Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 125(5): 1973-1981, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881939

RESUMO

The death-associated protein kinase 1 (DAPK1) has recently been shown to have a physiological function in long-term depression (LTD) of glutamatergic synapses: acute inhibition of DAPK1 blocked the LTD that is normally seen at the hippocampal CA1 synapse in young mice, and a pharmacogenetic combination approach showed that this specifically required DAPK1-mediated suppression of postsynaptic Ca2+/calmodulin-dependent protein kinase II binding to the NMDA-type glutamate receptor (NMDAR) subunit GluN2B during LTD stimuli. Surprisingly, we found here that genetic deletion of DAPK1 (in DAPK1-/- mice) did not reduce LTD. Paired pulse facilitation experiments indicated a presynaptic compensation mechanism: in contrast to wild-type mice, LTD stimuli in DAPK1-/- mice decreased presynaptic release probability. Basal synaptic strength was normal in young DAPK1-/- mice, but basal glutamate release probability was reduced, an effect that normalized with maturation.NEW & NOTEWORTHY Young death-associated protein kinase 1 (DAPK1) knockout mice have reduced basal glutamate release probability, an effect that normalized with maturation. This provided a compensatory mechanism that may have prevented a reduction of long-term depression in the young DAPK1 knockout mice.


Assuntos
Região CA1 Hipocampal/fisiologia , Proteínas Quinases Associadas com Morte Celular/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Cell Mol Immunol ; 18(1): 138-149, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541182

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) regulates CD8+ T-cell differentiation and function. Despite the links between PI3K-AKT and mTORC1 activation in CD8+ T cells, the molecular mechanism underlying mTORC1 activation remains unclear. Here, we show that both the kinase activity and the death domain of DAPK1 are required for maximal mTOR activation and CD8+ T-cell function. We found that TCR-induced activation of calcineurin activates DAPK1, which subsequently interacts with TSC2 via its death domain and phosphorylates TSC2 to mediate mTORC1 activation. Furthermore, both the kinase domain and death domain of DAPK1 are required for CD8+ T-cell antiviral responses in an LCMV infection model. Together, our data reveal a novel mechanism of mTORC1 activation that mediates optimal CD8+ T-cell function and antiviral activity.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Proteínas Quinases Associadas com Morte Celular/fisiologia , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
Anesthesiology ; 133(4): 905-918, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930731

RESUMO

BACKGROUND: Alveolar epithelial cell apoptosis is implicated in the onset of ventilator-induced lung injury. Death-associated protein kinase 1 (DAPK1) is associated with cell apoptosis. The hypothesis was that DAPK1 participates in ventilator-induced lung injury through promoting alveolar epithelial cell apoptosis. METHODS: Apoptosis of mouse alveolar epithelial cell was induced by cyclic stretch. DAPK1 expression was altered (knockdown or overexpressed) in vitro by using a small interfering RNA or a plasmid, respectively. C57/BL6 male mice (n = 6) received high tidal volume ventilation to establish a lung injury model. Adeno-associated virus transfection of short hairpin RNA and DAPK1 inhibitor repressed DAPK1 expression and activation in lungs, respectively. The primary outcomes were alveolar epithelial cell apoptosis and lung injury. RESULTS: Compared with the control group, the 24-h cyclic stretch group showed significantly higher alveolar epithelial cell apoptotic percentage (45 ± 4% fold vs. 6 ± 1% fold; P < 0.0001) and relative DAPK1 expression, and this group also demonstrated a reduced apoptotic percentage after DAPK1 knockdown (27 ± 5% fold vs. 53 ± 8% fold; P < 0.0001). A promoted apoptotic percentage in DAPK1 overexpression was observed without stretching (49 ± 6% fold vs. 14 ± 3% fold; P < 0.0001). Alterations in B-cell lymphoma 2 and B-cell lymphoma 2-associated X are associated with DAPK1 expression. The mice subjected to high tidal volume had higher DAPK1 expression and alveolar epithelial cell apoptotic percentage in lungs compared with the low tidal volume group (43 ± 6% fold vs. 4 ± 2% fold; P < 0.0001). Inhibition of DAPK1 through adeno-associated virus infection or DAPK1 inhibitor treatment appeared to be protective against lung injury with reduced lung injury score, resolved pulmonary inflammation, and repressed alveolar epithelial cell apoptotic percentage (47 ± 4% fold and 48 ± 6% fold; 35 ± 5% fold and 34 ± 4% fold; P < 0.0001, respectively). CONCLUSIONS: DAPK1 promotes the onset of ventilator-induced lung injury by triggering alveolar epithelial cell apoptosis through intrinsic apoptosis pathway in mice.


Assuntos
Células Epiteliais Alveolares/metabolismo , Apoptose/fisiologia , Proteínas Quinases Associadas com Morte Celular/biossíntese , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular/deficiência , Proteínas Quinases Associadas com Morte Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
4.
Recent Pat Anticancer Drug Discov ; 14(2): 144-157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569876

RESUMO

BACKGROUND: Death-Associated Protein Kinase 1 (DAPK1) plays an important role in apoptosis, tumor suppression and neurodegeneration including Alzheimer's Disease (AD). OBJECTIVE: This review will describe the diverse roles of DAPK1 in the development of cancer and AD, and the current status of drug development targeting DAPK1-based therapies. METHODS: Reports of DAPK1 regulation, function and substrates were analyzed using genetic DAPK1 manipulation and chemical DAPK1 modulators. RESULTS: DAPK1 expression and activity are deregulated in cancer and AD. It is down-regulated and/or inactivated by multiple mechanisms in many human cancers, and elicits a protective effect to counteract numerous death stimuli in cancer, including activation of the master regulator Pin1. Moreover, loss of DAPK1 expression has correlated strongly with tumor recurrence and metastasis, suggesting that lack of sufficient functional DAPK1 might contribute to cancer. In contrast, DAPK1 is highly expressed in the brains of most human AD patients and has been identified as one of the genetic factors affecting susceptibility to late-onset AD. The absence of DAPK1 promotes efficient learning and better memory in mice and prevents the development of AD by acting on many key proteins including Pin1 and its downstream targets tau and APP. Recent patents show that DAPK1 modulation might be used to treat both cancer and AD. CONCLUSION: DAPK1 plays a critical role in diverse physiological processes and importantly, its deregulation is implicated in the pathogenesis of either cancer or AD. Therefore, manipulating DAPK1 activity and/or expression may be a promising therapeutic option for cancer or AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Proteínas Quinases Associadas com Morte Celular/fisiologia , Terapia de Alvo Molecular/tendências , Neoplasias/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Patentes como Assunto
5.
Br J Pharmacol ; 175(7): 1066-1084, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29333604

RESUMO

BACKGROUND AND PURPOSE: Adiponectin potently suppresses inflammatory mediator production. Autophagy is known to play a critical role in the modulation of inflammatory responses by adiponectin. However, the underlying mechanisms are not clearly understood. Interaction between Beclin-1 and B-cell lymphoma 2 (Bcl-2) is a critical event in autophagy induction. We examined the effects of globular adiponectin (gAcrp) on the Beclin-1/Bcl-2 association and its underlying mechanisms. EXPERIMENTAL APPROACH: The effect of gAcrp on the interaction between Beclin-1 and Bcl-2 was examined by immunoprecipitation followed by Western blotting. To elucidate the underlying mechanisms, we determined the effects of gAcrp on Beclin-1 phosphorylation and Bcl-2 mRNA stability, and investigated their role in the suppression of inflammatory mediators using pharmacological inhibitors and transient target gene knockdown. KEY RESULTS: Globular adiponectin disrupted the association between Beclin-1 and Bcl-2 and increased Beclin-1 phosphorylation at Thr119 , critical residue for binding with Bcl-2, via a death-associated protein kinase-1 (DAPK1)-dependent mechanism. Moreover, gAcrp reduced Bcl-2 expression via Bcl-2 mRNA destabilization, without significantly affecting Bcl-2 promoter activity and protein degradation, which was mediated by tristetraprolin (TTP) induction. Finally, DAPK1 and TTP were shown to play key roles in gAcrp-induced autophagosome formation and suppression of LPS-stimulated TNF-α and IL-1ß expression. CONCLUSION AND IMPLICATIONS: Beclin-1 phosphorylation and Bcl-2 mRNA destabilization mediated by DAPK1 and TTP are crucial events leading to autophagy and the suppression of inflammatory cytokine production by gAcrp. These results provide novel mechanisms underlying adiponectin's modulation of inflammatory responses. DAPK and TTP are potential therapeutic targets for the management of inflammation.


Assuntos
Adiponectina/fisiologia , Autofagia/fisiologia , Proteína Beclina-1/fisiologia , Citocinas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Proteínas Quinases Associadas com Morte Celular/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Células RAW 264.7
6.
Elife ; 62017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28731405

RESUMO

Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by Dapk1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region. Contrary to this model, we find that excitotoxicity can proceed without increased Ser-1303 phosphorylation, and is unaffected by Dapk1 deficiency in vitro or following ischemia in vivo. Pharmacological analysis of the aforementioned neuroprotective peptide revealed that it acts in a sequence-independent manner as an open-channel NMDAR antagonist at or near the Mg2+ site, due to its high net positive charge. Thus, GluN2B-driven excitotoxic signaling can proceed independently of Dapk1 or altered Ser-1303 phosphorylation.


Assuntos
Proteínas Quinases Associadas com Morte Celular/fisiologia , Neurônios/patologia , Neuropeptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação , Subunidades Proteicas , Serina/química , Serina/metabolismo , Transdução de Sinais
7.
J Clin Invest ; 125(7): 2707-20, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26075823

RESUMO

Estrogen receptor-negative (ER-negative) breast cancers are extremely aggressive and associated with poor prognosis. In particular, effective treatment strategies are limited for patients diagnosed with triple receptor-negative breast cancer (TNBC), which also carries the worst prognosis of all forms of breast cancer; therefore, extensive studies have focused on the identification of molecularly targeted therapies for this tumor subtype. Here, we sought to identify molecular targets that are capable of suppressing tumorigenesis in TNBCs. Specifically, we found that death-associated protein kinase 1 (DAPK1) is essential for growth of p53-mutant cancers, which account for over 80% of TNBCs. Depletion or inhibition of DAPK1 suppressed growth of p53-mutant but not p53-WT breast cancer cells. Moreover, DAPK1 inhibition limited growth of other p53-mutant cancers, including pancreatic and ovarian cancers. DAPK1 mediated the disruption of the TSC1/TSC2 complex, resulting in activation of the mTOR pathway. Our studies demonstrated that high DAPK1 expression causes increased cancer cell growth and enhanced signaling through the mTOR/S6K pathway; evaluation of multiple breast cancer patient data sets revealed that high DAPK1 expression associates with worse outcomes in individuals with p53-mutant cancers. Together, our data support targeting DAPK1 as a potential therapeutic strategy for p53-mutant cancers.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Proteínas Quinases Associadas com Morte Celular/fisiologia , Genes p53 , Mutação , Animais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/genética , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Neurosci ; 34(19): 6546-56, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24806680

RESUMO

Necrosis and apoptosis are two distinct types of mechanisms that mediate ischemic injury. But a signaling point of convergence between them has yet to be identified. Here, we show that activated death-associated protein kinase 1 (DAPK1), phosphorylates p53 at serine-23 (pS(23)) via a direct binding of DAPK1 death domain (DAPK1DD) to the DNA binding motif of p53 (p53DM). We uncover that the pS(23) acts as a functional version of p53 and mediates necrotic and apoptotic neuronal death; in the nucleus, pS(23) induces the expression of proapoptotic genes, such as Bax, whereas in the mitochondrial matrix, pS(23) triggers necrosis via interaction with cyclophilin D (CypD) in cultured cortical neurons from mice. Deletion of DAPK1DD (DAPK1(DDΔ)) or application of Tat-p53DM that interrupts DAPK1-p53 interaction blocks these dual pathways of pS(23) actions in mouse cortical neurons. Thus, the DAPK1-p53 interaction is a signaling point of convergence of necrotic and apoptotic pathways and is a desirable target for the treatment of ischemic insults.


Assuntos
Apoptose/genética , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Proteínas Quinases Associadas com Morte Celular/fisiologia , Necrose/genética , Neurônios/patologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/fisiologia , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Clonagem Molecular , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Dependovirus/genética , Deleção de Genes , Glucose/genética , Glutationa Transferase/metabolismo , Imunoprecipitação , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/genética
9.
Clin Sci (Lond) ; 127(8): 539-48, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24814693

RESUMO

Death-associated protein kinase 3 (DAPK3) also known as zipper-interacting kinase is a serine/threonine kinase that mainly regulates cell death and smooth muscle contraction. We have previously found that protein expression of DAPK3 increases in the mesenteric artery from spontaneously hypertensive rats (SHRs) and that DAPK3 mediates the development of hypertension in SHRs partly through promoting reactive oxygen species-dependent vascular inflammation. However, it remains to be clarified how DAPK3 controls smooth muscle cell (SMC) proliferation and migration, which are also important processes for hypertension development. We, therefore, sought to investigate whether DAPK3 affects SMC proliferation and migration. siRNA against DAPK3 significantly inhibited platelet-derived growth factor (PDGF)-BB-induced SMC proliferation and migration as determined by bromodeoxyuridine (BrdU) incorporation and a cell counting assay as well as a Boyden chamber assay respectively. DAPK3 siRNA or a pharmacological inhibitor of DAPK3 inhibited PDGF-BB-induced lamellipodia formation as determined by rhodamine-phalloidin staining. DAPK3 siRNA or the DAPK inhibitor significantly reduced PDGF-BB-induced activation of p38 and heat-shock protein 27 (HSP27) as determined by Western blotting. In ex vivo studies, PDGF-BB-induced SMC out-growth was significantly inhibited by the DAPK inhibitor. In vivo, the DAPK inhibitor significantly prevented carotid neointimal hyperplasia in a mouse ligation model. The present results, for the first time, revealed that DAPK3 mediates PDGF-BB-induced SMC proliferation and migration through activation of p38/HSP27 signals, which may lead to vascular structural remodelling including neointimal hyperplasia. The present study suggests DAPK3 as a novel pharmaceutical target for the prevention of hypertensive cardiovascular diseases.


Assuntos
Movimento Celular/genética , Proliferação de Células , Proteínas Quinases Associadas com Morte Celular/fisiologia , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Contagem de Células , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Humanos , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/enzimologia , Neointima/patologia , Oxazolona/análogos & derivados , Oxazolona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos , Ratos Wistar , Transdução de Sinais
10.
J Smooth Muscle Res ; 50: 18-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24770446

RESUMO

Smooth muscle contraction is activated primarily by phosphorylation at Ser19 of the regulatory light chain subunits (LC20) of myosin II, catalysed by Ca(2+)/calmodulin-dependent myosin light chain kinase. Ca(2+)-independent contraction can be induced by inhibition of myosin light chain phosphatase, which correlates with diphosphorylation of LC20 at Ser19 and Thr18, catalysed by integrin-linked kinase (ILK) and zipper-interacting protein kinase (ZIPK). LC20 diphosphorylation at Ser19 and Thr18 has been detected in mammalian vascular smooth muscle tissues in response to specific contractile stimuli (e.g. endothelin-1 stimulation of rat renal afferent arterioles) and in pathophysiological situations associated with hypercontractility (e.g. cerebral vasospasm following subarachnoid hemorrhage). Comparison of the effects of LC 20 monophosphorylation at Ser19 and diphosphorylation at Ser19 and Thr18 on contraction and relaxation of Triton-skinned rat caudal arterial smooth muscle revealed that phosphorylation at Thr18 has no effect on steady-state force induced by Ser19 phosphorylation. On the other hand, the rates of dephosphorylation and relaxation are significantly slower following diphosphorylation at Thr18 and Ser19 compared to monophosphorylation at Ser19. We propose that this diphosphorylation mechanism underlies the prolonged contractile response of particular vascular smooth muscle tissues to specific stimuli, e.g. endothelin-1 stimulation of renal afferent arterioles, and the vasospastic behavior observed in pathological conditions such as cerebral vasospasm following subarachnoid hemorrhage and coronary arterial vasospasm. ILK and ZIPK may, therefore, be useful therapeutic targets for the treatment of such conditions.


Assuntos
Músculo Liso Vascular/fisiologia , Miosina Tipo II/química , Miosina Tipo II/fisiologia , Vasoconstrição/genética , Injúria Renal Aguda/tratamento farmacológico , Animais , Catálise , Vasoespasmo Coronário/tratamento farmacológico , Proteínas Quinases Associadas com Morte Celular/fisiologia , Proteínas Quinases Associadas com Morte Celular/uso terapêutico , Endotelina-1/farmacologia , Humanos , Hipertensão/tratamento farmacológico , Microcirculação/efeitos dos fármacos , Microcirculação/genética , Terapia de Alvo Molecular , Quinase de Cadeia Leve de Miosina/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Serina-Treonina Quinases/uso terapêutico , Ratos , Circulação Renal/efeitos dos fármacos , Circulação Renal/genética , Vasoespasmo Intracraniano/tratamento farmacológico
12.
J Alzheimers Dis ; 37(4): 795-808, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23948915

RESUMO

The intracellular accumulation of hyperphosphorylated tau plays a crucial role in neurodegeneration of Alzheimer's disease (AD), but the mechanism is not fully understood. From the observation that tau hyperphosphorylation renders cells more resistant to chemically-induced cell apoptosis, we have proposed that tau-involved apoptotic abortion may be the trigger of neurodegeneration. Here, we further studied whether this phenomenon is also applicable for the cell death induced by constitutively expressed factors, such as death-associated protein kinase 1 (DAPK1). We found that DAPK1 was upregulated and accumulated in the brain of human tau transgenic mice. Overexpression of DAPK1 in HEK293 and N2a cells decreased cell viability with activation of caspase-3, whereas simultaneous expression of tau antagonized DAPK1-induced apoptotic cell death. Expression of DAPK1 induced tau hyperphosphorylation at Thr231, Ser262, and Ser396 with no effects on protein phosphatase 2A, glycogen synthase kinase-3ß, protein kinase A, calcium/calmodulin dependent protein kinase II, cell division cycle 2, or cyclin dependent protein kinase 5. The phosphorylation level of microtubule affinity-regulating kinase 2 (MARK2) was increased by expression of DAPK1, but simultaneous downregulation of MARK2 did not affect the DAPK1-induced tau hyperphosphorylation. DAPK1 was co-immunoprecipitated with tau proteins both in vivo and in vitro, and expression of the kinase domain-truncated DAPK1 did not induce tau hyperphosphorylation. These data suggest that tau hyperphosphorylation at Thr231, Ser262, and Ser396 by DAPK1 renders the cells more resistant to the kinase-induced apoptotic cell death, providing new insights into the tau-involved apoptotic abortion in the course of chronic neurodegeneration.


Assuntos
Apoptose/fisiologia , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/fisiologia , Proteínas tau/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular/biossíntese , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia , Regulação para Cima/genética , Proteínas tau/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA