Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ageing Res Rev ; 89: 101967, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270146

RESUMO

Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.


Assuntos
Envelhecimento , Proteínas Relacionadas à Autofagia , Autofagia , Proteínas Relacionadas à Autofagia/fisiologia , Humanos , Biomarcadores , Longevidade , Doença , Doenças Neurodegenerativas , Neoplasias , Doenças Cardiovasculares , Síndrome Metabólica
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850023

RESUMO

The autophagy protein ATG2, proposed to transfer bulk lipid from the endoplasmic reticulum (ER) during autophagosome biogenesis, interacts with ER residents TMEM41B and VMP1 and with ATG9, in Golgi-derived vesicles that initiate autophagosome formation. In vitro assays reveal TMEM41B, VMP1, and ATG9 as scramblases. We propose a model wherein membrane expansion results from the partnership of a lipid transfer protein, moving lipids between the cytosolic leaflets of apposed organelles, and scramblases that reequilibrate the leaflets of donor and acceptor organelle membranes as lipids are depleted or augmented. TMEM41B and VMP1 are implicated broadly in lipid homeostasis and membrane dynamics processes in which their scrambling activities likely are key.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Biogênese de Organelas , Proteínas de Transferência de Fosfolipídeos/fisiologia
3.
J Diabetes Res ; 2021: 5398645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791389

RESUMO

OBJECTIVE: Accumulating evidence suggests the critical role of autophagy in the pathogenesis of diabetic retinopathy (DR). In the current study, we aim to identify autophagy genes involved in DR via microarray analyses. METHODS: Gene microarrays were performed to identify differentially expressed lncRNAs/mRNAs between normal and DR retinas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of lncRNA-coexpressed mRNAs were used to determine the related pathological pathways and biological modules. Real-time polymerase chain reactions (PCR) were conducted to validate the microarray analyses. RESULTS: A total of 2474 significantly dysregulated lncRNAs and 959 differentially expressed mRNAs were identified in the retina of DR. Based upon Signalnet analysis, Bcl2, Gabarapl2, Atg4c, and Atg16L1 participated the process of cell death in DR. Moreover, real-time PCR revealed significant upregulation of Atg16L1. CONCLUSION: This study indicated the importance and potential role of Atg16L1, one of the autophagy genes, as a biomarker in DR development and progression.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/genética , Retinopatia Diabética/genética , Animais , Autofagia/fisiologia , Biomarcadores , Retinopatia Diabética/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/análise , RNA Mensageiro/análise
4.
Mol Biol Cell ; 32(12): 1158-1170, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826365

RESUMO

The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Nogo/metabolismo , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular , Retículo Endoplasmático/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Domínios Proteicos
5.
Plant Sci ; 306: 110850, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775357

RESUMO

Autophagy is a major degradation pathway in plants for maintaining cellular homeostasis in response to various environmental stressors. ATG8 is one of a series of autophagy-related (ATG) proteins and plays a central role in both bulk and selective autophagy. Previously, we characterized MdATG8i in apple and demonstrated that it has a positive role in apple stress resistance. Although many ATG8-interacting proteins have been found in Arabidopsis, no protein has been reported to interact with MdATG8 in apple. Here, we identified MdHARBI1 as a MdATG8i-interacting protein in apple, however, the functions of HARBI1-like proteins have not been explored in plants. Expression analysis of MdHARBI1 and pro-MdHARBI1-GUS staining of transgenic Arabidopsis exposed to high temperature demonstrated that MdHARBI1 was significantly induced by heat stress. Moreover, heat-treated MdHARBI1-trangenic tomato plants maintained higher autophagic activity, accumulated fewer ROS, and displayed stronger chlorophyll fluorescence than wild-type plants. Because these phenotypes were consistent with those displayed by MdATG8i-overexpressing apple plants under high temperature, we concluded that the MdATG8i-interacting protein MdHARBI1 plays a critical role in the basal thermotolerance of plants, mainly by influencing autophagy pathways.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/genética , Resposta ao Choque Térmico/genética , Malus/genética , Malus/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Autofagia/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia
6.
Dev Cell ; 56(7): 949-966, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33765438

RESUMO

ER-phagy, literally endoplasmic reticulum (ER)-eating, defines the constitutive or regulated clearance of ER portions within metazoan endolysosomes or yeast and plant vacuoles. The advent of electron microscopy led to the first observations of ER-phagy over 60 years ago, but only recently, with the discovery of a set of regulatory proteins named ER-phagy receptors, has it been dissected mechanistically. ER-phagy receptors are activated by a variety of pleiotropic and ER-centric stimuli. They promote ER fragmentation and engage luminal, membrane-bound, and cytosolic factors, eventually driving lysosomal clearance of select ER domains along with their content. After short historical notes, this review introduces the concept of ER-phagy responses (ERPRs). ERPRs ensure lysosomal clearance of ER portions expendable during nutrient shortage, nonfunctional, present in excess, or containing misfolded proteins. They cooperate with unfolded protein responses (UPRs) and with ER-associated degradation (ERAD) in determining ER size, function, and homeostasis.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Animais , Autofagia , Proteínas Relacionadas à Autofagia/fisiologia , Lisossomos/metabolismo , Mamíferos/metabolismo , Plantas/metabolismo , Leveduras/metabolismo
7.
Autophagy ; 17(11): 3644-3670, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33685363

RESUMO

Autophagosome formation requires PROPPIN/WIPI proteins and monophosphorylated phosphoinositides, such as phosphatidylinositol-3-phosphate (PtdIns3P) or PtdIns5P. This process occurs in association with mammalian endosomes, where the PROPPIN WIPI1 has additional, undefined roles in vesicular traffic. To explore whether these functions are interconnected, we dissected routes and subreactions of endosomal trafficking requiring WIPI1. WIPI1 specifically acts in the formation and fission of tubulo-vesicular endosomal transport carriers. This activity supports the PtdIns(3,5)P2-dependent transport of endosomal cargo toward the plasma membrane, Golgi, and lysosomes, suggesting a general role of WIPI1 in endosomal protein exit. Three features differentiate the endosomal and macroautophagic/autophagic activities of WIPI1: phosphoinositide binding site II, the requirement for PtdIns(3,5)P2, and bilayer deformation through a conserved amphipathic α-helix. Their inactivation preserves autophagy but leads to a strong enlargement of endosomes, which accumulate micrometer-long endosomal membrane tubules carrying cargo proteins. WIPI1 thus supports autophagy and protein exit from endosomes by different modes of action. We propose that the type of phosphoinositides occupying its two lipid binding sites, the most unusual feature of PROPPIN/WIPI family proteins, switches between these effector functions.Abbreviations: EGF: epidermal growth factorEGFR: epidermal growth factor receptorKD: knockdownKO: knockoutPtdIns3P: phosphatidylinositol-3-phosphatePtdIns5P: phosphatidylinositol-5-phosphatePtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphateTF: transferrinTFRC: transferrin receptorWT: wildtype.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas Relacionadas à Autofagia/fisiologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Linhagem Celular , Endocitose , Edição de Genes , Humanos , Proteínas de Membrana/fisiologia , Microscopia Confocal , Corpos Multivesiculares/fisiologia , Mutagênese Sítio-Dirigida
8.
Mol Biol Cell ; 32(8): 645-663, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33625870

RESUMO

Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane-bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane-bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase that is essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of the two domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to how the C-terminal lipase domain recognizes autophagic bodies to degrade them.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/fisiologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/fisiologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Autofagossomos/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Transporte Biológico , Hidrolases de Éster Carboxílico/genética , Citoplasma/metabolismo , Lipase/metabolismo , Glicoproteínas de Membrana/genética , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Gene ; 782: 145537, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33636294

RESUMO

Detection of TCGA data revealed that WIPI1 is highly expressed in osteosarcoma cells. So we explore the mechanisms of WIPI1 affecting the proliferation of osteosarcoma cells through Affymetrix microarray analysis. Functional analysis of differentially expressed genes shows that the classical signaling pathways affecting tumor formation and development have changed significantly. By fitting analysis, it is speculated that the WIPI1 may function in the direction of osteosarcoma by regulating the expression of multiple cell cycle-related genes such as CDKN1A, CDK4 and CCND1. Therefore, the key genes are selected for RT-PCR and Western-blot verification. Combined with flow and other means, WIPI1 may affect the cell cycle and the osteosarcoma by regulating the expression of CDKN1A, CDK4 and CCND1. To verify the results, the effect of WIPI1 on cell proliferation was quantified by MTT, cell counts and nude mouse tumorigenicity assay. The results showed that WIPI1 promotes osteosarcoma cell proliferation.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Neoplasias Ósseas/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Proteínas de Membrana/genética , Osteossarcoma/genética , Animais , Proteínas Relacionadas à Autofagia/fisiologia , Neoplasias Ósseas/patologia , Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Lentivirus/genética , Proteínas de Membrana/fisiologia , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos , Osteossarcoma/patologia , Software , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443148

RESUMO

Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas F-Box/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/fisiologia , Regulação para Baixo , Proteínas F-Box/fisiologia , Lisossomos/metabolismo , Proteínas de Membrana/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
J Neurochem ; 157(3): 752-763, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33354770

RESUMO

Fused in sarcoma (FUS) is a ubiquitously expressed RNA/DNA-binding protein that plays different roles in the cell. FUS pathology has been reported in neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in FUS have also been linked to a subset of familial ALS. FUS is mainly localized in the nucleus although it shuttles between the nucleus and the cytoplasm. ALS-linked mutations cause the accumulation of the FUS protein in cytoplasm where it forms stress granule-like inclusions. The protein- and RNA-containing inclusions are reported to be positive of autophagosome markers and degraded by the autophagy pathway. However, the role of FUS in the autophagy pathway remains to be better understood. Using immunoblot and confocal imaging techniques in this study, we found that FUS knockout (KO) cells showed a decreased basal autophagy level. Rapamycin and bafilomycin A1 treatment showed that FUS KO cells were not able to initiate autophagy as efficiently as wild-type cells, suggesting that the autophagosome formation is affected in the absence of FUS. Moreover, using immunoblot and quantitative PCR techniques, we found that the mRNA and protein levels of the genes critical in the initial steps of the autophagy pathway (FIP200, ATG16L1 and ATG12) were significantly lower in FUS KO cells. Re-expressing FUS in the KO cells restored the expression of FIP200 and ATG16L1. Our findings demonstrate a novel role of FUS in the autophagy pathway, that is, regulating the transcription of genes involved in early stages of autophagy such as the initiation and elongation of autophagosomes.


Assuntos
Autofagossomos/genética , Autofagossomos/fisiologia , Autofagia/genética , Autofagia/fisiologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/fisiologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Macrolídeos/farmacologia , Camundongos , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais/genética , Sirolimo/farmacologia
12.
Autophagy ; 17(11): 3275-3296, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33161807

RESUMO

Oncogenic KRAS mutation-driven pancreatic ductal adenocarcinoma is currently the fourth-leading cause of cancer-related deaths in the United States. Macroautophagy (hereafter "autophagy") is one of the lysosome-dependent degradation systems that can remove abnormal proteins, damaged organelles, or invading pathogens by activating dynamic membrane structures (e.g., phagophores, autophagosomes, and autolysosomes). Impaired autophagy (including excessive activation and defects) is a pathological feature of human diseases, including pancreatic cancer. However, dysfunctional autophagy has many types and plays a complex role in pancreatic tumor biology, depending on various factors, such as tumor stage, microenvironment, immunometabolic state, and death signals. As a modulator connecting various cellular events, pharmacological targeting of nonselective autophagy may lead to both good and bad therapeutic effects. In contrast, targeting selective autophagy could reduce potential side effects of the drugs used. In this review, we describe the advances and challenges of autophagy in the development and therapy of pancreatic cancer.Abbreviations: AMPK: AMP-activated protein kinase; CQ: chloroquine; csc: cancer stem cells; DAMP: danger/damage-associated molecular pattern; EMT: epithelial-mesenchymal transition; lncRNA: long noncoding RNA; MIR: microRNA; PanIN: pancreatic intraepithelial neoplasia; PDAC: pancreatic ductal adenocarcinoma; PtdIns3K: phosphatidylinositol 3-kinase; SNARE: soluble NSF attachment protein receptor; UPS: ubiquitin-proteasome system.


Assuntos
Autofagia/fisiologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/fisiologia , Carcinoma Ductal Pancreático/fisiopatologia , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Metaboloma , Modelos Biológicos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Estresse Oxidativo , Neoplasias Pancreáticas/fisiopatologia , Neoplasias Pancreáticas/terapia , Evasão Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
13.
Cell Rep ; 33(10): 108477, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296658

RESUMO

Autophagy is an intracellular degradation system, but its physiological functions in vertebrates are not yet fully understood. Here, we show that autophagy is required for inflation of air-filled organs: zebrafish swim bladder and mouse lung. In wild-type zebrafish swim bladder and mouse lung type II pulmonary epithelial cells, autophagosomes are formed and frequently fuse with lamellar bodies. The lamellar body is a lysosome-related organelle that stores a phospholipid-containing surfactant complex that lines the air-liquid interface and reduces surface tension. We find that autophagy is critical for maturation of the lamellar body. Accordingly, atg-deficient zebrafish fail to maintain their position in the water, and type-II-pneumocyte-specific Fip200-deficient mice show neonatal lethality with respiratory failure. Autophagy suppression does not affect synthesis of the surfactant phospholipid, suggesting that autophagy supplies lipids and membranes to lamellar bodies. These results demonstrate an evolutionarily conserved role of autophagy in lamellar body maturation.


Assuntos
Sacos Aéreos/metabolismo , Autofagia/fisiologia , Pulmão/metabolismo , Sacos Aéreos/patologia , Células Epiteliais Alveolares/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/fisiologia , Células Epiteliais/metabolismo , Feminino , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organelas/metabolismo , Surfactantes Pulmonares/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
14.
IUBMB Life ; 72(12): 2686-2695, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33159835

RESUMO

Autophagy-related 16-like 1 (Atg16l1) contributes to the susceptibility to ulcerative colitis (UC). The functional consequences of Atg16l1 in UC pathogenesis are poorly understood. We aimed to confirm how Atg16l1 deficiency in dendritic cells (DCs) affects murine colitis development. Atg16l1f/f mice and mice with Atg16l1 deficiency in CD11c+ DCs (Atg16l1ΔDC ) were generated for colitis models induction. Disease activity index, weight loss, colon score/length, and histopathological analysis were assessed for colitis severity. Mononuclear cells from mesenteric lymph node (MLN) were extracted for CD44/CD69 measurement by flow cytometry. Bacterial cultures of MLN and stool homogenates were used to evaluate the bacterial translocation. Bone marrow-derived dendritic cells (BMDCs) were isolated and cultured for immunofluorescence of autophagy-related proteins. Atg16l1 knockout in CD11c+ DCs exacerbated intestinal inflammation of dextran sulfate sodium (DSS)-induced colitis in vivo. Atg16l1 deficiency in CD11c+ DCs had no effect on the expression of CD44 and CD69. Bacterial translocation showed that bacteria amount in MLN and stool of DSS-induced colitis with Atg16l1 deficiency significantly higher than that of control. Immunofluorescence revealed that Atg16l1 deficiency obviously inhibited co-expression of LC3 and Lamp1 with S. typhimurium, enhanced co-expression of rab5 and rab7 with S. typhimurium, while did not affect Beclin1. We confirmed that Atg16l1 deficiency in DCs exacerbated the intestinal inflammation of DSS-induced colitis. Atg16l1 deficiency in DCs promotes the bacterial translocation of DSS-induced colitis in vivo and regulates autophagy and phagocytosis in BMDCs. Findings provided a novel perspective to study UC pathogenesis.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia , Infecções Bacterianas/prevenção & controle , Colite/prevenção & controle , Células Dendríticas/imunologia , Inflamação/prevenção & controle , Mucosa Intestinal/imunologia , Animais , Antibacterianos , Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Células Dendríticas/metabolismo , Sulfato de Dextrana/toxicidade , Inflamação/metabolismo , Inflamação/microbiologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
J Biol Chem ; 295(44): 15045-15053, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32848017

RESUMO

Previously we reported that adipocyte SNAP23 (synaptosome-associated protein of 23 kDa) deficiency blocks the activation of macroautophagy, leading to an increased abundance of BAX, a pro-death Bcl-2 family member, and activation and adipocyte cell death both in vitro and in vivo Here, we found that knockdown of SNAP23 inhibited the association of the autophagosome regulators ATG16L1 and ATG9 compartments by nutrient depletion and reduced the formation of ATG16L1 membrane puncta. ATG16L1 knockdown inhibited autophagy flux and increased BAX protein levels by suppressing BAX degradation. The elevation in BAX protein had no effect on BAX activation or cell death in the nutrient-replete state. However, following nutrient depletion, BAX was activated with a concomitant induction of cell death. Co-immunoprecipitation analyses demonstrated that SNAP23 and ATG16L1 proteins form a stable complex independent of nutrient condition, whereas in the nutrient-depleted state, BAX binds to SNAP23 to form a ternary BAX-SNAP23-ATG16L1 protein complex. Taken together, these data support a model in which SNAP23 plays a crucial function as a scaffold for ATG16L1 necessary for the suppression of BAX activation and induction of the intrinsic cell death program.


Assuntos
Apoptose/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/fisiologia , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Frações Subcelulares/metabolismo
16.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32780724

RESUMO

Tumor-associated macrophages (TAMs) affect cancer progression and therapy. Ovarian carcinoma often metastasizes to the peritoneal cavity. Here, we found 2 peritoneal macrophage subsets in mice bearing ID8 ovarian cancer based on T cell immunoglobulin and mucin domain containing 4 (Tim-4) expression. Tim-4+ TAMs were embryonically originated and locally sustained while Tim-4- TAMs were replenished from circulating monocytes. Tim-4+ TAMs, but not Tim-4- TAMs, promoted tumor growth in vivo. Relative to Tim-4- TAMs, Tim-4+ TAMs manifested high oxidative phosphorylation and adapted mitophagy to alleviate oxidative stress. High levels of arginase-1 in Tim-4+ TAMs contributed to potent mitophagy activities via weakened mTORC1 activation due to low arginine resultant from arginase-1-mediated metabolism. Furthermore, genetic deficiency of autophagy element FAK family-interacting protein of 200 kDa resulted in Tim-4+ TAM loss via ROS-mediated apoptosis and elevated T cell immunity and ID8 tumor inhibition in vivo. Moreover, human ovarian cancer-associated macrophages positive for complement receptor of the immunoglobulin superfamily (CRIg) were transcriptionally, metabolically, and functionally similar to murine Tim-4+ TAMs. Thus, targeting CRIg+ (Tim-4+) TAMs may potentially treat patients with ovarian cancer with peritoneal metastasis.


Assuntos
Autofagia , Macrófagos Peritoneais/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Neoplasias Ovarianas/patologia , Estresse Oxidativo , Neoplasias Peritoneais/secundário , Adaptação Fisiológica , Animais , Proteínas Relacionadas à Autofagia/fisiologia , Feminino , Humanos , Antígenos Comuns de Leucócito/fisiologia , Macrófagos Peritoneais/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/metabolismo , Receptores CCR2/fisiologia
17.
Prog Mol Biol Transl Sci ; 172: 1-14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32620238

RESUMO

Nuclear recycling is essential for cell and organismal homeostasis. Nuclear architecture perturbations, such as nuclear loss or nuclear enlargement, have been observed in several pathological conditions. Apart from proteasomal components which reside in the nucleus, specific autophagic proteins also shuttle between the nucleus and the cytoplasm. Until recently, only the microautophagic degradation of nuclear components had been described. Recent studies, dissecting nuclear material recycling in organisms ranging from yeast to mammals, provide insight relevant to other forms of nucleophagy and the mediators involved. Nucleophagy has also been implicated in pathology. Lamins are degraded in cancer through direct interaction with LC3 in the nucleus. Similarly, in neurodegeneration, Golgi-associated nucleophagy is exacerbated. The physiological role of nucleophagy and its contribution to other pathologies remain to be elucidated. Here we discus recent findings that shed light into the molecular mechanisms and pathways that mediate the autophagic recycling of nuclear material.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Autofagia , Núcleo Celular , Animais , Autofagia/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Nucléolo Celular/ultraestrutura , Complexo de Golgi/fisiologia , Humanos , Corpos de Inclusão Intranuclear/patologia , Laminopatias/patologia , Laminas/genética , Mamíferos/fisiologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Membrana Nuclear/metabolismo , Proteólise , Estabilidade de RNA , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia
18.
Prog Mol Biol Transl Sci ; 172: 107-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32620239

RESUMO

Autophagy is a highly conserved intracellular catabolic process for the degradation of cytoplasmic components that has recently gained increasing attention for its importance in kidney diseases. It is indispensable for the maintenance of kidney homeostasis both in physiological and pathological conditions. Investigations utilizing various kidney cell-specific conditional autophagy-related gene knockouts have facilitated the advancement in understanding of the role of autophagy in the kidney. Recent findings are raising the possibility that defective autophagy exerts a critical role in different pathological conditions of the kidney. An emerging body of evidence reveals that autophagy exhibits cytoprotective functions in both glomerular and tubular compartments of the kidney, suggesting the upregulation of autophagy as an attractive therapeutic strategy. However, there is also accumulating evidence that autophagy could be deleterious, which presents a formidable challenge in developing therapeutic strategies targeting autophagy. Here, we review the recent advances in research on the role of autophagy during different pathological conditions, including acute kidney injury (AKI), focusing on sepsis, ischemia-reperfusion injury, cisplatin, and heavy metal-induced AKI. We also discuss the role of autophagy in chronic kidney disease (CKD) focusing on the pathogenesis of tubulointerstitial fibrosis, podocytopathies including focal segmental glomerulosclerosis, diabetic nephropathy, IgA nephropathy, membranous nephropathy, HIV-associated nephropathy, and polycystic kidney disease.


Assuntos
Autofagia , Nefropatias/fisiopatologia , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Cisplatino/toxicidade , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Homeostase , Humanos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Glomérulos Renais/fisiologia , Túbulos Renais/fisiologia , Lisossomos/fisiologia , Metais Pesados/toxicidade , Camundongos , Camundongos Knockout , Nefrose Lipoide/patologia , Podócitos/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/fisiologia
19.
Prog Mol Biol Transl Sci ; 172: 15-35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32620241

RESUMO

Autophagy is a crucial cellular degradation and recycling pathway. During autophagy double-membrane vesicles, called autophagosomes, encapsulate cellular components and deliver their cargo to the lytic compartment for degradation. Formation of autophagosomes is regulated by the Atg1 kinase complex in yeast and the homologous ULK1 kinase complex in mammals. While research on Atg1 and ULK1 has advanced our understanding of how these protein kinases function in autophagy, the other Atg1/ULK1 kinase complex members have received much less attention. Here, we focus on the functions of the Atg1 kinase complex members Atg11 and Atg17 as well as the ULK1 kinase complex member FIP200 in autophagy. These three proteins act as scaffolds in their respective complexes. Recent studies have made it evident that they have similar but also distinct functions. In this article, we review our current understanding of how these scaffold proteins function from autophagosome formation to fusion and also discuss their possible roles in diseases.


Assuntos
Autofagossomos/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Autofagia/fisiologia , Animais , Autofagossomos/ultraestrutura , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/fisiologia , Humanos , Lisossomos/fisiologia , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Fusão de Membrana/fisiologia , Proteínas de Fusão de Membrana/fisiologia , Complexos Multiproteicos/ultraestrutura , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Infecções por Papillomavirus/patologia , Proteínas Quinases/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Infecções por Salmonella/patologia , Salmonella typhimurium , Proteínas de Transporte Vesicular/fisiologia
20.
Prog Mol Biol Transl Sci ; 172: 157-202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32620242

RESUMO

Motor neuron diseases (MNDs) are a wide group of neurodegenerative disorders characterized by the degeneration of a specific neuronal type located in the central nervous system, the motor neuron (MN). There are two main types of MNs, spinal and cortical MNs and depending on the type of MND, one or both types are affected. Cortical MNs innervate spinal MNs and these control a variety of cellular targets, being skeletal muscle their main one which is also affected in MNDs. A correct functionality of autophagy is necessary for the survival of all cellular types and it is particularly crucial for neurons, given their postmitotic and highly specialized nature. Numerous studies have identified alterations of autophagy activity in multiple MNDs. The scientific community has been particularly prolific in reporting the role that autophagy plays in the most common adult MND, amyotrophic lateral sclerosis, although many studies have started to identify physiological and pathological functions of this catabolic system in other MNDs, such as spinal muscular atrophy and spinal and bulbar muscular atrophy. The degradation of selective cargo by autophagy and how this process is altered upon the presence of MND-causing mutations is currently also a matter of intense investigation, particularly regarding the selective autophagic clearance of mitochondria. Thorough reviews on this field have been recently published. This chapter will cover the current knowledge on the functionality of autophagy and lysosomal homeostasis in the main MNDs and other autophagy-related topics in the MND field that have risen special interest in the research community.


Assuntos
Autofagia , Doença dos Neurônios Motores/patologia , Adulto , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/fisiologia , Proteína C9orf72/deficiência , Proteína C9orf72/genética , Proteína C9orf72/fisiologia , Expansão das Repetições de DNA , Modelos Animais de Doenças , Endocitose , Humanos , Camundongos Transgênicos , Doença dos Neurônios Motores/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Organelas , Proteína FUS de Ligação a RNA/deficiência , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/fisiologia , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA