Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Connect Tissue Res ; 64(2): 139-147, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35986560

RESUMO

BACKGROUND: Oncostatin M produced by osteal macrophages, a cytokine that belongs to the interleukin-6 family, is implicated in bone fracture healing. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts plays an important role in osteoclastogenesis. We have previously reported that tumor necrosis factor-α (TNF-α), a potent bone resorptive agent, stimulates the activation of p44/p42 mitogen-activated protein (MAP) kinase, Akt, and p70 S6 kinase in osteoblast-like MC3T3-E1 cells, and induces the synthesis of M-CSF at least in part via Akt. OBJECTIVE: In the present study, we investigated whether oncostatin M affects the TNF-α-induced M-CSF synthesis in MC3T3-E1 cells and the underlying mechanisms. METHODS: Clonal osteoblast-like MC3T3-E1 cells were treated with oncostatin M or rapamycin and then stimulated with TNF-α. M-CSF release was assessed by ELISA. M-CSF mRNA expression level was assessed by real-time RT-PCR. Phosphorylation of Akt, p44/p42 MAP kinase, and p70 S6 kinase was detected by Western blot analysis. RESULTS: Oncostatin M dose-dependently reduced the TNF-α-stimulated M-CSF release. The expression of M-CSF mRNA induced by TNF-α was significantly suppressed by oncostatin M. Rapamycin, an inhibitor of mTOR/p70 S6 kinase, had little effect on the M-CSF release by TNF-α. Oncostatin M significantly reduced the TNF-α-induced phosphorylation of Akt and p44/p42 MAP kinase. However, the p70 S6 kinase phosphorylation by TNF-α was not affected by oncostatin M. CONCLUSION: These results strongly suggest that oncostatin M attenuates TNF-α-stimulated synthesis of M-CSF in osteoblasts, and the inhibitory effect is exerted at a point upstream of Akt and p44/p42 MAP kinase but not p70 S6 kinase.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/farmacologia , Oncostatina M/farmacologia , Oncostatina M/metabolismo , Fosforilação , Sirolimo/farmacologia , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Macrófagos/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
2.
PLoS Pathog ; 18(9): e1010808, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067252

RESUMO

Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.


Assuntos
Receptores de Imunoglobulina Polimérica , Vírus da Síndrome da Mancha Branca 1 , Antivirais/farmacologia , Calmodulina/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas/farmacologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/metabolismo
3.
Autophagy ; 18(10): 2303-2322, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34964695

RESUMO

By promoting anabolism, MTORC1 is critical for muscle growth and maintenance. However, genetic MTORC1 upregulation promotes muscle aging and produces age-associated myopathy. Whether MTORC1 activation is sufficient to produce myopathy or indirectly promotes it by accelerating tissue aging is elusive. Here we examined the effects of muscular MTORC1 hyperactivation, produced by simultaneous depletion of TSC1 and DEPDC5 (CKM-TD). CKM-TD mice produced myopathy, associated with loss of skeletal muscle mass and force, as well as cardiac failure and bradypnea. These pathologies were manifested at eight weeks of age, leading to a highly penetrant fatality at around twelve weeks of age. Transcriptome analysis indicated that genes mediating proteasomal and macroautophagic/autophagic pathways were highly upregulated in CKM-TD skeletal muscle, in addition to inflammation, oxidative stress, and DNA damage signaling pathways. In CKM-TD muscle, autophagosome levels were increased, and the AMPK and ULK1 pathways were activated; in addition, autophagy induction was not completely blocked in CKM-TD myotubes. Despite the upregulation of autolysosomal markers, CKM-TD myofibers exhibited accumulation of autophagy substrates, such as SQSTM1/p62 and ubiquitinated proteins, suggesting that the autophagic activities were insufficient. Administration of a superoxide scavenger, tempol, normalized most of these molecular pathologies and subsequently restored muscle histology and force generation. However, CKM-TD autophagy alterations were not normalized by rapamycin or tempol, suggesting that they may involve non-canonical targets other than MTORC1. These results collectively indicate that the concomitant muscle deficiency of TSC1 and DEPDC5 can produce early-onset myopathy through accumulation of oxidative stress, which dysregulates myocellular homeostasis.Abbreviations: AMPK: AMP-activated protein kinase; CKM: creatine kinase, M-type; COX: cytochrome oxidase; DEPDC5: DEP domain containing 5, GATOR1 subcomplex subunit; DHE: dihydroethidium; EDL: extensor digitorum longus; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GAP: GTPase-activating protein; GTN: gastrocnemius; MTORC1: mechanistic target of rapamycin kinase complex 1; PLA: plantaris; QUAD: quadriceps; RPS6KB/S6K: ribosomal protein S6 kinase beta; SDH: succinate dehydrogenase; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; TSC1: TSC complex subunit 1; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Cardiopatias , Doenças Musculares , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Creatina Quinase Forma MM/metabolismo , Óxidos N-Cíclicos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/farmacologia , Proteínas Ativadoras de GTPase/metabolismo , Cardiopatias/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Doenças Musculares/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Fatores de Iniciação de Peptídeos/metabolismo , Poliésteres/metabolismo , Poliésteres/farmacologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas/farmacologia , Proteína Sequestossoma-1/metabolismo , Sirolimo/farmacologia , Marcadores de Spin , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Superóxidos/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Ubiquitinadas/metabolismo
4.
J Endocrinol ; 244(1): 71-82, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557728

RESUMO

The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Glucose/metabolismo , Isoformas de Proteínas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas/farmacologia , Proteína Relacionada com Agouti/metabolismo , Animais , Ingestão de Alimentos/genética , Hipotálamo/metabolismo , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Jpn Circ J ; 64(9): 695-700, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10981855

RESUMO

Cardiac hypertrophy is characterized by increased cardiomyocyte protein synthesis, increased cell volume, and a shift in cardiac-specific gene expression to fetal isoforms. Using neonatal rat cardiomyocytes stimulated with fetal calf serum (FCS) as a model for cardiac hypertrophy, the present study investigated the role of 2 signal transduction pathways, extracellular signal-regulated kinase (ERK) and p70S6 kinase (p70S6K), in the attendant phenotype changes. FCS evoked both ERK and p70S6K activity, peaking at 20-40min, and simultaneously increased cardiac myocyte protein synthesis (evaluated by [3H]leucine incorporation and total cellular protein content), cell size (evaluated by morphometry and fluorescence-activated cell sorter analysis) and expression of a fetal isoform of the muscle specific gene skeletal alpha-actin (SKA). Rapamycin, a specific inhibitor of the mammalian target of rapamycin (mTOR), which is an upstream signaling of p70S6K, completely inhibited FCS-induced cell size increases and protein synthesis, but had no effect on SKA mRNA expression. PD98059, which inhibited ERK activity, attenuated cardiac-specific gene expression in a dose-dependent manner, but had no influence on protein synthesis or cell size. These results indicate divergent roles for the ERK and p70S6K pathways in the phenotypic changes associated with cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Miocárdio/citologia , Proteínas Quinases S6 Ribossômicas/farmacologia , Actinas/genética , Animais , Técnicas de Cultura de Células , Tamanho Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/química , Miocárdio/enzimologia , Fenótipo , Biossíntese de Proteínas , Proteínas/antagonistas & inibidores , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
6.
Cell Stress Chaperones ; 5(5): 432-7, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11189448

RESUMO

Heat shock transcription factor 1(HSF1) activation is a multistep process. The conversion of a latent cytoplasmic form to a nuclear, DNA binding state appears to be activated by nonsteroidal anti-inflammatory drugs. In previous studies, we showed that HSF 1 is phosphorylated by the protein kinase RSK2 in vitro and that this effect is inhibited by nonsteroidal anti-inflammatory drugs at the concentration that leads to the activation of HSF1 in vivo (Stevenson et al 1999). In the present study, using cells from a patient with Coffin-Lowry syndrome (deficient in RSK2), we demonstrate that RSK2 slightly represses activation of HSF1 in vivo at 37 degrees C. In Coffin-Lowry syndrome cells, HSF1-HSE DNA binding activity after treatment with sodium salicylate was slightly higher than that in untreated cells, indicating that although RSK2 is involved in HSF1 regulation, it is not the unique protein kinase that suppresses HSF1-HSE binding activity at 37 degrees C. However, heat shock treatment resulted in significantly higher HSF1-HSE binding activity in Coffin-Lowry syndrome cells as compared with normal controls, suggesting that RSK2 represses HSF1-HSE binding activity during heat shock.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas Quinases S6 Ribossômicas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Criança , Proteínas de Ligação a DNA/genética , Regulação Enzimológica da Expressão Gênica , Células HeLa , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Deficiência Intelectual/genética , Linfócitos/citologia , Linfócitos/enzimologia , Masculino , Fosforilação , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Salicilato de Sódio/farmacologia , Fatores de Transcrição , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA