Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830487

RESUMO

Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10-30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.


Assuntos
Sinalização do Cálcio/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Neoplasias/genética , Proteínas Sensoras de Cálcio Neuronal/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Dimerização , Dissulfetos/química , Motivos EF Hand/genética , Células HEK293 , Humanos , Cinética , Neoplasias/patologia , Proteínas Sensoras de Cálcio Neuronal/antagonistas & inibidores , Neurônios/química , Neuropeptídeos/antagonistas & inibidores , Oxirredução , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Zinco/metabolismo
2.
J Med Chem ; 61(14): 5910-5921, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29966094

RESUMO

Protein-protein interactions (PPIs) are known to play an essential role between the neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor Ric8a to regulate synapse function, emerging as a druggable interface for synaptopathies such as the fragile X syndrome (FXS). Recently, the phenothiazine FD44 has been identified as an inhibitor of this PPI, decreasing the abnormally high synapse number and enhancing associative learning in a FXS animal model. Here, we have integrated advanced experimental and computational studies to obtain important structural insights into Drosophila NCS-1/FD44 recognition to understand the basis of its affinity and specificity and generate improved PPI regulators. This has allowed the identification of a new small drug-like molecule, IGS-1.76, which efficiently inhibits the human NCS-1/Ric8a complex with improved binding potency. The crystal structure of the Drosophila NCS-1/IGS-1.76 complex demonstrates that the new inhibitor, although chemically different from FD44, shares the same mechanism of action and constitutes a new hit candidate for FXS.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Proteínas Sensoras de Cálcio Neuronal/antagonistas & inibidores , Neuropeptídeos/antagonistas & inibidores , Fenotiazinas/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Conformação Proteica em alfa-Hélice
3.
Chem Biol ; 21(11): 1546-56, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25457181

RESUMO

The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson's disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.


Assuntos
Cálcio/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D2/metabolismo , Agonistas do Receptor A2 de Adenosina/farmacologia , Adenilil Ciclases/metabolismo , Animais , Calmodulina/antagonistas & inibidores , Calmodulina/genética , Calmodulina/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Sensoras de Cálcio Neuronal/antagonistas & inibidores , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/efeitos dos fármacos
4.
Neuron ; 60(6): 1095-111, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19109914

RESUMO

There are two major forms of long-term depression (LTD) of synaptic transmission in the central nervous system that require activation of either N-methyl-D-aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). In synapses in the perirhinal cortex, we have directly compared the Ca(2+) signaling mechanisms involved in NMDAR-LTD and mGluR-LTD. While both forms of LTD involve Ca(2+) release from intracellular stores, the Ca(2+) sensors involved are different; NMDAR-LTD involves calmodulin, while mGluR-LTD involves the neuronal Ca(2+) sensor (NCS) protein NCS-1. In addition, there is a specific requirement for IP3 and PKC, as well as protein interacting with C kinase (PICK-1) in mGluR-LTD. NCS-1 binds directly to PICK1 via its BAR domain in a Ca(2+)-dependent manner. Furthermore, the NCS-1-PICK1 association is stimulated by activation of mGluRs, but not NMDARs, and introduction of a PICK1 BAR domain fusion protein specifically blocks mGluR-LTD. Thus, NCS-1 plays a distinct role in mGluR-LTD.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Transporte/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Animais Recém-Nascidos , Compostos de Boro/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Ciclo Celular , Células Cultivadas , Córtex Cerebral/citologia , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Imunoprecipitação/métodos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Proteínas Sensoras de Cálcio Neuronal/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Neuropeptídeos/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos , Receptores de Glutamato Metabotrópico/genética , Transfecção/métodos
5.
Development ; 134(24): 4479-89, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18039973

RESUMO

Neurite extension and branching are affected by activity-dependent modulation of intracellular Ca2+, such that an optimal window of [Ca2+] is required for outgrowth. Our understanding of the molecular mechanisms regulating this optimal [Ca2+]i remains unclear. Taking advantage of the large growth cone size of cultured primary neurons from pond snail Lymnaea stagnalis combined with dsRNA knockdown, we show that neuronal calcium sensor-1 (NCS-1) regulates neurite extension and branching, and activity-dependent Ca2+ signals in growth cones. An NCS-1 C-terminal peptide enhances only neurite branching and moderately reduces the Ca2+ signal in growth cones compared with dsRNA knockdown. Our findings suggest that at least two separate structural domains in NCS-1 independently regulate Ca2+ influx and neurite outgrowth, with the C-terminus specifically affecting branching. We describe a model in which NCS-1 regulates cytosolic Ca2+ around the optimal window level to differentially control neurite extension and branching.


Assuntos
Lymnaea/crescimento & desenvolvimento , Lymnaea/metabolismo , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sinalização do Cálcio , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Lymnaea/genética , Modelos Moleculares , Modelos Neurológicos , Dados de Sequência Molecular , Neuritos/metabolismo , Neuritos/ultraestrutura , Proteínas Sensoras de Cálcio Neuronal/antagonistas & inibidores , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/química , Neuropeptídeos/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , RNA/genética , Interferência de RNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA