RESUMO
AIMS: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been linked to cardiovascular complications, notably cardiac arrhythmias. The open reading frame (ORF) 3a of the coronavirus genome encodes for a transmembrane protein that can function as an ion channel. The aim of this study was to investigate the role of the SARS-CoV-2 ORF 3a protein in COVID-19-associated arrhythmias and its potential as a pharmacological target. METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and cultured human fibroblasts were infected with SARS-CoV-2. Subsequent immunoblotting assays revealed the expression of ORF 3a protein in hiPSC-CM but not in fibroblasts. After intracytoplasmic injection of RNA encoding ORF 3a proteins into Xenopus laevis oocytes, macroscopic outward currents could be measured. While class I, II, and IV antiarrhythmic drugs showed minor effects on ORF 3a-mediated currents, a robust inhibition was detected after application of class III antiarrhythmics. The strongest effects were observed with dofetilide and amiodarone. Finally, molecular docking simulations and mutagenesis studies identified key amino acid residues involved in drug binding. CONCLUSION: Class III antiarrhythmic drugs are potential inhibitors of ORF 3a-mediated currents, offering new options for the treatment of COVID-19-related cardiac complications.
Assuntos
Antiarrítmicos , Miócitos Cardíacos , SARS-CoV-2 , Xenopus laevis , Humanos , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/virologia , SARS-CoV-2/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Simulação de Acoplamento Molecular , COVID-19 , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/genética , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células Cultivadas , Tratamento Farmacológico da COVID-19 , Proteínas do Envelope ViralRESUMO
The SARS-CoV-2 E protein is an enigmatic viral structural protein with reported viroporin activity associated with the acute respiratory symptoms of COVID-19, as well as the ability to deform cell membranes for viral budding. Like many viroporins, the E protein is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the structure of the protein complex have yielded inconclusive results, suggesting several possible oligomers, ranging from dimers to pentamers. Here, we combined patch-clamp, confocal fluorescence microscopy on giant unilamellar vesicles, and atomic force microscopy to show that E protein can exhibit two modes of membrane activity depending on membrane lipid composition. In the absence or the presence of a low content of cholesterol, the protein forms short-living transient pores, which are seen as semi-transmembrane defects in a membrane by atomic force microscopy. Approximately 30 mol% cholesterol is a threshold for the transition to the second mode of conductance, which could be a stable pentameric channel penetrating the entire lipid bilayer. Therefore, the E-protein has at least two different types of activity on membrane permeabilization, which are regulated by the amount of cholesterol in the membrane lipid composition and could be associated with different types of protein oligomers.
Assuntos
Colesterol , Proteínas do Envelope de Coronavírus , Microscopia de Força Atômica , SARS-CoV-2 , Colesterol/metabolismo , Colesterol/química , SARS-CoV-2/metabolismo , Humanos , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/química , Membrana Celular/metabolismo , Lipossomas Unilamelares/metabolismo , Lipossomas Unilamelares/química , COVID-19/metabolismo , COVID-19/virologia , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Proteínas Viroporinas/metabolismo , Técnicas de Patch-Clamp , Multimerização Proteica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/químicaRESUMO
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Assuntos
Proteínas Viroporinas , Animais , Humanos , Antivirais/farmacologia , Antivirais/química , Proteínas Viroporinas/químicaRESUMO
Viroporins are small, hydrophobic viral proteins that modify cellular membranes to form tiny pores for influx of ions and small molecules. Previously, viroporins were identified exclusively in vertebrate viruses. Recent studies have shown that both plant-infecting positive-sense single-stranded (+ss) and negative-sense single-stranded (-ss) RNA viruses also encode functional viroporins. These seminal discoveries not only advance our understanding of the distribution and evolution of viroporins, but also open up a new field of plant virus research.
Assuntos
Doenças das Plantas , Vírus de Plantas , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Plantas/virologiaRESUMO
Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.
Assuntos
Antivirais , Infecção por Zika virus , Zika virus , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Antivirais/farmacologia , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Humanos , Animais , Rimantadina/farmacologia , Chlorocebus aethiops , Simulação de Dinâmica Molecular , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/antagonistas & inibidores , Células Vero , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/químicaRESUMO
The M2 proton channel aids in the exit of mature influenza viral particles from the host plasma membrane through its ability to stabilize regions of high negative Gaussian curvature (NGC) that occur at the neck of budding virions. The channels are homo-tetramers that contain a cytoplasm-facing amphipathic helix (AH) that is necessary and sufficient for NGC generation; however, constructs containing the transmembrane spanning helix, which facilitates tetramerization, exhibit enhanced curvature generation. Here, we used all-atom molecular dynamics (MD) simulations to explore the conformational dynamics of M2 channels in lipid bilayers revealing that the AH is dynamic, quickly breaking the fourfold symmetry observed in most structures. Next, we carried out MD simulations with the protein restrained in four- and twofold symmetric conformations to determine the impact on the membrane shape. While each pattern was distinct, all configurations induced pronounced curvature in the outer leaflet, while conversely, the inner leaflets showed minimal curvature and significant lipid tilt around the AHs. The MD-generated profiles at the protein-membrane interface were then extracted and used as boundary conditions in a continuum elastic membrane model to calculate the membrane-bending energy of each conformation embedded in different membrane surfaces characteristic of a budding virus. The calculations show that all three M2 conformations are stabilized in inward-budding, concave spherical caps and destabilized in outward-budding, convex spherical caps, the latter reminiscent of a budding virus. One of the C2-broken symmetry conformations is stabilized by 4 kT in NGC surfaces with the minimum energy conformation occurring at a curvature corresponding to 33 nm radii. In total, our work provides atomistic insight into the curvature sensing capabilities of M2 channels and how enrichment in the nascent viral particle depends on protein shape and membrane geometry.
Assuntos
Membrana Celular , Vírus da Influenza A , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Proteínas da Matriz Viral , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Conformação Proteica , Proteínas ViroporinasRESUMO
Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy. In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to ß-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4'-diisothiocyano stilbene-2,2'-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.
Assuntos
Antivirais , Vírus da Bronquite Infecciosa , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Vírus da Bronquite Infecciosa/genética , Antivirais/farmacologia , Taiwan , Animais , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Galinhas , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/tratamento farmacológico , Proteínas Viroporinas/antagonistas & inibidoresRESUMO
The peroxisomal biogenesis factor 19 (PEX19) is necessary for early peroxisomal biogenesis. PEX19 has been implicated in the replication of a variety of viruses, but the details pertaining to the mechanisms of how PEX19 engages in the life cycle of these viruses still need to be elucidated. Here, we demonstrated that the C terminus of PEX19 interacted with the cytoplasmic tail region of the M2 protein of the influenza A virus (IAV) and inhibited the viral growth titers. IAV infection or PEX19 knockdown triggered a reduction in the peroxisome pool and led to the accumulation of ROS and cell damage, thereby creating favorable conditions for IAV replication. Moreover, a reduction in the peroxisome pool led to the attenuation of early antiviral response mediated by peroxisome MAVS and downstream type III interferons. This study also showed that the interaction between IAV M2 and PEX19 affected the binding of PEX19 to the peroxisome-associated protein PEX14 and peroxisome membrane protein 24 (PMP24). Collectively, our data demonstrate that host factor PEX19 suppresses the replication of the IAV, and the IAV employs its M2 protein to mitigate the restricting role of PEX19.
Assuntos
Vírus da Influenza A , Proteínas de Membrana , Peroxissomos , Replicação Viral , Peroxissomos/metabolismo , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células A549 , Animais , Células HEK293 , Ligação Proteica , Interações Hospedeiro-Patógeno , Cães , Influenza Humana/virologia , Influenza Humana/metabolismo , Proteínas Viroporinas , Proteínas da Matriz ViralRESUMO
The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied. SARS-CoVs, in which 3a-PBM and E-PMB have been deleted (3a-PBM-/E-PBM-), reduced their titer around one logarithmic unit but still were viable. In addition, the absence of the E-PBM and the replacement of 3a-PBM with that of E did not allow the rescue of SARS-CoV. E protein PBM was necessary for virulence, activating p38-MAPK through the interaction with Syntenin-1 PDZ domain. However, the presence or absence of the homologous motif in the 3a protein, which does not bind to Syntenin-1, did not affect virus pathogenicity. Mutagenesis analysis and in silico modeling were performed to study the extension of the PBM of the SARS-CoV E protein. Alanine and glycine scanning was performed revealing a pair of amino acids necessary for optimum virus replication. The binding of E protein with the PDZ2 domain of the Syntenin-1 homodimer induced conformational changes in both PDZ domains 1 and 2 of the dimer.
Assuntos
Proteínas do Envelope de Coronavírus , Domínios PDZ , Ligação Proteica , SARS-CoV-2 , Humanos , Virulência , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Proteínas do Envelope de Coronavírus/metabolismo , Proteínas do Envelope de Coronavírus/genética , Animais , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , COVID-19/virologia , Chlorocebus aethiops , Células Vero , Motivos de Aminoácidos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Replicação ViralRESUMO
Influenza virus infection remains a major global health problem and requires a universal vaccine with broad protection against different subtypes as well as a rapid-response vaccine to provide immediate protection in the event of an epidemic outbreak. Here, we show that intranasal administration of probiotic Escherichia coli Nissle 1917 activates innate immunity in the respiratory tract and provides immediate protection against influenza virus infection within 1 day. Based on this vehicle, a recombinant strain is engineered to express and secret five tandem repeats of the extracellular domain of matrix protein 2 from different influenza virus subtypes. Intranasal vaccination with this strain induces durable humoral and mucosal responses in the respiratory tract, and provides broad protection against the lethal challenge of divergent influenza viruses in female BALB/c mice. Our findings highlight a promising delivery platform for developing mucosal vaccines that provide immediate and sustained protection against respiratory pathogens.
Assuntos
Administração Intranasal , Escherichia coli , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Probióticos , Animais , Escherichia coli/genética , Probióticos/administração & dosagem , Feminino , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Camundongos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/genética , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Imunidade Inata , Imunidade nas Mucosas , Humanos , Anticorpos Antivirais/imunologia , Proteínas ViroporinasRESUMO
Introduction: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear. Methods: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2. We utilized a combination of biochemical and cellular assays to elucidate the interactions between OSBP and SARS-CoV-2 non-structural proteins (Nsps) and other viral proteins. Results: Our findings demonstrate that OSBP positively regulates coronavirus replication. Moreover, treatment with ZJ-1 resulted in reduced OSBP levels and exhibited potent antiviral effects against multiple coronaviruses. Through our investigation, we identified specific interactions between OSBP and SARS-CoV-2 Nsps, particularly Nsp3, Nsp4, and Nsp6, which are involved in double-membrane vesicle formation-a crucial step in viral replication. Additionally, we observed that Nsp3 a.a.1-1363, Nsp4, and Nsp6 target vesicle-associated membrane protein (VAMP)-associated protein B (VAP-B), which anchors OSBP to the ER membrane. Interestingly, the interaction between OSBP and VAP-B is disrupted by Nsp3 a.a.1-1363 and partially impaired by Nsp6. Furthermore, we identified SARS-CoV-2 orf7a, orf7b, and orf3a as additional OSBP targets, with OSBP contributing to their stabilization. Conclusion: Our study highlights the significance of OSBP in coronavirus replication and identifies it as a promising target for the development of antiviral therapies against SARS-CoV-2 and other coronaviruses. These findings underscore the potential of OSBP-targeted interventions in combating coronavirus infections.
Assuntos
Antivirais , Receptores de Esteroides , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Replicação Viral/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Antivirais/farmacologia , Receptores de Esteroides/metabolismo , Proteínas não Estruturais Virais/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Chlorocebus aethiops , Células Vero , Proteínas Virais/metabolismo , Células HEK293 , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Proteínas Viroporinas/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Ligação ProteicaRESUMO
African swine fever virus (ASFV) is the causative agent of a contagious disease affecting wild and domestic swine. The function of B169L protein, as a potential integral structural membrane protein, remains to be experimentally characterized. Using state-of-the-art bioinformatics tools, we confirm here earlier predictions indicating the presence of an integral membrane helical hairpin, and further suggest anchoring of this protein to the ER membrane, with both terminal ends facing the lumen of the organelle. Our evolutionary analysis confirmed the importance of purifying selection in the preservation of the identified domains during the evolution of B169L in nature. Also, we address the possible function of this hairpin transmembrane domain (HTMD) as a class IIA viroporin. Expression of GFP fusion proteins in the absence of a signal peptide supported B169L insertion into the ER as a Type III membrane protein and the formation of oligomers therein. Overlapping peptides that spanned the B169L HTMD were reconstituted into ER-like membranes and the adopted structures analyzed by infrared spectroscopy. Consistent with the predictions, B169L transmembrane sequences adopted α-helical conformations in lipid bilayers. Moreover, single vesicle permeability assays demonstrated the assembly of lytic pores in ER-like membranes by B169L transmembrane helices, a capacity confirmed by ion-channel activity measurements in planar bilayers. Emphasizing the relevance of these observations, pore-forming activities were not observed in the case of transmembrane helices derived from EP84R, another ASFV protein predicted to anchor to membranes through a α-helical HTMD. Overall, our results support predictions of viroporin-like function for the B169L HTMD.IMPORTANCEAfrican swine fever (ASF), a devastating disease affecting domestic swine, is widely spread in Eurasia, producing significant economic problems in the pork industry. Approaches to prevent/cure the disease are mainly restricted to the limited information concerning the role of most of the genes encoded by the large (160-170 kba) virus genome. In this report, we present the experimental data on the functional characterization of the African swine fever virus (ASFV) gene B169L. Data presented here indicates that the B169L gene encodes for an essential membrane-associated protein with a viroporin function.
Assuntos
Vírus da Febre Suína Africana , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Animais , Suínos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Domínios Proteicos , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Sequência de AminoácidosRESUMO
There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform. The primary objective of this study was to determine the protective potential of M2e proteins expressed on Lumazine synthase (LS) nanoparticles. M2e-LS proteins, produced through the E. coli system, spontaneously assemble into nanoparticles. The study investigated the efficacy of the M2e-LS nanoparticle vaccine in mice. Mice immunized with M2e-LS nanoparticles exhibited significantly higher levels of intracellular cytokines than those receiving soluble M2e proteins. The M2e-LS protein exhibited robust immunogenicity and provided 100% protection against cross-clade influenza.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Complexos Multienzimáticos , Nanopartículas , Infecções por Orthomyxoviridae , Proteínas da Matriz Viral , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Nanopartículas/química , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Complexos Multienzimáticos/imunologia , Complexos Multienzimáticos/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/imunologia , Citocinas/metabolismo , Proteção Cruzada/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas ViroporinasRESUMO
Transmembrane peptides play important roles in many biological processes by interacting with lipid membranes. This study investigates how the transmembrane domain of the influenza A virus M2 protein, M2TM, affects the structure and mechanics of model lipid bilayers. Atomic force microscopy (AFM) imaging revealed small decreases in bilayer thickness with increasing peptide concentrations. AFM-based force spectroscopy experiments complemented by theoretical model analysis demonstrated significant decreases in bilayer's Young's modulus (E) and lateral area compressibility modulus (KA). This suggests that M2TM disrupts the cohesive interactions between neighboring lipid molecules, leading to a decrease in both the bilayer's resistance to indentation (E) and its ability to resist lateral compression/expansion (KA). The large decreases in bilayer elastic parameters (i.e., E and KA) contrast with small changes in bilayer thickness, implying that bilayer mechanics are not solely dictated by bilayer thickness in the presence of transmembrane peptides. The observed significant reduction in bilayer mechanical properties suggests a softening effect on the bilayer, potentially facilitating membrane curvature generation, a crucial step for M2-mediated viral budding. In parallel, our Raman spectroscopy revealed small but statistically significant changes in hydrocarbon chain vibrational dynamics, indicative of minor disordering in lipid chain conformation. Our findings provide useful insights into the complex interplay between transmembrane peptides and lipid bilayers, highlighting the significance of peptide-lipid interactions in modulating membrane structure, mechanics, and molecular dynamics.
Assuntos
Vírus da Influenza A , Bicamadas Lipídicas , Microscopia de Força Atômica , Proteínas da Matriz Viral , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Peptídeos/química , Domínios Proteicos , Módulo de Elasticidade , Proteínas ViroporinasRESUMO
The M2 proteins of influenza A and B viruses form acid-activated proton channels that are essential for the virus lifecycle. Proton selectivity is achieved by a transmembrane (TM) histidine whereas gating is achieved by a tryptophan residue. Although this functional apparatus is conserved between AM2 and BM2 channels, AM2 conducts protons exclusively inward whereas BM2 conducts protons in either direction depending on the pH gradient. Previous studies showed that in AM2, mutations of D44 abolished inward rectification of AM2, suggesting that the tryptophan gate is destabilized. To elucidate how charged residues C-terminal to the tryptophan regulates channel gating, here we investigate the structure and dynamics of H19 and W23 in a BM2 mutant, GDR-BM2, in which three BM2 residues are mutated to the corresponding AM2 residues, S16G, G26D and H27R. Whole-cell electrophysiological data show that GDR-BM2 conducts protons with inward rectification, identical to wild-type (WT) AM2 but different from WT-BM2. Solid-state NMR 15N and 13C spectra of H19 indicate that the mutant BM2 channel contains higher populations of cationic histidine and neutral τ tautomers compared to WT-BM2 at acidic pH. Moreover, 19F NMR spectra of 5-19F-labeled W23 resolve three peaks at acidic pH, suggesting three tryptophan sidechain conformations. Comparison of these spectra with the tryptophan spectra of other M2 peptides suggests that these indole sidechain conformations arise from interactions with the C-terminal charged residues and with the N-terminal cationic histidine. Taken together, these solid-state NMR data show that inward rectification in M2 proton channels is accomplished by tryptophan interactions with charged residues on both its C-terminal and N-terminal sides. Gating of these M2 proton channels is thus accomplished by a multi-residue complex with finely tuned electrostatic and aromatic interactions.
Assuntos
Histidina , Vírus da Influenza B , Prótons , Triptofano , Proteínas da Matriz Viral , Triptofano/química , Histidina/química , Histidina/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/genética , Vírus da Influenza B/química , Vírus da Influenza B/genética , Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Vírus da Influenza A/genética , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/genética , Mutação , Simulação de Dinâmica Molecular , Proteínas ViroporinasRESUMO
Natural Killer (NK) cells have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is tightly regulated by the engagement of its inhibitory and activating receptors. The activating receptor CD16 drives ADCC upon binding to the Fc portion of antibodies; NK cell activation is further sustained by the co-engagement of activating receptors NTB-A and 2B4. During HIV-1 infection, Nef and Vpu accessory proteins contribute to ADCC escape by downregulating the ligands of NTB-A and 2B4. HIV-1 also evades ADCC by keeping its envelope glycoproteins (Env) in a "closed" conformation which effectively masks epitopes recognized by non-neutralizing antibodies (nnAbs) which are abundant in the plasma of people living with HIV. To achieve this, the virus uses its accessory proteins Nef and Vpu to downregulate the CD4 receptor, which otherwise interacts with Env and exposes the epitopes recognized by nnAbs. Small CD4-mimetic compounds (CD4mc) have the capacity to expose these epitopes, thus sensitizing infected cells to ADCC. Given the central role of NK cell co-activating receptors NTB-A and 2B4 in Fc-effector functions, we studied their contribution to CD4mc-mediated ADCC. Despite the fact that their ligands are partially downregulated by HIV-1, we found that both co-activating receptors significantly contribute to CD4mc sensitization of HIV-1-infected cells to ADCC.
Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Células Matadoras Naturais , Família de Moléculas de Sinalização da Ativação Linfocitária , Humanos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , HIV-1/imunologia , Células Matadoras Naturais/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/imunologia , Proteínas Virais Reguladoras e Acessórias/genética , Anticorpos Neutralizantes/imunologia , Proteínas ViroporinasRESUMO
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Proteínas Virais , Humanos , Células A549 , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Mitocôndrias/metabolismo , Fases de Leitura Aberta , SARS-CoV-2/genética , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Viroporinas/metabolismoRESUMO
A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in Nicotiana benthamiana plants using self-replicating vector based on the potato virus X genome. The plant-produced fusion proteins in vivo formed VLPs displaying GFP and 4M2e. Therefore, HEV coat protein can be used as a VLP carrier platform for the presentation of relatively large antigens comprising dozens to hundreds of amino acids. Furthermore, plant-produced HEV particles could be useful research tools for the development of recombinant vaccines against influenza.
Assuntos
Apresentação de Antígeno , Proteínas do Capsídeo , Vírus da Hepatite E , Nicotiana , Proteínas Recombinantes de Fusão , Proteínas da Matriz Viral , Vírus da Hepatite E/imunologia , Vírus da Hepatite E/genética , Nicotiana/virologia , Nicotiana/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Plantas Geneticamente Modificadas , Vírus da Influenza A/imunologia , Vírus da Influenza A/genética , Hepatite E/imunologia , Hepatite E/prevenção & controle , Hepatite E/virologia , Proteínas ViroporinasRESUMO
The H5N1 avian influenza virus seriously affects the health of poultry and humans. Once infected, the mortality rate is very high. Therefore, accurate and timely detection of the H5N1 avian influenza virus is beneficial for controlling its spread. This article establishes a dual gene detection method based on dual RPA for simultaneously detecting the HA and M2 genes of H5N1 avian influenza virus, for the detection of H5N1 avian influenza virus. Design specific primers for the conserved regions of the HA and M2 genes. The sensitivity of the dual RT-RPA detection method for HA and M2 genes is 1 × 10-7 ng/µL. The optimal primer ratio is 1:1, the optimal reaction temperature is 40 °C, and the optimal reaction time is 20 min. Dual RT-RPA was used to detect 72 samples, and compared with RT-qPCR detection, the Kappa value was 1 (p value < 0.05), and the clinical sample detection sensitivity and specificity were both 100%. The dual RT-RPA method is used for the first time to simultaneously detect two genes of the H5N1 avian influenza virus. As an accurate and convenient diagnostic tool, it can be used to diagnose the H5N1 avian influenza virus.
Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Virus da Influenza A Subtipo H5N1/genética , Animais , Influenza Aviária/virologia , Influenza Aviária/diagnóstico , Humanos , Sensibilidade e Especificidade , Influenza Humana/virologia , Influenza Humana/diagnóstico , Proteínas da Matriz Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Aves/virologia , Proteínas ViroporinasRESUMO
The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, which is critical for viral replication. However, its effects in primary neurons have not been addressed. Here we used fluorescence microscopy and calcium imaging to study SARS-CoV-2 viroporin E localization and the effects on neuron damage and intracellular Ca2+ homeostasis in a model of rat hippocampal neurons aged in vitro. We found that the E protein quickly enters hippocampal neurons and colocalizes with the endoplasmic reticulum (ER) in both short-term (6-8 days in vitro, DIV) and long-term (20-22 DIV) cultures resembling young and aged neurons, respectively. Strikingly, E protein treatment induces apoptosis in aged neurons but not in young neurons. The E protein induces variable increases in cytosolic Ca2+ concentration in hippocampal neurons. Ca2+ responses to the E protein are due to Ca2+ release from intracellular stores at the ER. Moreover, E protein-induced Ca2+ release is very small in young neurons and increases dramatically in aged neurons, consistent with the enhanced Ca2+ store content in aged neurons. We conclude that the SARS-CoV-2 E protein quickly translocates to ER endomembranes of rat hippocampal neurons where it releases Ca2+, probably acting like a viroporin, thus producing Ca2+ store depletion and neuron apoptosis in aged neurons and likely contributing to neurological damage in COVID-19 patients.