Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Cardiothorac Surg ; 19(1): 166, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561747

RESUMO

BACKGROUND: Rosai-Dorfman Disease (RDD) is a rare self-limiting histiocytosis, more prevalent in children and young adults. It typically manifests as painless bilateral massive cervical lymphadenopathy but may also extend to extra-nodal sites, with intrathoracic RDD noted in 2% of cases. Distinguishing mediastinal RDD from thymoma on imaging poses challenges, underscoring the reliance on pathological features and immunohistochemical staining for diagnosis. CASE PRESENTATION: Patient, male, 33 years old, underwent lung a CT revealing an enlarged round soft tissue shadow in the anterior superior mediastinum, compared to a year ago. Surgical resection removed the entire mass, thymus, and part of the pericardium, confirming RDD on pathology. Genetic testing using second-generation testing technology identified a KRAS gene point mutation. CONCLUSIONS: No established treatment protocol currently exists for this disease. However, as genetic mutation research progresses, a novel therapeutic avenue is emerging: targeted therapy integrated with surgical interventions.


Assuntos
Histiocitose Sinusal , Adulto , Humanos , Masculino , Histiocitose Sinusal/diagnóstico , Histiocitose Sinusal/genética , Histiocitose Sinusal/cirurgia , Mediastino/patologia , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Tórax/patologia
2.
J Colloid Interface Sci ; 665: 477-490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38429120

RESUMO

Clinical pancreatic ductal adenocarcinoma (PDAC) treatment is severely limited by lack of effective KRAS suppression strategies. To address this dilemma, a reactive oxygen species (ROS)-responsive and PDAC-targeted nanodrug named Z/B-PLS was constructed to confront KRAS through dual-blockade of its downstream PI3K/AKT/mTOR and RAF/MEK/ERK for enhanced PDAC treatment. Specifically, photosensitizer zinc phthalocyanine (ZnPc) and PI3K/mTOR inhibitor BEZ235 (BEZ) were co-loaded into PLS which was constructed by click chemistry conjugating MEK inhibitor selumetinib (SEL) to low molecular weight heparin with ROS-responsive oxalate bond. The BEZ and SEL blocked PI3K/AKT/mTOR and RAF/MEK/ERK respectively to remodel glycolysis and non-canonical glutamine metabolism. ZnPc mediated photodynamic therapy (PDT) could enhance drug release through ROS generation, further facilitating KRAS downstream dual-blockade to create treatment-promoting drug delivery-therapeutic positive feedback. Benefiting from this broad metabolic modulation cascade, the metabolic symbiosis between normoxic and hypoxic tumor cells was also cut off simultaneously and effective tumor vascular normalization effects could be achieved. As a result, PDT was dramatically promoted through glycolysis-non-canonical glutamine dual-metabolism regulation, achieving complete elimination of tumors in vivo. Above all, this study achieved effective multidimensional metabolic modulation based on integrated smart nanodrug delivery, helping overcome the therapeutic challenges posed by KRAS mutations of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Glutamina/farmacologia , Glutamina/metabolismo , Glutamina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Glicólise , Fototerapia , Linhagem Celular Tumoral
3.
Expert Opin Investig Drugs ; 33(3): 171-182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372666

RESUMO

INTRODUCTION: Targeted therapy is used to treat lung adenocarcinoma caused by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain and rare subtypes (<5%) of non-small cell lung cancer. These subtypes include fusion oncoproteins like anaplastic lymphoma kinase (ALK), ROS1, rearranged during transfection (RET), and other receptor tyrosine kinases (RTKs). The use of diverse selective oral inhibitors, including those targeting rat sarcoma viral oncogene homolog (KRAS) mutations, has significantly improved clinical responses, extending progression-free and overall survival. AREAS COVERED: Resistance remains a critical issue in lung adenocarcinoma, notably in EGFR mutant, echinoderm microtubule associated protein-like 4 (EML4)-ALK fusion, and KRAS mutant tumors, often associated with epithelial-to-mesenchymal transition (EMT). EXPERT OPINION: Despite advancements in next generation EGFR inhibitors and EML4-ALK therapies with enhanced brain penetrance and identifying resistance mutations, overcoming resistance has not been abated. Various strategies are being explored to overcome this issue to achieve prolonged cancer remission and delay resistance. Targeting yes-associated protein (YAP) and the mechanisms associated with YAP activation through Hippo-dependent or independent pathways, is desirable. Additionally, the exploration of liquid-liquid phase separation in fusion oncoproteins forming condensates in the cytoplasm for oncogenic signaling is a promising field for the development of new treatments.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/uso terapêutico , Mutação , Receptores ErbB/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Recent Pat Anticancer Drug Discov ; 19(3): 268-279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37038676

RESUMO

One of the major disturbing pathways within cancer is "The Kirsten rat sarcoma viral oncogene homolog (KRAS) pathway", and it has recently been demonstrated to be the most crucial in therapies and diagnostics. KRAS pathway includes numerous genes. This multi-component signaling system promotes cell growth, division, survival, and death by transferring signals from outside the cell to its interior. KRAS regulates the activation of a variety of signaling molecules. The KRAS oncogene is a key player in advancing a wide range of malignancies, and the mutation rank of this gene is a key feature of several tumors. For some malignancies, the mutation type of the gene may offer information about prognostic, clinical, and predictive. KRAS belongs to the RAS oncogene family, which consists of a compilation of minor GTP-binding proteins that assimilate environmental inputs and trigger internal signaling pathways that control survival, cell differentiation, and proliferation. This review aims to examine the recent and fascinating breakthroughs in the identification of new therapies that target KRAS, including the ever-expanding experimental approaches for reducing KRAS activity and signaling as well as direct targeting of KRAS. A literature survey was performed. All the relevant articles and patents related to the KRAS pathway, the mutation in the KRAS gene, cancer treatment, and diagnostics were found on PubMed and Google Patents. One of the most prevalent causes of cancer in humans is a mutation in the K-RAS protein. It is extremely difficult to decipher KRAS-mediated signaling. It allows transducing signals to go from the cell's outer surface to its nucleus, having an influence on a variety of crucial cellular functions including cell chemotaxis, division, dissemination, and cell death. Other involved signaling pathways are RAF, and the phosphatidylinositol 3 kinase also known as AKT. The EGFR pathway is incomplete without KRAS. The activation of PI3K significantly contributes to acquiring resistance to a mixture of MEK inhibitors and anti-EGFR in colorectal cancer cell lines which are mutated by KRAS. A series of recent patent studies towards cancer diagnostics and therapeutics reveals the paramount importance of mutated protein KRAS as an extensive driver in human tumors. For the prognosis, diagnosis, and treatment of colorectal cancer, KRAS plays a critical role. This review concludes the latest and vowing developments in the discovery of novel techniques for diagnosis and drugs that target KRAS, the advancements in experimental techniques for signaling and inhibiting KRAS function, and the direct targeting of KRAS for cancer therapeutics.


Assuntos
Neoplasias Colorretais , Genes ras , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Patentes como Assunto , Neoplasias Colorretais/tratamento farmacológico , Mutação
5.
Environ Toxicol ; 39(4): 2064-2076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095131

RESUMO

OBJECTIVE: We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS: Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS: After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION: Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.


Assuntos
Neoplasias da Mama , Fibrossarcoma , MicroRNAs , Humanos , Feminino , Paclitaxel/farmacologia , Neoplasias da Mama/patologia , Troponina T/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/genética , Linhagem Celular Tumoral , Fibrossarcoma/genética , Fibrossarcoma/tratamento farmacológico , Proliferação de Células , MicroRNAs/genética
6.
J Hepatol ; 80(2): 322-334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972659

RESUMO

BACKGROUND & AIMS: There is a knowledge gap in understanding mechanisms of resistance to fibroblast growth factor receptor (FGFR) inhibitors (FGFRi) and a need for novel therapeutic strategies to overcome it. We investigated mechanisms of acquired resistance to FGFRi in patients with FGFR2-fusion-positive cholangiocarcinoma (CCA). METHODS: A retrospective analysis of patients who received FGFRi therapy and underwent tumor and/or cell-free DNA analysis, before and after treatment, was performed. Longitudinal circulating tumor DNA samples from a cohort of patients in the phase I trial of futibatinib (NCT02052778) were assessed. FGFR2-BICC1 fusion cell lines were developed and secondary acquired resistance mutations in the mitogen-activated protein kinase (MAPK) pathway were introduced to assess their effect on sensitivity to FGFRi in vitro. RESULTS: On retrospective analysis of 17 patients with repeat sequencing following FGFRi treatment, new FGFR2 mutations were detected in 11 (64.7%) and new alterations in MAPK pathway genes in nine (52.9%) patients, with seven (41.2%) patients developing new alterations in both the FGFR2 and MAPK pathways. In serially collected plasma samples, a patient treated with an irreversible FGFRi tested positive for previously undetected BRAF V600E, NRAS Q61K, NRAS G12C, NRAS G13D and KRAS G12K mutations upon progression. Introduction of a FGFR2-BICC1 fusion into biliary tract cells in vitro sensitized the cells to FGFRi, while concomitant KRAS G12D or BRAF V600E conferred resistance. MEK inhibition was synergistic with FGFRi in vitro. In an in vivo animal model, the combination had antitumor activity in FGFR2 fusions but was not able to overcome KRAS-mediated FGFRi resistance. CONCLUSIONS: These findings suggest convergent genomic evolution in the MAPK pathway may be a potential mechanism of acquired resistance to FGFRi. CLINICAL TRIAL NUMBER: NCT02052778. IMPACT AND IMPLICATIONS: We evaluated tumors and plasma from patients who previously received inhibitors of fibroblast growth factor receptor (FGFR), an important receptor that plays a role in cancer cell growth, especially in tumors with abnormalities in this gene, such as FGFR fusions, where the FGFR gene is fused to another gene, leading to activation of cancer cell growth. We found that patients treated with FGFR inhibitors may develop mutations in other genes such as KRAS, and this can confer resistance to FGFR inhibitors. These findings have several implications for patients with FGFR2 fusion-positive tumors and provide mechanistic insight into emerging MAPK pathway alterations which may serve as a therapeutic vulnerability in the setting of acquired resistance to FGFRi.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Estudos Retrospectivos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Mutação , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
7.
Blood Adv ; 8(4): 927-935, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38113472

RESUMO

ABSTRACT: Hypomethylating agents (HMAs) and venetoclax (Ven) represent the standard of care for patients with acute myeloid leukemia (AML) who are ineligible for intensive chemotherapy. However, the European LeukemiaNet (ELN) risk classifications have been validated for patients treated with intensive therapy. In this study, we validate a recently proposed new molecular prognostic risk signature (mPRS) for patients with AML treated with HMAs and Ven. This classification allocated patients to favorable, intermediate (N/KRAS or FLT3-internal tandem duplication mutations), and lower (TP53 mutations) benefit groups. We retrospectively analyzed 159 patients treated with HMA and Ven. The mPRS classification allocated 74 (47%), 31 (19%), and 54 (34%) patients to the higher, intermediate, and lower-benefit groups, respectively. The overall response rate was 71% (86%, 54%, and 59% in the higher, intermediate, and lower-benefit groups, respectively). The median overall survival (OS) and event-free survival (EFS) times were 30 and 19 months, respectively, in the higher-benefit group; 12 and 8 months in the intermediate-benefit group; and 5 and 4 months in the lower-benefit group (P < .001). The C-index for OS and EFS was higher when stratifying patients according to mPRS classification than with the ELN 2022 classification. The 2-year cumulative incidence of relapse was 35%, 70%, and 60% in the higher, intermediate, and lower-benefit groups, respectively (P = .005). The mPRS classification accurately segregated groups of patients with AML treated with HMA plus Ven. In these patients, N/KRAS and TP53 mutations appear to negatively affect outcomes; therefore, new treatment approaches are warranted.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas p21(ras) , Sulfonamidas , Humanos , Prognóstico , Estudos Retrospectivos , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
8.
Stud Health Technol Inform ; 308: 568-573, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38007785

RESUMO

KRAS is a protein that is critical to cell activation, but when it becomes mutated, it can contribute to the development of cancer. There is an urgent need for reliable and effective drugs to treat cancer, and KRAS G12C has been a major focus of research in this area. In this study, we used structure-based virtual screening to search for novel inhibitors that can target KRAS G12C. Specifically, we conducted a search for inhibitors that bind to the protein's P2 pocket, which can trap the oncoprotein in an inactive GDP-bound state. Using quantitative analysis and virtual screening, we identified a set of eight potential inhibitors that have the potential to become the next generation of drugs to treat cancer. These findings offer new insights into the mechanisms underlying KRAS G12C inhibition and provide a promising avenue for future drug development efforts.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Linhagem Celular Tumoral
9.
J Clin Epidemiol ; 164: 96-103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918640

RESUMO

OBJECTIVES: We aimed to develop a network meta-analytic model for the evaluation of treatment effectiveness within predictive biomarker subgroups, by combining evidence from individual participant data (IPD) from digital sources (in the absence of randomized controlled trials) and aggregate data (AD). STUDY DESIGN AND SETTING: A Bayesian framework was developed for modeling time-to-event data to evaluate predictive biomarkers. IPD were sourced from electronic health records, using a target trial emulation approach, or digitized Kaplan-Meier curves. The model is illustrated using two examples: breast cancer with a hormone receptor biomarker, and metastatic colorectal cancer with the Kirsten Rat Sarcoma (KRAS) biomarker. RESULTS: The model allowed for the estimation of treatment effects in two subgroups of patients defined by their biomarker status. Effectiveness of taxanes did not differ in hormone receptor positive and negative breast cancer patients. Epidermal growth factor receptor inhibitors were more effective than chemotherapy in KRAS wild type colorectal cancer patients but not in patients with KRAS mutant status. Use of IPD reduced uncertainty of the subgroup-specific treatment effect estimates by up to 49%. CONCLUSION: Utilization of IPD allowed for more detailed evaluation of predictive biomarkers and cancer therapies and improved precision of the estimates compared to use of AD alone.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Teorema de Bayes , Metanálise em Rede , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Biomarcadores , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
10.
BMC Complement Med Ther ; 23(1): 365, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845669

RESUMO

Non-small-cell lung carcinoma (NSCLC) is a type of epithelial lung cancer accounting for about 85% of all lung cancers. In our research, a novel lupene derivative namely acetoxy-lup-5(6), 20(29)-diene (ALUP), as well as two known triterpenes; lupeol (LUP) and betulinic acid (BA) were isolated through the chromatographic purification of the 95% ethanolic extract of Thymus capitatus. Identification of the compounds was carried out by physicochemical properties as well as spectral 1D and 2D NMR analysis. The anti-cancer activity of the three triterpenes was assessed on non-small cell lung cancer cell line; A549 using MTT assay and cell cycle analysis using annexin V/propidium iodide. The molecular mechanism underlying anti-apoptotic effects was determined by analyzing Let-7 miRNA and miRNA-21 expression, the mRNA gene expression level of Bax, CASP-8, CD95, Bcl2, KRAS, VEGF, Cyclin D1 using qRT-PCR. Our results revealed that the three isolated compounds ALUP, LUP, and BA caused cell cycle arrest at the G2/M phase with an increase in the apoptosis which may be attributed to their significant effect on raising Bax, CASP-8, and CD95 and reducing the mRNA expression levels of Bcl-2, KRAS, VEGF, and Cyclin D1 compared to control cells. RT-PCR results showed that the ALUP, LUP, and BA significantly downregulated miRNA-21 expression. Meanwhile, the three compounds caused significant overexpression of Let-7 miRNA. This is the first report on the anti-cancer activity of acetoxy-lup-5(6), 20(29)-diene (ALUP) in reducing the proliferation and differentiation of the A549 cell line through inducing apoptosis. Finally, by targeting the Let-7 miRNA/Cyclin D1/VEGF cascade, acetoxy-lup-5(6), 20(29)-diene could be a potential therapeutic agent for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Triterpenos , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Células A549 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Linhagem Celular Tumoral , Apoptose , MicroRNAs/genética , Triterpenos/farmacologia , Triterpenos/uso terapêutico , RNA Mensageiro
11.
Adv Healthc Mater ; 12(31): e2302374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722358

RESUMO

Here, a novel approach is presented to improve the efficacy of antibody-drug conjugates (ADC) by integrating antibody-mediated immunotherapy and photodynamic therapy (PDT) in a combination therapy system utilizing an antibody-photosensitizer conjugate (APC) platform based on a poloxamer polymer linker. To specifically target Kirsten rat sarcoma 2 viral oncogene homolog (KRAS)-mutated cancer cells, an antibody antiepidermal growth factor receptor (EGFR), cetuximab, with a poloxamer linker coupled with the photosensitizer chlorin e6 through click chemistry (cetuximab-maleimide-poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-chlorine e6 conjugate, CMPXC) is synthesized. CMPXC is cytotoxic upon laser treatment, achieving a 90% cell death by suppressing KRAS downstream signaling pathways associated with ERK and AKT proteins, confirmed using RNA sequencing analysis. In KRAS-mutated colorectal cancer mouse models, CMPXC significantly enhances antitumor efficacy compared with cetuximab treatment alone, resulting in an 86% reduction in tumor growth. Furthermore, CMPXC treatment leads to a 2.24- and 1.75-fold increase in dendritic and priming cytotoxic T cells, respectively, highlighting the immune-activating potential of this approach. The findings suggest that the APC platform addresses the challenges associated with ADC development and EGFR-targeted therapy, including the synergistic advantages of antibody-mediated immunotherapy and PDT.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Poloxâmero , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/uso terapêutico , Mutação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Linhagem Celular Tumoral
12.
Acta Biomater ; 168: 529-539, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451658

RESUMO

Pancreatic cancer (PC) stands as a most deadly malignancy due to few effective treatments in the clinics. KRAS G12D mutation is a major driver for most PC cases, and silencing of KRAS G12D is considered as a potential therapeutic strategy for PC, which is nevertheless crippled by lacking a pragmatic delivery system for siRNA against KRAS G12D (siKRAS). Here, we report that cRGD peptide-modified bioresponsive chimaeric polymersomes (cRGD-BCP) mediate highly efficient siKRAS delivery to PANC-1 tumor, potently silencing KRAS G12D mRNA in tumor cells and effectively suppressing PC tumor growth in mice. cRGD-BCP exhibited remarkable encapsulation of siKRAS (loading content > 14 wt.%, loading efficiency > 90%) to form stable and uniform (ca. 68 nm) nanovesicles (cRGD-BCP-siKRAS). Of note, cRGD density greatly impacted the cellular uptake and silencing efficiency of cRGD-BCP-siKRAS in PANC-1 cells, in which an optimal cRGD density of 15.7 mol.% achieved 3.7- and 3.6-fold enhancement of internalization and gene silencing, respectively, compared with non-targeted BCP-siKRAS. cRGD-BCP-siKRAS was practically intact after 3-week storage at 4°C. Intriguingly, cRGD-BCP-siKRAS markedly enhanced the uptake of siKRAS in PANC-1 tumor, and at a siKRAS dose of 3 mg/kg knocked down 90% KRAS G12D gene, resulting in potent tumor inhibition and extraordinary survival benefits (median survival time: 101 days versus 38 (PBS group) and 59 days (BCP-siKRAS)) with 40% mice achieved complete regression. It appears that cRGD-mediated nanodelivery of siKRAS provides a potential cure for pancreatic cancer. STATEMENT OF SIGNIFICANCE: Small interfering RNA (siRNA) emerges as a specific and powerful biopharmaceuticals against cancers; however, inefficient in vivo delivery impedes its clinical translation. In spite of the fact that KRAS G12D mutation has been identified as a major driver for most pancreatic cancer, its notorious non-druggability renders little success on development of molecular targeted drugs. Pancreatic cancer is deemed as current king-of-cancer. Here, we show that cyclic RGD peptide installed bioresponsive polymersomes are able to efficiently deliver siRNA against KRAS G12D to pancreatic tumor, resulting in 90% gene knock-down and effective tumor inhibition. Strikingly, two out of five mice have been cured. This targeted nanodelivery of siRNA provides a high-efficacy treatment strategy for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Peptídeos/uso terapêutico , Mutação , Linhagem Celular Tumoral , Neoplasias Pancreáticas
13.
Hematol Oncol ; 41(5): 912-921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37452600

RESUMO

Until now, next generation sequencing (NGS) data has not been incorporated into any prognostic stratification of multiple myeloma (MM) and no therapeutic considerations are based upon it. In this work, we correlated NGS data with (1) therapy response and survival parameters in newly diagnosed multiple myeloma, treated by VRd * and (2) MM disease stage: newly diagnosed multiple myeloma (ndMM) versus relapsed and/or refractory (relapsed/refractory multiple myeloma). We analyzed 126 patients, with ndMM and relapsed refractory multiple myeloma (rrMM), treated at the University Hospital of Bern (Inselspital). Next generation sequencing was performed on bone marrow, as part of routine diagnostics. The NGS panel comprised eight genes CCND1, DIS3, EGR1, FAM46C (TENT5C), FGFR3, PRDM1, TP53, TRAF3 and seven hotspots in BRAF, IDH1, IDH2, IRF4, KRAS, NRAS. The primary endpoint was complete remission (CR) after VRd in ndMM, in correlation with mutational profile. Mutational load was generally higher in rrMM, with more frequently mutated TP53: 11/87 (13%) in ndMM versus 9/11 (81%) in rrMM (OR 0.0857, p = 0.0007). In ndMM, treated by VRd, mutations in MAPK-pathway members (NRAS, KRAS or BRAF) were associated with reduced probability of CR (21/38, 55%), as compared with wild type NRAS, KRAS or BRAF (34/40, 85%; OR 0.2225, p = 0.006). NRAS c.181C > A (p.Q61K) as a single mutation event showed a trend to reduced probability of achieving CR (OR 0.0912, p = 0.0247). Activation of MAPK pathway via mutated NRAS, KRAS and BRAF genes seems to have a negative impact on outcome in ndMM patients receiving VRd therapy. VRd* - bortezomib (Velcade®), lenalidomide (Revlimid®) and dexamethasone.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Bortezomib/uso terapêutico , Lenalidomida/uso terapêutico , Mutação , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/uso terapêutico
14.
Am Soc Clin Oncol Educ Book ; 43: e389574, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37155942

RESUMO

Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Poli(ADP-Ribose) Polimerases/genética
15.
Mol Omics ; 19(8): 624-639, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37232035

RESUMO

Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets. Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed informatic analyses, including proteomics-based coexpression analysis and correlation analysis between phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results revealed novel dysregulated protein-protein associations enriched specifically in KRAS-mutant cells. Our phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Transdução de Sinais
16.
Mar Drugs ; 21(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37233482

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Triazinas/farmacologia , Proliferação de Células , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas
17.
Discov Med ; 35(175): 131-143, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37188510

RESUMO

BACKGROUND: With the wide application of multislice spiral computed tomography (CT), the frequency of detection of multiple lung cancer is increasing. This study aimed to analyze gene mutations characteristics in multiple primary lung cancers (MPLC) using large panel next-generation sequencing (NGS) assays. METHODS: Patients with MPLC surgically removed from the Affiliated Hospital of Guangdong Medical University from Jan 2020 to Dec 2021 enrolled the study. NGS sequencing of large panels of 425 tumor-associated genes was performed. RESULTS: The 425 panel sequencing of 114 nodules in 36 patients showed that epidermal growth factor receptor (EGFR) accounted for the largest proportion (55.3%), followed by Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2) (9.6%), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), and Kirsten rat sarcoma viral oncogene (KRAS) (8.8%). Fusion target variation was rare (only 2, 1.8%). ERBB2 Y772_A775dup accounted for 73%, KRAS G12C for about 18%, and BRAF V600E for only 10%. AT-rich interaction domain 1A (ARID1A) mutations were significantly higher in invasive adenocarcinoma (IA) which contained solid/micro-papillary malignant components (p = 0.008). The tumor mutation burden (TMB) distribution was low, with a median TMB of 1.1 MUTS/Mb. There were no differences in the TMB distribution of different driver genes. In addition, 97.2% of MPLC patients (35/36) had driver gene mutations, and 47% had co-mutations, mainly in IA (45%) and invasive adenocarcinoma (MIA) (37%) nodule, with EGFR (39.4%), KRAS (9.1%), ERBB2 (6.1%), tumor protein 53 (TP53) (6.1%) predominately. CONCLUSIONS: MPLC has a unique genetic mutation characteristic that differs from advanced patients and usually presents with low TMB. Comprehensive NGS helps to diagnose MPLC and guides the MPLC clinical treatment. ARID1A is significantly enriched in IA nodules containing micro-papillary/solid components, suggesting that these MPLC patients may have a poor prognosis.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Neoplasias Primárias Múltiplas , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Mutação , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
18.
J Thorac Oncol ; 18(10): 1408-1415, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37217096

RESUMO

INTRODUCTION: Sequential anti-programmed cell death protein 1 (PD-1) or anti-programmed death-ligand 1 (PD-L1) followed by small targeted therapy use is associated with increased prevalence of adverse events (AEs) in NSCLC. KRASG12C inhibitor sotorasib may trigger severe immune-mediated hepatotoxicity when used in sequence or in combination with anti-PD-(L)1. This study was designed to address whether sequential anti-PD-(L)1 and sotorasib therapy increases the risk of hepatotoxicity and other AEs. METHODS: This is a multicenter, retrospective study of consecutive advanced KRASG12C-mutant NSCLC treated with sotorasib outside clinical trials in 16 French medical centers. Patient records were reviewed to identify sotorasib-related AEs (National Cancer Institute Common Classification Criteria for Adverse Events-Version 5.0). Grade 3 and higher AE was considered as severe. Sequence group was defined as patients who received an anti-PD-(L)1 as last line of treatment before sotorasib initiation and control group as patients who did not receive an anti-PD-(L)1 as last line of treatment before sotorasib initiation. RESULTS: We identified 102 patients who received sotorasib, including 48 (47%) in the sequence group and 54 (53%) in the control group. Patients in the control group received an anti-PD-(L)1 followed by at least one treatment regimen before sotorasib in 87% of the cases or did not receive an anti-PD-(L)1 at any time before sotorasib in 13% of the cases. Severe sotorasib-related AEs were significantly more frequent in the sequence group compared with those in the control group (50% versus 13%, p < 0.001). Severe sotorasib-related AEs occurred in 24 patients (24 of 48, 50%) in the sequence group, and among them 16 (67%) experienced a severe sotorasib-related hepatotoxicity. Severe sotorasib-related hepatotoxicity was threefold more frequent in the sequence group compared with that in the control group (33% versus 11%, p = 0.006). No fatal sotorasib-related hepatotoxicity was reported. Non-liver severe sotorasib-related AEs were significantly more frequent in the sequence group (27% versus 4%, p < 0.001). Severe sotorasib-related AEs typically occurred in patients who received last anti-PD-(L)1 infusion within 30 days before sotorasib initiation. CONCLUSIONS: Sequential anti-PD-(L)1 and sotorasib therapy are associated with a significantly increased risk of severe sotorasib-related hepatotoxicity and severe non-liver AEs. We suggest avoiding starting sotorasib within 30 days from the last anti-PD-(L)1 infusion.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Estudos Retrospectivos , Ligantes , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Morte Celular
19.
J Neuroendocrinol ; 35(4): e13256, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37017614

RESUMO

High-grade gastroenteropancreatic neuroendocrine neoplasms (HG GEP-NEN) typically disseminate early. Treatment of metastatic disease has limited benefit and prognosis is generally discouraging. Data on the clinical impact of mutations in HG GEP-NEN are scarce. There is an unmet need for reliable biomarkers to predict treatment outcome and prognosis in metastatic HG GEP-NEN. Patients with metastatic HG GEP-NEN diagnosed at three centres were selected for KRAS-, BRAF mutation and microsatellite instability (MSI) analyses. Results were linked to treatment outcome and overall survival. After pathological re-evaluation, 83 patients met inclusion criteria: 77 (93%) GEP neuroendocrine carcinomas (NEC) and six (7%) GEP neuroendocrine tumours (NET) G3. NEC harboured higher frequency of mutations than NET G3. Colon NEC harboured a particular high frequency of BRAF mutations (63%). Immediate disease progression on first-line chemotherapy was significantly higher for NEC with BRAF mutation (73%) versus wild-type (27%) (p = .016) and for colonic primary (65%) versus other NEC (28%) (p = .011). Colon NEC had a significant shorter PFS compared to other primary sites, a finding independent of BRAF status. Immediate disease progression was particularly frequent for BRAF mutated colon NEC (OR 10.2, p = .007). Surprisingly, BRAF mutation did not influence overall survival. KRAS mutation was associated with inferior overall survival for the whole NEC population (HR 2.02, p = .015), but not for those given first-line chemotherapy. All long-term survivors (>24 m) were double wild-type. Three NEC cases (4.8%) were MSI. Colon NEC with BRAF mutation predicted immediate disease progression on first-line chemotherapy, but did not affect PFS or OS. Benefit of first-line platinum/etoposide treatment seems limited for colon NEC, especially for BRAF mutated cases. KRAS mutations did not influence treatment efficacy nor survival for patients receiving first-line chemotherapy. Both frequency and clinical impact of KRAS/BRAF mutations in digestive NEC differ from prior results on digestive adenocarcinoma.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Resultado do Tratamento , Carcinoma Neuroendócrino/tratamento farmacológico , Prognóstico , Mutação , Progressão da Doença
20.
Intern Med ; 62(20): 3001-3004, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858519

RESUMO

We herein report a patient with KRAS wild-type non-small-cell lung cancer (NSCLC) with concurrent STK11 and KEAP1 mutations. A 53-year-old man visited a local doctor with a complaint of left shoulder swelling and pain. He was diagnosed with NSCLC cT4N0M1c stage IVB. A comprehensive genome profile test revealed mutations in STK11 and KEAP1 but no KRAS mutations. The patient was refractory to radiotherapy, immunotherapy, and chemotherapy. Thus, STK11 and KEAP1 mutations can be considered resistance mutations that confer resistance to various anticancer therapies in KRAS wild-type NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Pessoa de Meia-Idade , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Mutação/genética , Quinases Proteína-Quinases Ativadas por AMP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA