Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.757
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663075

RESUMO

In this Part IV of the article series dealing with the functionalization of the precursor carboxy silica with various chromatographic ligands, immuno affinity (IA) columns were prepared with immobilized anti-apolipoprotein B (AAP B) and anti-haptoglobin (AHP) antibodies for use in immuno affinity chromatography (IAC) in the aim of selectivily capturing their corresponding antigens from healthy and cancer human sera. Diseased human serum with adenocarcinoma cancer was selected as a typical diseased biological fluid. Besides preferentially capturing their corresponding antigens, the AAP B column captured from disease-free and cancer sera, 34 proteins and 33 proteins, respectively, while the AHP column enriched 38 and 47 proteins, respectively. This nonspecific binding can be attributed to the many proteins human serum have, which could mediate protein-protein interactions thus leading to the so-called "sponge effect". This kind of behavior can be exploited positively in the determination of differentially expressed proteins (DEPs) for diseased serum with respect to healthy serum and in turn allow the identification of an array of potential biomarkers for cancer. In fact, For AHP column, 13 upregulated and 22 downregulated proteins were identified whereas for AAP B column the numbers were 23 and 10, respectively. The DEPs identified with both columns match those reported in the literature for other types of cancers. The different expression of proteins in each IAC column can be related to the variability of protein-protein interactions. In addition, an array of a few biomarkers is more indicative of a certain disease than a single biomarker.


Assuntos
Anticorpos Imobilizados , Cromatografia de Afinidade , Dióxido de Silício , Humanos , Cromatografia de Afinidade/métodos , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Dióxido de Silício/química , Ligantes , Cromatografia Líquida de Alta Pressão/métodos , Proteínas Sanguíneas/química , Biomarcadores Tumorais/sangue
2.
Acta Biomater ; 180: 46-60, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615811

RESUMO

Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. Thrombosis is fundamentally initiated by the nonspecific adsorption of proteins to the material surface, which is strongly governed by thermodynamic factors established by the nature of the interaction between the material surface, surrounding water molecules, and the protein itself. Along these lines, different surface materials (such as polymeric, metallic, ceramic, or composite) induce different entropic and enthalpic changes at the surface-protein interface, with material wettability significantly impacting this behavior. Consequently, protein adsorption on medical devices can be modulated by altering their wettability and surface energy. A plethora of polymeric coating modifications have been utilized for this purpose; hydrophobic modifications may promote or inhibit protein adsorption determined by van der Waals forces, while hydrophilic materials achieve this by mainly relying on hydrogen bonding, or unbalanced/balanced electrostatic interactions. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications. STATEMENT OF SIGNIFICANCE: Blood-contacting medical devices often succumb to thrombosis, limiting their durability and safety in clinical applications. A plethora of polymeric coating modifications have been utilized for addressing this issue. This review offers a cohesive understanding of the thermodynamics governing these phenomena, to specifically aid in the design and selection of hemocompatible polymeric coatings for biomedical applications.


Assuntos
Materiais Revestidos Biocompatíveis , Polímeros , Termodinâmica , Adsorção , Humanos , Polímeros/química , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície , Trombose/prevenção & controle , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo
3.
Mol Pharm ; 21(5): 2272-2283, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607681

RESUMO

Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.


Assuntos
Nanopartículas , Fosfolipídeos , Coroa de Proteína , Coroa de Proteína/química , Animais , Fosfolipídeos/química , Distribuição Tecidual , Camundongos , Nanopartículas/química , Portadores de Fármacos/química , Nanoestruturas/química , Masculino , Ativação do Complemento/efeitos dos fármacos , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/química
4.
Food Funct ; 15(9): 4887-4893, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38597504

RESUMO

Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by ß-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.


Assuntos
Galectinas , Pectinas , Pectinas/química , Pectinas/farmacologia , Galectinas/metabolismo , Galectinas/química , Humanos , Citrus/química , Galectina 3/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Ligação Proteica , Poligalacturonase/química , Poligalacturonase/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38382157

RESUMO

The application of plasma proteomics is a reliable approach for the discovery of biomarkers. However, the utilization of mass spectrometry-based proteomics in plasma encounters limitations due to the presence of high-abundant proteins (HAPs) and the vast dynamic range. To address this issue, we conducted an optimization and integration of depletion and precipitation strategies eliminating interference from HAPs. The optimized procedure involved utilizing 40 µL of beads for the removal of 1 µL of plasma, and maintaining a ratio of 1:1:1 between plasma, urea, and trichloroacetic acid for the precipitation of 50 µL of plasma. To facilitate high-throughput processing, experimental procedures were carried out utilizing 96-well plates. The depletion method identified a total of 1510 proteins, whereas the precipitated method yielded a total of 802 proteins. The integration of these methods yielded a total of 1794 proteins, including a wide concentration range spanning over 8 orders of magnitude. Furthermore, these approaches exhibited a commendable level of reproducibility, as indicated by median coefficients of variation of 14.7 % and 21.1 % for protein intensities, respectively. The integrative method was found to be effective in precisely quantifying yeast proteins that were intentionally spiked in plasma at predetermined rations of 5, 2, 0.5, and 0.2 with a high genuine positive recovery with a range of 71 % to 91 % of all yeast proteins. The use of a complementary and finely tuned approach involving depletion and precipitation demonstrates tremendous potential in the field of discovering protein biomarkers from large-scale cohort studies.


Assuntos
Proteínas Fúngicas , Proteômica , Humanos , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Biomarcadores , Proteínas Sanguíneas/química , Proteoma/análise
6.
J Biomed Mater Res A ; 112(7): 1004-1014, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38327244

RESUMO

After implantation of the Mg alloy in the human body, the adsorption of plasma protein on surface will cause a series of cell reactions and affect the degradation of Mg alloys. Herein, in vitro biological reactions of the ZK60 and AZ31 Mg alloys are analyzed in plasma protein environment. Combined with mass spectrometry analysis of the type of adsorbed proteins, it is shown that proteins such as fibrinogen, vitronectin, fibronectin, and prothrombin are prone to get adsorbed on the surface of the alloys than other proteins, leading to the promotion of MG63 cell adhesion and proliferation. The effect of selected proteins (fibrinogen, fibronectin, and prothrombin) on degradation of ZK60 and AZ31 Mg alloys is investigated using immersion tests. The degradation of AZ31 Mg alloy is significantly restrained with the presence of proteins. This is due to the protein adsorption effect on the sample surface. The molecular dynamics simulation results indicate that both fibrinogen and fibronectin tend to adsorb onto the AZ31 rather than ZK60, forming a stable protein layer on the AZ31 Mg alloy retarding the degradation of the samples. As to ZK60 alloy, the addition of protein inhibits the degradation in the short term, however, the degradation increases after a long time of immersion. This phenomenon is particularly pronounced in fibronectin solution.


Assuntos
Ligas , Materiais Biocompatíveis , Proteínas Sanguíneas , Magnésio , Teste de Materiais , Ligas/química , Ligas/farmacologia , Humanos , Materiais Biocompatíveis/química , Magnésio/química , Magnésio/farmacologia , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Adsorção , Fibronectinas/química , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Adesão Celular/efeitos dos fármacos , Fibrinogênio/química
7.
J Proteome Res ; 23(1): 368-376, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006349

RESUMO

The low-molecular-weight proteins (LMWP) in serum and plasma are related to various human diseases and can be valuable biomarkers. A small open reading frame-encoded peptide (SEP) is one kind of LMWP, which has been found to function in many bioprocesses and has also been found in human blood, making it a potential biomarker. The detection of LMWP by a mass spectrometry (MS)-based proteomic assay is often inhibited by the wide dynamic range of serum/plasma protein abundance. Nanoparticle protein coronas are a newly emerging protein enrichment method. To analyze SEPs in human serum, we have developed a protocol integrated with nanoparticle protein coronas and liquid chromatography (LC)/MS/MS. With three nanoparticles, TiO2, Fe3O4@SiO2, and Fe3O4@SiO2@TiO2, we identified 164 new SEPs in the human serum sample. Fe3O4@SiO2 and a nanoparticle mixture obtained the maximum number and the largest proportion of identified SEPs, respectively. Compared with acetonitrile-based extraction, nanoparticle protein coronas can cover more small proteins and SEPs. The magnetic nanoparticle is also fit for high-throughput parallel protein separation before LC/MS. This method is fast, efficient, reproducible, and easy to operate in 96-well plates and centrifuge tubes, which will benefit the research on SEPs and biomarkers.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem , Fases de Leitura Aberta , Dióxido de Silício , Peptídeos/análise , Proteínas Sanguíneas/química , Biomarcadores
8.
Biomater Sci ; 11(18): 6287-6298, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551433

RESUMO

An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome in vivo are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, e.g. liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations. The surface chemistry of nanoparticles is known to be the most important determinant for the biological fate of nanoparticles, as it influences the extent of serum protein adsorption, and also the relative composition of the protein corona. Here we preliminarily evaluate an extremely simple screening method for nanoparticle surface chemistry pre-optimization based on nanoparticle uptake in vitro by PC-3 cancer cells and THP-1 macrophages. Only when both selectivity for the cancer cells as well as the extent of nanoparticle uptake are taken into consideration do the in vitro results mirror literature results obtained for small animal models. Furthermore, although not investigated here, the screening method does also lend itself to the study of actively targeted nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Animais , Neoplasias/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos , Proteínas Sanguíneas/química , Fígado/metabolismo , Coroa de Proteína/química
9.
J Biomol Struct Dyn ; 41(24): 15023-15032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927470

RESUMO

Tetranectin-plasminogen interaction plays a defining role in extracellular matrix degradation, enabling tumor cell invasion and metastasis. This interaction occurs via the carbohydrate recognition domain (CRD) and Kringle 4 domain of tetranectin and plasminogen, respectively, leading to activation of the plasminogen-cascade that triggers the proteolytic processes. Thus targeting this interaction represents an important strategy to suppress tumor cell migration and invasion. In this direction, we attempted to target the CRD of tetranectin to inhibit its interaction with the Kringle-4 domain of plasminogen using natural bioactive compounds. A cheminformatics pipeline for drug designing and screening was utilized to obtain lead compound(s) that exhibit conformationally and energetically viable CRD binding. Out of 206 compounds screened, diosgenin and scytonemin displayed the most favorable interactions with CRD. Short-term molecular dynamics simulations of 20 ns were employed to further study the conformational stability of both compounds with tetranectin CRD which reflected at the increased stability of diosgenin in the CRD binding pocket compared to scytonemin. Finally, an extended molecular dynamic simulation of 100 ns affirmed the robust and stable interaction of diosgenin with CRD. Furthermore, diosgenin was observed to exert a pronounced anti-proliferative effect on high tetranectin-expressing MDA-MB-231 breast cancer cells. The inhibitory effect of diosgenin on the tetranectin-plasminogen interaction was corroborated by the reduced migration and invasiveness of MDA-MB-231 cells under diosgenin treatment. Overall the study presents an alternate and safer approach to impede breast cancer metastasis and delineates the novel anti-metastatic activity of diosgenin.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Diosgenina , Melanoma , Neoplasias Cutâneas , Humanos , Feminino , Plasminogênio/química , Plasminogênio/metabolismo , Proteínas Sanguíneas/química , Neoplasias da Mama/tratamento farmacológico
10.
Methods Mol Biol ; 2628: 353-364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781797

RESUMO

Mass spectrometry (MS)-based protein quantitation is an attractive means for research and diagnostics due to its high specificity, precision, sensitivity, versatility, and the ability to develop multiplexed assays for the "absolute" quantitation of virtually any protein target. However, due to the large dynamic range of protein concentrations in blood, high abundance proteins in blood plasma hinder the detectability and quantification of lower-abundance proteins which are often relevant in the context of different diseases. Here we outline a streamlined method involving offline high-pH reversed-phase fractionation of human plasma samples followed by the quantitative analysis of specific fractions using nanoLC-parallel reaction monitoring (PRM) on a Q Exactive Plus mass spectrometer for peptide detection and quantitation with increased sensitivity. Because we use a set of synthetic peptide standards, we can more efficiently determine the precise retention times of the target peptides in the first-dimensional separation and specifically collect eluting fractions of interest for the subsequent targeted MS quantitation, making the analysis faster and easier. An eight-point standard curve was generated by serial dilution of a mixture of previously validated unlabeled ("light") synthetic peptides of interest at known concentrations. The corresponding heavy stable-isotope-labeled standard (SIS) analogues were used as normalizers to account for losses during sample processing and analysis. Using this method, we were able to improve the sensitivity of plasma protein quantitation by up to 50-fold compared to using nanoLC-PRM alone.


Assuntos
Isótopos , Peptídeos , Humanos , Espectrometria de Massas/métodos , Peptídeos/química , Proteínas Sanguíneas/química , Fracionamento Químico
11.
Methods Mol Biol ; 2628: 439-473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781801

RESUMO

Preclinical and clinical trials require rapid, precise, and multiplexed analytical methods to characterize the complex samples and to allow high-throughput biomarker monitoring with low consumption of sample material. Targeted proteomics has been used to address these challenges when quantifying protein abundances in complex biological matrices. In many of these studies, blood plasma is collected either as the main research or diagnostic sample or in combination with other specimens. Mass spectrometry (MS)-based targeted proteomics using multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) with stable isotope-labeled internal standard (SIS) peptides allows robust characterization of blood plasma protein via absolute quantification. Compared to other commonly used technologies like enzyme-linked immunosorbent assay (ELISA), targeted proteomics is faster, more sensitive, and more cost-effective. Here we describe a protocol for the quantification of proteins in blood plasma using targeted MRM proteomics with heavy-labeled internal standards. The 270-protein panel allows rapid and robust absolute quantitative proteomic characterization of blood plasma in a 1 h gradient. The method we describe here works for non-depleted plasma, which makes it simple and easy to implement. Moreover, the protocol works with the two most commonly used blood plasma collection methods used in practice, namely, either K2EDTA or sodium citrate as anticoagulants.


Assuntos
Proteínas Sanguíneas , Proteômica , Proteômica/métodos , Proteínas Sanguíneas/química , Espectrometria de Massas/métodos , Biomarcadores , Padrões de Referência
12.
Sci Rep ; 13(1): 1692, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717597

RESUMO

Comprehensive understanding of protein adsorption phenomenon on membrane surface during hemodialysis (HD) is one of the key moments for development of hemocompatible HD membrane. Though many mechanisms and kinetics of protein adsorption on some surface have been studied, we are still far away from complete understanding and control of this process, which results in a series of biochemical reactions that causes severe complications with health and even the death among HD patients. The aim of this study is to conduct quantitative analysis of competitive adsorption tendency of human serum protein on polyether sulfone (PES) clinical dialysis membrane. In situ synchrotron radiation micro-computed tomography (SR-µCT) imaging available at the Canadian Light Source (CLS) was conducted to assess human serum proteinbinding and undertake the corresponding quantitative analysis.The competitive adsorption of Human protein albumin (HSA), fibrinogen (FB) and transferrin (TRF) were tested from single and multiple protein solution. Furthermore, in-vitro human serum protein adsorption on clinical dialyzers was investigated using UV-Visible to confirm the competitive adsorption tendency. Results showed that when proteins were adsorbed from their mixture, FB content (among proteins) in the adsorbed layer increased from 3.6% mass (content in the initial solution) to 18% mass and 12%, in case of in situ quantitative and invitro analysis, respectively. The increase in FB content was accompanied by the decrease in the HSA content, while TRF remained on approximately on the same level for both cases. Overall, the percentage of HSA adsorption ratio onto the HD membrane has dropped approximately 10 times when HSA was adsorbed in competition with other proteins, compared to the adsorption from single HSA solution. The substitution of HSA with FB was especially noticeable when HSA adsorption from its single solution was compared with the case of the protein mixture. Moreover, SR-µCT has revealed that FB when adsorbed from a protein mixture solution is located predominately in the middle of the membrane, whereas the peak of the distribution is shifted to membrane bottom layers when adsorption from FB single solution takes place. Results showed that HSA FB and TRF adsorption behavior observations are similar on both in-situ small scale and clinical dialyzer of the PES membrane.


Assuntos
Albumina Sérica , Síncrotrons , Humanos , Albumina Sérica/química , Adsorção , Microtomografia por Raio-X , Canadá , Diálise Renal , Proteínas Sanguíneas/química , Propriedades de Superfície
13.
Electrophoresis ; 43(23-24): 2302-2323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36250426

RESUMO

Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug-protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.


Assuntos
Proteínas Sanguíneas , Eletroforese Capilar , Eletroforese Capilar/métodos , Proteínas Sanguíneas/química , Interações Medicamentosas
14.
Food Chem Toxicol ; 169: 113416, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096292

RESUMO

The wide usage of decabromodiphenyl ether (BDE-209) as additive brominated flame retardant has caused its widespread occurrence in the environment and high exposure risk in humans. Estimating its internal exposure dose and reconstruction of external exposure dose using physiologically based pharmacokinetic (PBPK) modelling approach is a key step in the risk assessment of BDE-209. However, the PBPK model for BDE-209 is currently unavailable. This study has established two oral permeability-limited PBPK models of BDE-209 without enterohepatic recirculation (EHR) (model 1) and with EHR (model 2) for Chinese population. Using the in vitro experiments, the average binding of BDE-209 to human plasma protein (99.64% ± 2.97%) was obtained. Moreover, blood sample analysis and systematic literature review were performed to obtain internal and external exposure data of BDE-209 used for model calibration and validation. The predictions of both models were within 2-fold of the observed, and a longer half-life of serum BDE-209 was observed in model 2 than model 1. Based on the models, a human biomonitoring guidance value (HBM-GV) of 93.61 µg/g lw was derived for BDE-209, and there is no health risk found for Chinese population currently. This study provides new quantitative assessment tools for health risk assessment of BDE-209.


Assuntos
Exposição Ambiental , Retardadores de Chama , Éteres Difenil Halogenados , Humanos , Proteínas Sanguíneas/química , China , Retardadores de Chama/análise , Retardadores de Chama/farmacocinética , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/farmacocinética
15.
Int J Biol Macromol ; 216: 799-809, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917850

RESUMO

Food-borne carbon dots (FCDs) produced naturally during food thermal processing are one of important factors affecting human health. The FCDs will inevitably encounter blood proteins after oral administration and spontaneously form protein coronas. In this study, the interaction of three major blood proteins, including albumin, gamma globulin, and fibrinogen, with FCDs from roasted mackerel was investigated for the first time. The purpose of the research is to explore the effect of the protein corona on the biological effects of cytotoxicity and the metabolic response. The results showed that FCDs spontaneously bound to the three blood proteins, and the process involved the participation of multiple interaction forces. Three protein coronas attenuated FCD-mediated cell viability damage, oxidative stress, and mitochondrial membrane potential. Further metabolomics analysis showed that FCDs disrupted cellular carbohydrate, amino acid, and nucleotide metabolism and significantly affected the expression of six metabolic pathways in normal rat kidney cells. The protein corona alleviated the disorder of energy and substance metabolism pathways. However, the protein corona inevitably expands the range of affected metabolic responses. The results of this study are of great value in exploring the toxicity characteristics of FCDs and their protein coronas.


Assuntos
Perciformes , Coroa de Proteína , Animais , Proteínas Sanguíneas/química , Carbono/farmacologia , Sobrevivência Celular , Humanos , Coroa de Proteína/química
16.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886996

RESUMO

In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.


Assuntos
Proteínas Sanguíneas , Quitosana , Reagentes de Ligações Cruzadas , Gelatina , Nanopartículas , Amido , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Quitosana/química , Quitosana/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Gelatina/química , Gelatina/metabolismo , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Amido/análogos & derivados , Amido/química , Amido/metabolismo
17.
Biomater Adv ; 139: 213014, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882160

RESUMO

Patients with severe lung diseases are highly dependent on lung support systems. Despite many improvements, long-term use is not possible, mainly because of the strong body defence reactions (e.g. coagulation, complement system, inflammation and cell activation). The systematic characterization of adsorbed proteins on the gas exchange membrane of the lung system over time can provide insights into the course of various defence reactions and identify possible targets for surface modifications. Using comprehensive mass spectrometry analyses of desorbed proteins, we were able to identify for the first time binding profiles of over 500 proteins over a period of six hours on non-coated and heparin-coated PMP hollow fiber membranes. We observed a higher degree of remodeling of the protein layer on the non-coated membrane than on the coated membrane. In general, there was a higher protein binding on the coated membrane with exception of proteins with a heparin-binding site. Focusing on the most important pathways showed that almost all coagulation factors bound in higher amounts to the non-coated membranes. Furthermore, we could show that the initiator proteins of the complement system bound stronger to the heparinized membranes, but the subsequently activated proteins bound stronger to the non-coated membranes, thus complement activation on heparinized surfaces is mainly due to the alternative complement pathway. Our results provide a comprehensive insight into plasma protein adsorption on oxygenator membranes over time and point to new ways to better understand the processes on the membranes and to develop new specific surface modifications.


Assuntos
Heparina , Oxigenadores de Membrana , Adsorção , Proteínas Sanguíneas/química , Heparina/administração & dosagem , Humanos , Oxigenadores
18.
Methods Mol Biol ; 2511: 183-200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35838961

RESUMO

Blood serum or plasma proteins are potentially useful in COVID-19 research as biomarkers for risk prediction, diagnosis, stratification, and treatment monitoring. However, serum protein-based biomarker identification and validation is complicated due to the wide concentration range of these proteins, which spans more than ten orders of magnitude. Here we present a combined affinity purification-liquid chromatography mass spectrometry approach which allows identification and quantitation of the most abundant serum proteins along with the nonspecifically bound and interaction proteins. This led to the reproducible identification of more than 100 proteins that were not specifically targeted by the affinity column. Many of these have already been implicated in COVID-19 disease.


Assuntos
COVID-19 , Soro , Biomarcadores , Proteínas Sanguíneas/química , COVID-19/diagnóstico , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Humanos , Soro/química , Espectrometria de Massas em Tandem/métodos
19.
Nucleic Acids Res ; 50(11): 6020-6037, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687098

RESUMO

At the time of writing, although siRNA therapeutics are approved for human use, no official regulatory guidance specific to this modality is available. In the absence of guidance, preclinical development for siRNA followed a hybrid of the small molecule and biologics guidance documents. However, siRNA differs significantly from small molecules and protein-based biologics in its physicochemical, absorption, distribution, metabolism and excretion properties, and its mechanism of action. Consequently, certain reports typically included in filing packages for small molecule or biologics may benefit from adaption, or even omission, from an siRNA filing. In this white paper, members of the 'siRNA working group' in the IQ Consortium compile a list of reports included in approved siRNA filing packages and discuss the relevance of two in vitro reports-the plasma protein binding evaluation and the drug-drug interaction risk assessment-to support siRNA regulatory filings. Publicly available siRNA approval packages and the literature were systematically reviewed to examine the role of siRNA plasma protein binding and drug-drug interactions in understanding pharmacokinetic/pharmacodynamic relationships, safety and translation. The findings are summarized into two decision trees to help guide industry decide when in vitro siRNA plasma protein binding and drug-drug interaction studies are warranted.


Assuntos
Proteínas Sanguíneas , Interações Medicamentosas , Produtos Biológicos , Proteínas Sanguíneas/química , Árvores de Decisões , Humanos , Ligação Proteica , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
20.
ACS Appl Bio Mater ; 5(5): 2240-2252, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35436086

RESUMO

This study delivers the first report on a cell-membrane-mimicking polymer system, poly[oxy(4-(13-cholenoatenonyl)-1,2,3-triazoyl-1-methyl)ethylene-random-oxy(4-(13-phosphorylcholinenonyl)-1,2,3-triazoyl-1-methyl)ethylene] (PGA-CholmPCn) films in various compositions in terms of physicochemical properties, protein adsorptions, bacterial adherences, and human cell adhesions. Higher Chol-containing PGA-CholmPCn in a self-assembled multi-bilayer membrane structure is confirmed to show excellently high affinity to pneumolysin (a cytolysin) and its C-terminal fragment (domain 4) but substantially suppressed affinity to the N-terminal fragment (domains 1-3) and further to plasma proteins. Furthermore, the adherences of pathogenic bacteria are increased favorably; however, the adhesion and proliferation of a human HEp-2 cell line are hindered severely. In contrast, higher-PC-containing PGA-CholmPCn membranes promote HEp-2 cell adhesion and proliferation but significantly suppress the adsorptions of pneumolysin and its fragments and plasma proteins as well as bacterial adherence. The results collectively confirm that PGA-CholmPCn can yield a membrane platform enriched with hydrophobic Chol and hydrophilic and zwitterionic PC moieties in any desired compositions, providing highly selective and sensitive physicochemical characters and biocompatibilities which are demanded for applications in various fields including biomedicine, cosmetics, and environmentally friendly consumer products.


Assuntos
Polímeros , Humanos , Adsorção , Bactérias , Proteínas de Bactérias , Proteínas Sanguíneas/química , Adesão Celular , Etilenos , Polímeros/química , Estreptolisinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA