Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.845
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 92, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943090

RESUMO

Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.


Assuntos
Autofagia , Berberina , Receptores ErbB , Sistema de Sinalização das MAP Quinases , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Berberina/farmacologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Autofagia/efeitos dos fármacos , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proliferação de Células/efeitos dos fármacos , Proteínas ras/metabolismo , Proteínas ras/genética , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Camundongos Nus
2.
Oncogene ; 43(27): 2078-2091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760447

RESUMO

The aberrant activation of RAS/RAF/MEK/ERK signaling is important for KIT mutation-mediated tumorigenesis of gastrointestinal stromal tumor (GIST). In this study, we found that inhibition of RAF1 suppresses the activation of both wild-type KIT and primary KIT mutations in GIST, with primary KIT mutations showing greater sensitivity. This suggests a positive feedback loop between KIT and RAF1, wherein RAF1 facilitates KIT signaling. We further demonstrated that RAF1 associates with KIT and the kinase activity of RAF1 is necessary for its contribution to KIT activation. Accordingly, inhibition of RAF1 suppressed cell survival, proliferation, and cell cycle progression in vitro mediated by both wild-type KIT and primary KIT mutations. Inhibition of RAF1 in vivo suppressed GIST growth in a transgenic mouse model carrying germline KIT/V558A mutation, showing a similar treatment efficiency as imatinib, the first-line targeted therapeutic drug of GIST, while the combination use of imatinib and RAF1 inhibitor further suppressed tumor growth. Acquisition of drug-resistant secondary mutation of KIT is a major cause of treatment failure of GIST following targeted therapy. Like wild-type KIT and primary KIT mutations, inhibition of RAF1 suppressed the activation of secondary KIT mutation, and the cell survival, proliferation, cell cycle progression in vitro, and tumor growth in vivo mediated by secondary KIT mutation. However, the activation of secondary KIT mutation is less dependent on RAF1 compared with that of primary KIT mutations. Taken together, our results revealed that RAF1 facilitates KIT signaling and KIT mutation-mediated tumorigenesis of GIST, providing a rationale for further investigation into the use of RAF1 inhibitors alone or in combination with KIT inhibitor in the treatment of GIST, particularly in cases resistant to KIT inhibitors.


Assuntos
Tumores do Estroma Gastrointestinal , Proteínas Proto-Oncogênicas c-kit , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Humanos , Camundongos , Camundongos Transgênicos , Proliferação de Células , Linhagem Celular Tumoral , Mutação , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/metabolismo
3.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38695730

RESUMO

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Multimerização Proteica , Quinases raf/metabolismo , Quinases raf/química , Animais , Chaperoninas/metabolismo , Chaperoninas/química , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Modelos Moleculares
4.
Methods Mol Biol ; 2797: 287-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570468

RESUMO

Dysfunction of the RAS/mitogen-activated protein kinase (MAPK) pathway is a common driver of human cancers. As such, both the master regulator of the pathway, RAS, and its proximal kinase effectors, RAFs, have been of interest as drug targets for decades. Importantly, signaling within the RAS/MAPK pathway is highly coordinated due to the formation of a higher-order complex called the RAS/RAF signalosome, which may minimally contain dimers of both RAS and RAF protomers. In the disease state, RAS and RAF assemble in homo- and/or heterodimeric forms. Traditionally, drug development campaigns for both RAS and RAF have utilized biochemical assays of purified recombinant protein. As these assays do not query the RAS or RAF proteins in their full-length and complexed forms in cells, potency results collected using these assays have often failed to correlate with inhibition of the MAPK pathway. To more accurately quantify engagement at this signaling components, we present a bioluminescence resonance energy transfer (BRET)-based method to conditionally measure target engagement at individual protomers within the RAS/RAF signalosome in live cells.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-raf , Humanos , Proteínas Proto-Oncogênicas c-raf/metabolismo , Subunidades Proteicas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais
5.
J Pathol ; 263(2): 166-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629245

RESUMO

Infantile fibrosarcomas (IFS) and congenital mesoblastic nephroma (CMN) are rare myofibroblastic tumors of infancy and early childhood commonly harboring the ETV6::NTRK3 gene fusion. IFS/CMN are considered as tumors with an 'intermediate prognosis' as they are locally aggressive, but rarely metastasize, and generally have a favorable outcome. A fraction of IFS/CMN-related neoplasms are negative for the ETV6::NTRK3 gene rearrangement and are characterized by other chimeric proteins promoting MAPK signaling upregulation. In a large proportion of these tumors, which are classified as IFS-like mesenchymal neoplasms, the contributing molecular events remain to be identified. Here, we report three distinct rearrangements involving RAF1 among eight ETV6::NTRK3 gene fusion-negative tumors with an original histological diagnosis of IFS/CMN. The three fusion proteins retain the entire catalytic domain of the kinase. Two chimeric products, GOLGA4::RAF1 and LRRFIP2::RAF1, had previously been reported as driver events in different cancers, whereas the third, CLIP1::RAF1, represents a novel fusion protein. We demonstrate that CLIP1::RAF1 acts as a bona fide oncoprotein promoting cell proliferation and migration through constitutive upregulation of MAPK signaling. We show that the CLIP1::RAF1 hyperactive behavior does not require RAS activation and is mediated by constitutive 14-3-3 protein-independent dimerization of the chimeric protein. As previously reported for the ETV6::NTRK3 fusion protein, CLIP1::RAF1 similarly upregulates PI3K-AKT signaling. Our findings document that RAF1 gene rearrangements represent a recurrent event in ETV6::NTRK3-negative IFS/CMN and provide a rationale for the use of inhibitors directed to suppress MAPK and PI3K-AKT signaling in these cancers. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Fibrossarcoma , Nefroma Mesoblástico , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-raf , Humanos , Fibrossarcoma/genética , Fibrossarcoma/patologia , Proteínas Proto-Oncogênicas c-raf/genética , Lactente , Proteínas de Fusão Oncogênica/genética , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/patologia , Feminino , Masculino , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fusão Gênica , Transdução de Sinais/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proliferação de Células , Rearranjo Gênico , Variante 6 da Proteína do Fator de Translocação ETS , Receptor trkC
6.
Oncologist ; 29(6): e811-e821, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470950

RESUMO

BACKGROUND: Melanoma incidence is on the rise in East Asia, yet studies of the molecular landscape are lacking in this population. We examined patients with melanoma who underwent next-generation sequencing (NGS) at a single tertiary center in South Korea, focusing on patients harboring NRAS or RAF alterations who received belvarafenib, a pan-RAF dimer inhibitor, through the Expanded Access Program (EAP). PATIENTS AND METHODS: Data were collected from 192 patients with melanoma who underwent NGS between November 2017 and May 2023. Variant call format data were obtained and annotated. Patients in the EAP received 450 mg twice daily doses of belvarafenib. RESULTS: Alterations in the RAS/RTK pathway were the most prevalent, with BRAF and NRAS alteration rates of 22.4% and 17.7%, respectively. NGS enabled additional detection of fusion mutations, including 6 BRAF and 1 RAF1 fusion. Sixteen patients with NRAS or RAF alterations received belvarafenib through the EAP, and disease control was observed in 50%, with 2 patients demonstrating remarkable responses. CONCLUSIONS: Our study highlights the value of NGS in detecting BRAF, NRAS mutations and RAF fusions, expanding possibilities for targeted therapies in malignant melanoma. Belvarafenib showed clinical benefit in patients harboring these alterations. Ongoing trials will provide further insights into the safety and efficacy of belvarafenib.


Assuntos
Melanoma , Mutação , Proteínas Proto-Oncogênicas B-raf , Humanos , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Proteínas Proto-Oncogênicas B-raf/genética , GTP Fosfo-Hidrolases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-raf/genética , Idoso de 80 Anos ou mais , Inibidores de Proteínas Quinases/uso terapêutico
7.
J Mol Biol ; 436(6): 168483, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331211

RESUMO

RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF2/14-3-32 at 3.4 Å resolution and CRAF2/14-3-32/MEK12 at 4.2 Å resolution using CRAF kinase domain expressed as constitutively active Y340D/Y341D mutant in insect cells. The overall architecture of our CRAF2/14-3-32 and CRAF2/14-3-32/MEK12 cryo-EM structures is highly similar to corresponding BRAF structures in complex with 14-3-3 or 14-3-3/MEK1 and represent the activated dimeric RAF conformation. Our CRAF cryo-EM structures provide additional insights into structural understanding of the activated CRAF2/14-3-32/MEK12 complex.


Assuntos
Proteínas 14-3-3 , MAP Quinase Quinase 1 , Proteínas Proto-Oncogênicas c-raf , Antineoplásicos/química , Microscopia Crioeletrônica , Proteínas 14-3-3/química , MAP Quinase Quinase 1/química , Proteínas Proto-Oncogênicas c-raf/química , Conformação Proteica
8.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338909

RESUMO

Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Fibrossarcoma , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo
9.
Mol Genet Genomic Med ; 12(1): e2290, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37787490

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is predominantly caused by mutations in sarcomeric genes. However, a subset of cases is attributed to genetic disorders unrelated to sarcomeric genes, such as Noonan syndrome (NS) and other RASopathies. In this study, we present a family with a history of sudden cardiac death (SCD) and focus on two adults with syndromic left ventricular hypertrophy (LVH). METHODS: Clinical evaluations, including echocardiography, were conducted to assess cardiac manifestations. Whole-exome sequencing was performed to identify potential genetic variants underlying syndromic LVH in the study participants. RESULTS: Whole-exome sequencing revealed a missense variant in the RAF1 gene, c.782C>T (p.Pro261Leu). This variant confirmed the diagnosis of NS in the affected individuals. CONCLUSION: The findings of this study underscore the importance of family history investigation and genetic testing in diagnosing syndromic LVH. By identifying the underlying genetic cause, clinicians can better understand the etiology of RAS-HCM and its association with SCD in young adults.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome de Noonan , Humanos , Adulto Jovem , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , China , Morte Súbita Cardíaca/etiologia , Mutação , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-raf/genética
10.
Mol Cancer ; 22(1): 208, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111008

RESUMO

The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo
12.
Cancer Lett ; 577: 216426, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37820992

RESUMO

The mechanisms underlying the involvement of long non-coding RNAs (lncRNAs) in the metastasis of small cell lung cancer (SCLC) remain largely unknown. Here, we identified that the lncRNA ITPR1-AS1 was upregulated in SCLC and lymph node metastasis tissues and positively correlated with SCLC malignant features. The overexpression of ITPR1-AS1 in SCLC was an independent risk factor for the overall survival of patients with SCLC. Our data confirmed that ITPR1-AS1 induces SCLC cell metastasis both in vitro and in vivo. Mechanistically, ITPR1-AS1 acts as a scaffold to enhance the interaction between SRC-associated in mitosis 68 kDa and heterogeneous nuclear ribonucleoprotein A1, which facilitates the alternative splicing of the H-Ras proto-oncogene (HRAS) pre-mRNA (P21HRAS). Moreover, we observed that ITPR1-AS1 could associate in a complex with and maintain the stability of DEAD-box polypeptide 3 (DDX3X), which inhibited the latter's ubiquitination and degradation. Our data provide evidence that ITPR1-AS1 activates the cRaf-MEK-ERK cascade by upregulating P21HRAS production and stabilizing DDX3X, to promote SCLC metastasis.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias Pulmonares/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Metástase Neoplásica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Longo não Codificante/genética , Carcinoma de Pequenas Células do Pulmão/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo
13.
EBioMedicine ; 95: 104763, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625265

RESUMO

BACKGROUND: Women are at greater risk of developing non-small cell lung cancer (NSCLC), yet the underlying causes remain unclear. METHODS: We performed whole genome scans in lung tumours of cRaf transgenic mice and identified miRNA, transcription factor and hormone receptor dependent gene regulations. We confirmed hormone receptors by immunohistochemistry and constructed regulatory gene networks by considering experimentally validated miRNA-gene and transcription factor-miRNA/gene targets. Bioinformatics, genomic foot-printing and gene enrichment analysis established sex-specific circuits of lung tumour growth. Translational research involved a large cohort of NSCLC patients. We evaluated commonalities in sex-specific NSCLC gene regulations between mice and humans and determined their prognostic value in Kaplan-Meier survival statistics and COX proportional hazard regression analysis. FINDINGS: Overexpression of the cRaf kinase elicited an extraordinary 8-fold increase in tumour growth among females, and nearly 70% of the 112 differentially expressed genes (DEGs) were female specific. We identified oncogenes, oncomirs, tumour suppressors, cell cycle regulators and MAPK/EGFR signalling molecules, which prompted sex-based differences in NSCLC, and we deciphered a regulatory gene-network, which protected males from accelerated tumour growth. Strikingly, 41% of DEGs are targets of hormone receptors, and the majority (85%) are oestrogen receptor (ER) dependent. We confirmed the role of ER in a large cohort of NSCLC patients and validated 40% of DEGs induced by cRaf in clinical tumour samples. INTERPRETATION: We report the molecular wiring that prompted sex disparities in tumour growth. This allowed us to propose the development of molecular targeted therapies by jointly blocking ER, CDK1 and arginase 2 in NSCLC. FUNDING: We gratefully acknowledge the financial support of the Lower Saxony Ministry of Culture and Sciences and Volkswagen Foundation, Germany to JB (25A.5-7251-99-3/00) and of the Chinese Scholarship Council to SZ (202008080022). This publication is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the "Open Access Publikationskosten" program.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores de Estrogênio/metabolismo
14.
Nat Commun ; 14(1): 3970, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407549

RESUMO

During early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF. Phylogenetic analysis revealed that genes encoding kinase defective KSR3 proteins are present in most non-chordate metazoa but have been lost in flies and nematodes. We show that the structure of KSR3 factors resembles that of several oncogenic human RAF mutants and that KSR3 from echinoderms, cnidarians and hemichordates activate ERK signalling independently of RAS when overexpressed in cultured cells. Finally, we used the sequence of KSR3 factors to identify activating mutations of human B-RAF. These findings reveal key functions for this family of factors as activators of RAF in RAS-independent ERK signalling in invertebrates. They have implications on the evolution of the ERK signalling pathway and suggest a mechanism for its co-option in the course of evolution.


Assuntos
Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Animais , Humanos , Filogenia , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo
15.
Commun Biol ; 6(1): 657, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344639

RESUMO

Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome de Noonan , Proteínas Proto-Oncogênicas c-raf , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Mutação em Linhagem Germinativa , Miócitos Cardíacos/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/complicações , Síndrome de Noonan/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-raf/genética
16.
Mol Carcinog ; 62(8): 1147-1162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37132991

RESUMO

SH3 domain-binding kinase 1 (SBK1), is a member of the serine/threonine protein kinases family, and was confirmed to be upregulated in cervical cancer in our previous study. Nonetheless, the role of SBK1 in regulating cancer occurrence and development is unclear. In this study, the stable SBK1-knockdown and -overexpressed cell models were constructed by plasmid transfection technology. Cell viability and growth were assessed through CCK-8, colony formation, and BrdU methods. Cell cycle and apoptosis were analyzed by flow cytometry. The JC-1 staining assay was used to explore mitochondrial membrane potential. The scratch and Transwell assays were used to evaluate the cell metastatic ability. The nude mice models were utilized to explore the SBK1 expression affecting tumor growth in vivo. Our research indicated a high expression of SBK1 both in tissues and cells of cervical cancer. The proliferative, migratory, as well as invasive capacities of cervical cancer cells, were suppressed, and apoptosis was enhanced after SBK1 silence, whereas SBK1 upregulation led to opposite results. In addition, Wnt/ß-catenin and Raf/ERK1/2 pathways were activated by SBK1 upregulation. Furthermore, downregulation of c-Raf or ß-catenin, reversed the proliferation promotion and apoptosis inhibition effects in SBK1-overexpressed cells. The same results were observed with the use of the specific Raf inhibitor. SBK1 overexpression also contributed to tumor growth in vivo. Overall, SBK1 played a vital role in cervical tumorigenesis via activating the Wnt/ß-catenin and Raf/ERK1/2 pathways.


Assuntos
Neoplasias do Colo do Útero , beta Catenina , Animais , Feminino , Humanos , Camundongos , Apoptose , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Domínios de Homologia de src , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas c-raf/metabolismo
17.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37193665

RESUMO

ZnT1 is a major zinc transporter that regulates cellular zinc homeostasis. We have previously shown that ZnT1 has additional functions that are independent of its activity as a Zn2+ extruder. These include inhibition of the L-type calcium channel (LTCC) through interaction with the auxiliary ß-subunit of the LTCC and activation of the Raf-ERK signaling leading to augmented activity of the T-type calcium channel (TTCC). Our findings indicate that ZnT1 increases TTCC activity by enhancing the trafficking of the channel to the plasma membrane. LTCC and TTCC are co-expressed in many tissues and have different functions in a variety of tissues. In the current work, we investigated the effect of the voltage-gated calcium channel (VGCC) ß-subunit and ZnT1 on the crosstalk between LTCC and TTCC and their functions. Our results indicate that the ß-subunit inhibits the ZnT1-induced augmentation of TTCC function. This inhibition correlates with the VGCC ß-subunit-dependent reduction in ZnT1-induced activation of Ras-ERK signaling. The effect of ZnT1 is specific, as the presence of the ß-subunit did not change the effect of endothelin-1 (ET-1) on TTCC surface expression. These findings document a novel regulatory function of ZnT1 serving as a mediator in the crosstalk between TTCC and LTCC. Overall, we demonstrate that ZnT1 binds and regulates the activity of the ß-subunit of VGCC and Raf-1 kinase and modulates surface expression of the LTCC and TTCC catalytic subunits, consequently modulating the activity of these channels.


Assuntos
Canais de Cálcio Tipo L , Canais de Cálcio Tipo T , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Xenopus
18.
EMBO Mol Med ; 15(5): e17078, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066513

RESUMO

Somatic and germline gain-of-function point mutations in RAF, one of the first oncogenes to be discovered in humans, delineate a group of tumor-prone syndromes known as the RASopathies. In this study, we document the first human phenotype resulting from the germline loss-of-function of the proto-oncogene RAF1 (a.k.a. CRAF). In a consanguineous family, we uncovered a homozygous p.Thr543Met variant segregating with a neonatal lethal syndrome with cutaneous, craniofacial, cardiac, and limb anomalies. Structure-based prediction and functional tests using human knock-in cells showed that threonine 543 is essential to: (i) ensure RAF1's stability and phosphorylation, (ii) maintain its kinase activity toward substrates of the MAPK pathway, and (iii) protect from stress-induced apoptosis mediated by ASK1. In Xenopus embryos, mutant RAF1T543M failed to phenocopy the effects of normal and overactive FGF/MAPK signaling, confirming its hypomorphic activity. Collectively, our data disclose the genetic and molecular etiology of a novel lethal syndrome with progeroid features, highlighting the importance of RTK signaling for human development and homeostasis.


Assuntos
Síndrome de Noonan , Receptores Proteína Tirosina Quinases , Humanos , Recém-Nascido , Desenvolvimento Embrionário/genética , Coração , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Xenopus laevis/genética
19.
Sci Data ; 10(1): 203, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045861

RESUMO

RAF kinases play major roles in cancer. BRAFV600E mutants drive ~6% of human cancers. Potent kinase inhibitors exist but show variable effects in different cancer types, sometimes even inducing paradoxical RAF kinase activation. Both paradoxical activation and drug resistance are frequently due to enhanced dimerization between RAF1 and BRAF, which maintains or restores the activity of the downstream MEK-ERK pathway. Here, using quantitative proteomics we mapped the interactomes of RAF1 monomers, RAF1-BRAF and RAF1-BRAFV600E dimers identifying and quantifying >1,000 proteins. In addition, we examined the effects of vemurafenib and sorafenib, two different types of clinically used RAF inhibitors. Using regression analysis to compare different conditions we found a large overlapping core interactome but also distinct condition specific differences. Given that RAF proteins have kinase independent functions such dynamic interactome changes could contribute to their functional diversification. Analysing this dataset may provide a deeper understanding of RAF signalling and mechanisms of resistance to RAF inhibitors.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas c-raf , Humanos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Vemurafenib , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Proteoma
20.
Mol Cell ; 83(8): 1210-1215, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36990093

RESUMO

One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.


Assuntos
Quinases raf , Proteínas ras , Dimerização , Consenso , Proteínas ras/genética , Proteínas ras/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Lipídeos , Proteínas Proto-Oncogênicas c-raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA