostasis and protecting against infections. They are the main producers of 'natural' IgM, spontaneously secreted serum antibodies predominately reactive to self antigens, like phosphatidylcholine (PtC), or antigens expressed by the intestinal microbiota. The mechanisms that regulate the B-1a immunoglobulin (Ig) repertoire and their antibody secretion remain poorly understood. Here, we use a novel reporter mouse to demonstrate that production of self- and microbiota-reactive antibodies is linked to BCR signaling in B-1a cells. Moreover, we show that Toll-like receptors (TLRs) are critical for shaping the Ig repertoire of B-1a cells as well as regulating their antibody production. Strikingly, we find that both the colonization of a microbiota as well as microbial-sensing TLRs are required for anti-microbiota B-1a responses, whereas nucleic-acid sensing TLRs are required for anti-PtC responses, demonstrating that linked activation of BCR and TLRs controls steady state B-1a responses to both self and microbiota-derived antigens.


Assuntos
Autoantígenos/imunologia , Subpopulações de Linfócitos B/imunologia , Fatores Imunológicos/metabolismo , Microbiota/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas c-bcr/metabolismo
18.
Dev Comp Immunol ; 96: 1-8, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30822451

RESUMO

Lyn, a member of Src protein kinase family, plays a crucial role in immune reactions against pathogenic infection. In this study, Lyn from Nile tilapia (Oreochromis niloticus) (OnLyn) was identified and characterized at expression pattern against bacterial infection, and regulation function in BCR signaling. The open reading frame of OnLyn contained 1536 bp of nucleotide sequence encoded a protein of 511 amino acids. The OnLyn protein was highly conversed to other species Lyn, including SH3, SH2 and a catalytic Tyr kinase (TyrKc) domain. Transcriptional expression analysis revealed that OnLyn was detected in all examined tissues and was highly expressed in the head kidney. The up-regulation OnLyn expression was observed in the head kidney and spleen following challenge with Streptococcus agalactiae (S. agalactiae) in vivo, and was also displayed in head kidney leukocytes challenge with S. agalactiae and LPS in vitro. In addition, after induction with mouse anti-OnIgM mAb in vitro, the OnLyn expression and phosphorylation of OnLyn (Y507) were significantly up-regulated in the head kidney leukocytes. Moreover, after treatment with AZD0530 and mouse anti-OnIgM monoclonal antibody, the down-regulation of cytoplasmic free-Ca2+ concentration was detected in the head kidney leukocytes in vitro. Taken together, the findings of this study revealed that OnLyn might play potential roles in BCR signaling and get involved in host defense against bacterial infection in Nile tilapia.


Assuntos
Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Streptococcus agalactiae/imunologia , Quinases da Família src/imunologia , Animais , Benzodioxóis/farmacologia , Cálcio/metabolismo , Ciclídeos/metabolismo , Ciclídeos/microbiologia , Resistência à Doença/imunologia , Proteínas de Peixes/metabolismo , Rim Cefálico/citologia , Rim Cefálico/imunologia , Rim Cefálico/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcr/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , Quinases da Família src/metabolismo
19.
Cereb Cortex ; 29(2): 505-516, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293918

RESUMO

SEC14 and Spectrin domain-1 (Sestd1) is a synapse protein that exhibits a striking shift from the presynaptic to postsynaptic space as neurons mature postnatally in the mouse hippocampus. Hippocampal pyramidal neurons from mice with global genetic deletion of Sestd1 have reduced dendrite arbors, spines, and excitatory synapses. Electrophysiologically this correlates with cell-autonomous reductions in both AMPA- and NMDA-excitatory postsynaptic currents in individual hippocampal neurons from which Sestd1 has been deleted in vivo. These neurodevelopmental and functional deficits are associated with increased activation of the Rho family GTPases Rac1 and RhoA. Co-immunoprecipitation and mass spectrometry reveal that the Breakpoint Cluster Region protein, a Rho GTPase activating protein (GAP), forms complexes with Sestd1 in brain tissue. This complements earlier findings that Sestd1 can also partner with other Rho family GAPs and guanine nucleotide exchange factors. Our findings demonstrate that Sestd1 is a developmentally dynamic synaptic regulator of Rho GTPases that contributes to dendrite and excitatory synapse formation within differentiating pyramidal neurons of the forebrain.


Assuntos
Proteínas de Transporte/metabolismo , Espinhas Dendríticas/metabolismo , Neuropeptídeos/metabolismo , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Sinapses/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/análise , Dendritos/química , Dendritos/metabolismo , Espinhas Dendríticas/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurogênese/fisiologia , Neuropeptídeos/análise , Técnicas de Cultura de Órgãos , Prosencéfalo/química , Prosencéfalo/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-bcr/análise , Sinapses/química , Proteínas rac1 de Ligação ao GTP/análise
20.
Cancer Res ; 79(1): 114-124, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30413411

RESUMO

Transformation of hematopoietic stem cells by the BCR-FGFR1 fusion kinase found in a variant of stem cell leukemia/lymphoma (SCLL) syndrome leads to development of B-lymphomas in syngeneic mice and humans. In this study, we show that the relatively rapid onset of this leukemia is potentially related to oncogenic domains within the BCR component. BCR recruited a guanidine nucleotide exchange factor (GEF) domain to the fusion kinase to facilitate activation of small GTPases such as the Ras homology gene family, member A (RHOA). Deletion of this GEF domain increased leukemogenesis, enhanced cell survival and proliferation, and promoted stem cell expansion and lymph node metastasis. This suggests that, in an SCLL context, the presence of the endogenous GEF motif leads to reduced leukemogenesis. Indeed, loss of the GEF domain suppressed activation of RHOA and PTEN, leading to increased activation of AKT. Loss of the GEF domain enhanced cell proliferation and invasion potential, which was also observed in cells in which RHOA is knocked down, supported by the observation that overexpression of RHOA leads to reduced viability and invasion. In vivo depletion of RHOA in SCLL cells significantly increased disease progression and shortened latency. Collectively, these data show that the BCR GEF domain affects phenotypes associated with progression of SCLL through suppression of RHOA signaling. SIGNIFICANCE: RHOA activation is a critical event in the progression of BCR-FGFR1-driven leukemogenesis in stem cell leukemia and lymphoma syndrome and is regulated by the BCR GEF domain.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Leucemia Experimental/patologia , Linfoma/patologia , Células Precursoras de Linfócitos B/patologia , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Leucemia Experimental/genética , Leucemia Experimental/metabolismo , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células Precursoras de Linfócitos B/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcr/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA