Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 21(1): 513, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172385

RESUMO

BACKGROUND: Recent advances in sequencing technologies have led to an explosion in the number of genomes available, but accurate genome annotation remains a major challenge. The prediction of protein-coding genes in eukaryotic genomes is especially problematic, due to their complex exon-intron structures. Even the best eukaryotic gene prediction algorithms can make serious errors that will significantly affect subsequent analyses. RESULTS: We first investigated the prevalence of gene prediction errors in a large set of 176,478 proteins from ten primate proteomes available in public databases. Using the well-studied human proteins as a reference, a total of 82,305 potential errors were detected, including 44,001 deletions, 27,289 insertions and 11,015 mismatched segments where part of the correct protein sequence is replaced with an alternative erroneous sequence. We then focused on the mismatched sequence errors that cause particular problems for downstream applications. A detailed characterization allowed us to identify the potential causes for the gene misprediction in approximately half (5446) of these cases. As a proof-of-concept, we also developed a simple method which allowed us to propose improved sequences for 603 primate proteins. CONCLUSIONS: Gene prediction errors in primate proteomes affect up to 50% of the sequences. Major causes of errors include undetermined genome regions, genome sequencing or assembly issues, and limitations in the models used to represent gene exon-intron structures. Nevertheless, existing genome sequences can still be exploited to improve protein sequence quality. Perspectives of the work include the characterization of other types of gene prediction errors, as well as the development of a more comprehensive algorithm for protein sequence error correction.


Assuntos
Fases de Leitura Aberta/genética , Primatas/metabolismo , Proteoma , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Deleção de Genes , Humanos , Mutagênese Insercional , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Alinhamento de Sequência
2.
Molecules ; 23(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29498714

RESUMO

Protein tyrosine phosphatases (PTPs), of the receptor and non-receptor classes, are key signaling molecules that play critical roles in cellular regulation underlying diverse physiological events. Aberrant signaling as a result of genetic mutation or altered expression levels has been associated with several diseases and treatment via pharmacological intervention at the level of PTPs has been widely explored; however, the challenges associated with development of small molecule phosphatase inhibitors targeting the intracellular phosphatase domain (the "inside-out" approach) have been well documented and as yet there are no clinically approved drugs targeting these enzymes. The alternative approach of targeting receptor PTPs with biotherapeutic agents (such as monoclonal antibodies or engineered fusion proteins; the "outside-in" approach) that interact with the extracellular ectodomain offers many advantages, and there have been a number of exciting recent developments in this field. Here we provide a brief overview of the receptor PTP family and an update on the emerging area of receptor PTP-targeted biotherapeutics for CD148, vascular endothelial-protein tyrosine phosphatase (VE-PTP), receptor-type PTPs σ, γ, ζ (RPTPσ, RPTPγ, RPTPζ) and CD45, and discussion of future potential in this area.


Assuntos
Anticorpos Neutralizantes/farmacologia , Inibidores Enzimáticos/farmacologia , Imunoconjugados/farmacologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Semelhantes a Receptores/antagonistas & inibidores , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/enzimologia , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Asma/tratamento farmacológico , Asma/enzimologia , Asma/genética , Asma/patologia , Inibidores Enzimáticos/síntese química , Regulação da Expressão Gênica , Humanos , Imunoconjugados/química , Imunotoxinas/química , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Domínios Proteicos , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/química , Saporinas , Transdução de Sinais
3.
Glycoconj J ; 34(3): 363-376, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28101734

RESUMO

Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.


Assuntos
Sistema Nervoso Central/química , Sulfatos de Condroitina/química , Proteínas da Matriz Extracelular/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Moléculas de Adesão de Célula Nervosa/química , Neurônios/química , Animais , Configuração de Carboidratos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Sistema Nervoso Central/metabolismo , Sulfatos de Condroitina/metabolismo , Citocinas/química , Citocinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Midkina , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Ligação Proteica , Proteoglicanas/química , Proteoglicanas/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo
4.
Biochem Soc Trans ; 44(5): 1295-1303, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27911712

RESUMO

Protein tyrosine phosphatases (PTPs) perform specific functions in vivo, despite being vastly outnumbered by their substrates. Because of this and due to the central roles PTPs play in regulating cellular function, PTP activity is regulated by a large variety of molecular mechanisms. We review evidence that indicates that the divergent C-terminal tail sequences (C-terminal domains, CTDs) of receptor-type PTPs (RPTPs) help regulate RPTP function by controlling intermolecular associations in a way that is itself subject to physiological regulation. We propose that the CTD of each RPTP defines an 'interaction code' that helps determine molecules it will interact with under various physiological conditions, thus helping to regulate and diversify PTP function.


Assuntos
Motivos de Aminoácidos , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Modelos Biológicos , Fosforilação , Ligação Proteica , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Tirosina/química
5.
Biochem J ; 473(14): 2165-77, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208174

RESUMO

The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete.


Assuntos
Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Catálise , Domínio Catalítico , Biologia Computacional , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Eletricidade Estática , Especificidade por Substrato
6.
Mol Cell Neurosci ; 64: 24-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25433167

RESUMO

PTP69D is a receptor protein tyrosine phosphatase (RPTP) with two intracellular catalytic domains (Cat1 and Cat2) and has been shown to play a role in axon guidance of embryonic motoneurons as well as targeting of photoreceptor neurons in the visual system of Drosophila melanogaster. Here, we characterized the developmental role of PTP69D in the giant fiber (GF) neurons, two interneurons in the central nervous system (CNS) that control the escape response of the fly. Our studies revealed that PTP69D has a function in synaptic terminal growth in the CNS. We found that missense mutations in the first immunoglobulin (Ig) domain and in the Cat1 domain, present in Ptp69D10 and Ptp69D20 mutants, respectively, did not affect axon guidance or targeting but resulted in stunted terminal growth of the GFs. Cell autonomous rescue experiments demonstrated a function for the Cat1 and the first Ig domain of PTP69D in the GFs but not in its postsynaptic target neurons. In addition, complementation studies and structure-function analyses revealed that for GF terminal growth Cat1 function of PTP69D requires the immunoglobulin and the Cat2 domains, but not the fibronectin III or the membrane proximal region domains. In contrast, the fibronectin III but not the immunoglobulin domains were previously shown to be essential for axon targeting of photoreceptor neurons. Thus, our studies uncover a novel role for PTP69D in synaptic terminal growth in the CNS that is mechanistically distinct from its function in photoreceptor targeting.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurogênese , Terminações Pré-Sinápticas/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Animais , Domínio Catalítico , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Fibronectinas/metabolismo , Mutação de Sentido Incorreto , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética
7.
FEBS J ; 280(2): 388-400, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22682003

RESUMO

Reversible protein phosphorylation plays a pivotal role in intercellular communication. Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) are involved in the regulation of key cellular processes by controlling the phosphorylation levels of diverse effectors. Among PTPs, receptor-like protein tyrosine phosphatases (RPTPs) are involved in important developmental processes, particularly in the formation of the nervous system. Until recently, few ligands had been identified for RPTPs, making it difficult to grasp the effects these receptors have on cellular processes, as well as the mechanisms through which their functions are mediated. However, several potential RPTP ligands have now been identified to provide us with unparalleled insights into RPTP function. In this review, we focus on the nature and biological outcomes of these extracellular interactions between RPTPs and their associated ligands.


Assuntos
Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Animais , Contactina 1/química , Contactina 1/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo
8.
Cell Adh Migr ; 6(4): 356-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22796942

RESUMO

There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.


Assuntos
Neoplasias/enzimologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Animais , Comunicação Celular , Expressão Gênica , Humanos , Modelos Moleculares , Mutação , Neoplasias/genética , Neoplasias/patologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética
9.
Biochim Biophys Acta ; 1824(8): 983-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22595398

RESUMO

The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PTP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PTP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme.


Assuntos
Domínio Catalítico , Proteínas de Drosophila/química , Domínios e Motivos de Interação entre Proteínas , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Sítio Alostérico , Sequência de Aminoácidos , Animais , Drosophila/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estabilidade Proteica
10.
Artigo em Inglês | MEDLINE | ID: mdl-21795790

RESUMO

Protein tyrosine phosphatase γ is a membrane-bound receptor and is designated RPTPγ. RPTPγ and two mutants, RPTPγ(V948I, S970T) and RPTPγ(C858S, S970T), were recombinantly expressed and purified for X-ray crystallographic studies. The purified enzymes were crystallized using the hanging-drop vapor-diffusion method. Crystallographic data were obtained from several different crystal forms in the absence and the presence of inhibitor. In this paper, a description is given of how three different crystal forms were obtained that were used with various ligands. An orthorhombic crystal form and a trigonal crystal form were obtained both with and without ligand, and a monoclinic crystal form was only obtained in the presence of a particularly elaborated inhibitor.


Assuntos
Domínio Catalítico , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Humanos , Dados de Sequência Molecular , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/isolamento & purificação
11.
Cell Adh Migr ; 5(4): 298-305, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21785275

RESUMO

Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence, or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.


Assuntos
Movimento Celular , Neoplasias/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Junções Célula-Matriz/metabolismo , Ativação Enzimática , Matriz Extracelular/metabolismo , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Fosforilação , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Tirosina/metabolismo , beta Catenina/metabolismo
12.
J Mol Biol ; 408(4): 616-27, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21402080

RESUMO

Neurogenesis depends on exquisitely regulated interactions between macromolecules on the cell surface and in the extracellular matrix. In particular, interactions between proteoglycans and members of the type IIa subgroup of receptor protein tyrosine phosphatases underlie crucial developmental processes such as the formation of synapses at the neuromuscular junction and the migration of axons to their appropriate targets. We report the crystal structures of the first and second immunoglobulin-like domains of the Drosophila type IIa receptor Dlar and its mouse homolog LAR. These two domains adopt an unusual antiparallel arrangement that has not been reported in tandem repeats of immunoglobulin-like domains and that is presumably conserved in all type IIa receptor protein tyrosine phosphatases.


Assuntos
Proteínas de Drosophila/química , Imunoglobulinas/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
Biochim Biophys Acta ; 1812(10): 1225-38, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21126580

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutation of PKD1 and PKD2 that encode polycystin-1 and polycystin-2. Polycystin-1 is tyrosine phosphorylated and modulates multiple signaling pathways including AP-1, and the identity of the phosphatases regulating polycystin-1 are previously uncharacterized. Here we identify members of the LAR protein tyrosine phosphatase (RPTP) superfamily as members of the polycystin-1complex mediated through extra- and intracellular interactions. The first extracellular PKD1 domain of polycystin-1 interacts with the first Ig domain of RPTPσ, while the polycystin-1 C-terminus of polycystin-1 interacts with the regulatory D2 phosphatase domain of RPTPγ. Additional homo- and heterotypic interactions between RPTPs recruit RPTPδ. The multimeric polycystin protein complex is found localised in cilia. RPTPσ and RPTPδ are also part of a polycystin-1/E-cadherin complex known to be important for early events in adherens junction stabilisation. The interaction between polycystin-1 and RPTPγ is disrupted in ADPKD cells, while RPTPσ and RPTPδ remain closely associated with E-cadherin, largely in an intracellular location. The polycystin-1 C-terminus is an in vitro substrate of RPTPγ, which dephosphorylates the c-Src phosphorylated Y4237 residue and activates AP1-mediated transcription. The data identify RPTPs as novel interacting partners of the polycystins both in cilia and at adhesion complexes and demonstrate RPTPγ phosphatase activity is central to the molecular mechanisms governing polycystin-dependent signaling. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Assuntos
Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Canais de Cátion TRPP/química , Sequência de Aminoácidos , Animais , Caderinas/química , Caderinas/metabolismo , Linhagem Celular , Membrana Celular/química , Humanos , Técnicas In Vitro , Rim/metabolismo , Camundongos , Modelos Moleculares , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , Biblioteca de Peptídeos , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fator de Transcrição AP-1/metabolismo
14.
FEBS J ; 277(6): 1562-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20158519

RESUMO

Receptor protein-tyrosine phosphatase alpha (RPTPalpha) is a transmembrane protein with tandem cytoplasmic phosphatase domains. Most of the catalytic activity is contained by the membrane-proximal catalytic domain (D1). We found a spontaneous Arg554 to His mutation in the pTyr recognition loop of the membrane-distal phosphatase domain (D2) of a human patient. This mutation was not linked to the disease. Here, we report that the R554H mutation abolished RPTPalpha-D2 catalytic activity. The R554H mutation impaired Src binding to RPTPalpha. RPTPalpha, with a catalytic site cysteine to serine mutation in D2, also displayed diminished binding to Src. Concomitant with decreased Src binding of the R554H and C723S mutants compared with wild-type RPTPalpha, enhanced phosphorylation of the inhibitory Src Tyr527 site was observed, as well as reduced Src activation. To confirm that catalytic activity of RPTPalpha-D2 was required for these effects, we analyzed a third mutant, RPTPalpha-R729K, which had an inactive D2. Again, Src binding was reduced and Tyr527 phosphorylation was enhanced. Our results suggest that a catalytically active D2 is required for RPTPalpha to bind and dephosphorylate its well-characterized substrate, Src.


Assuntos
Domínio Catalítico , Ativação Enzimática/fisiologia , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Quinases da Família src/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Mutação/genética , Fosforilação , Ligação Proteica , Proteínas Tirosina Fosfatases Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA