Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.026
Filtrar
1.
Curr Top Dev Biol ; 159: 232-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729677

RESUMO

The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/ß-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.


Assuntos
Padronização Corporal , Mesoderma , Animais , Padronização Corporal/genética , Mesoderma/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Diferenciação Celular , Cabeça/embriologia
2.
Biochem Biophys Res Commun ; 718: 150037, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735135

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for more than 80 % of lung cancer (LC) cases, making it the primary cause of cancer-related mortality worldwide. T-box transcription factor 5 (TBX5) is an important regulator of embryonic and organ development and plays a key role in cancer development. Here, our objective was to investigate the involvement of TBX5 in ferroptosis within LC cells and the underlying mechanisms. METHODS: First, TBX5 expression was examined in human LC cells. Next, overexpression of TBX5 and Yes1-associated transcriptional regulator (YAP1) and knockdown of TEA domain 1 (TEAD1) were performed in A549 and NCI-H1703 cells. The proliferation ability of A549 and NCI-H1703 cells, GSH, MDA, ROS, and Fe2+ levels were measured. Co-immunoprecipitation (Co-IP) was performed to verify whether TBX5 protein could bind YAP1. Then TBX5, YAP1, TEAD1, GPX4, p53, FTH1, SLC7A11 and PTGS2 protein levels were assessed. Finally, we verified the effect of TBX5 on ferroptosis in LC cells in vivo. RESULTS: TBX5 expression was down-regulated in LC cells, especially in A549 and NCI-H1703 cells. Overexpression of TBX5 significantly decreased proliferation ability of A549 and NCI-H1703 cells, downregulated GPX4 and GSH levels, and upregulated MDA, ROS, and Fe2+ levels. Co-IP verified that TBX5 protein could bind YAP1. Moreover, oe-YAP1 promoted proliferation ability of A549 and NCI-H1703 cells transfected with Lv-TBX5, upregulated GPX4 and GSH levels and downregulated MDA, ROS, and Fe2+ levels. Additionally, oe-YAP1 promoted FTH1 and SLC7A11 levels and inhibited p53 and PTGS2 levels in A549 and NCI-H1703 cells transfected with Lv-TBX5. However, transfection with si-TEAD1 further reversed these effects. In vivo experiments further validated that TBX5 promoted ferroptosis in LC cells. CONCLUSIONS: TBX5 inhibited the activation of YAP1-TEAD1 pathway to promote ferroptosis in LC cells.


Assuntos
Ferroptose , Neoplasias Pulmonares , Proteínas com Domínio T , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Proteínas de Sinalização YAP , Ferroptose/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Animais , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos Nus , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Regulação Neoplásica da Expressão Gênica , Células A549 , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
3.
Nat Commun ; 15(1): 4108, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750011

RESUMO

MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.


Assuntos
Carcinogênese , Proteínas Proto-Oncogênicas B-raf , Proteínas com Domínio T , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Animais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Camundongos , Diferenciação Celular , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Knockout , Feminino , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo
4.
Am J Physiol Cell Physiol ; 326(5): C1384-C1397, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690917

RESUMO

Metabolic dysfunction of the extracellular matrix (ECM) is one of the primary causes of intervertebral disc degeneration (IVDD). Previous studies have demonstrated that the transcription factor Brachyury (Bry) has the potential to promote the synthesis of collagen II and aggrecan, while the specific mechanism is still unknown. In this study, we used a lipopolysaccharide (LPS)-induced model of nucleus pulposus cell (NPC) degeneration and a rat acupuncture IVDD model to elucidate the precise mechanism through which Bry affects collagen II and aggrecan synthesis in vitro and in vivo. First, we confirmed Bry expression decreased in degenerated human nucleus pulposus (NP) cells (NPCs). Knockdown of Bry exacerbated the decrease in collagen II and aggrecan expression in the lipopolysaccharide (LPS)-induced NPCs degeneration in vitro model. Bioinformatic analysis indicated that Smad3 may participate in the regulatory pathway of ECM synthesis regulated by Bry. Chromatin immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays demonstrated that Bry enhances the transcription of Smad3 by interacting with a specific motif on the promoter region. In addition, Western blot and reverse transcription-qPCR assays demonstrated that Smad3 positively regulates the expression of aggrecan and collagen II in NPCs. The following rescue experiments revealed that Bry-mediated regulation of ECM synthesis is partially dependent on Smad3 phosphorylation. Finally, the findings from the in vivo rat acupuncture-induced IVDD model were consistent with those obtained from in vitro assays. In conclusion, this study reveals that Bry positively regulates the synthesis of collagen II and aggrecan in NP through transcriptional activation of Smad3.NEW & NOTEWORTHY Mechanically, in the nucleus, Bry enhances the transcription of Smad3, leading to increased expression of Smad3 protein levels; in the cytoplasm, elevated substrate levels further lead to an increase in the phosphorylation of Smad3, thereby regulating collagen II and aggrecan expression. Further in vivo experiments provide additional evidence that Bry can alleviate IVDD through this mechanism.


Assuntos
Agrecanas , Matriz Extracelular , Proteínas Fetais , Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos Sprague-Dawley , Proteína Smad3 , Proteínas com Domínio T , Proteína Smad3/metabolismo , Proteína Smad3/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Animais , Matriz Extracelular/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Humanos , Ratos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Agrecanas/metabolismo , Agrecanas/genética , Masculino , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Regulação da Expressão Gênica , Feminino , Adulto , Pessoa de Meia-Idade , Células Cultivadas , Transcrição Gênica
5.
Neurosurg Focus ; 56(5): E18, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691860

RESUMO

Chordomas are tumors thought to originate from notochordal remnants that occur in midline structures from the cloves of the skull base to the sacrum. In adults, the most common location is the sacrum, followed by the clivus and then mobile spine, while in children a clival origin is most common. Most chordomas are slow growing. Clinical presentation of chordomas tend to occur late, with local invasion and large size often complicating surgical intervention. Radiation therapy with protons has been proven to be an effective adjuvant therapy. Unfortunately, few adjuvant systemic treatments have demonstrated significant effectiveness, and chordomas tend to recur despite intensive multimodal care. However, insight into the molecular underpinnings of chordomas may guide novel therapeutic approaches including selection for immune and molecular therapies, individualized prognostication of outcomes, and real-time noninvasive assessment of disease burden and evolution. At the genomic level, elevated levels of brachyury stemming from duplications and mutations resulting in altered transcriptional regulation may introduce druggable targets for new surgical adjuncts. Transcriptome and epigenome profiling have revealed promoter- and enhancer-dependent mechanisms of protein regulation, which may influence therapeutic response and long-term disease history. Continued scientific and clinical advancements may offer further opportunities for treatment of chordomas. Single-cell transcriptome profiling has further provided insight into the heterogeneous molecular pathways contributing to chordoma propagation. New technologies such as spatial transcriptomics and emerging biochemical analytes such as cell-free DNA have further augmented the surgeon-clinician's armamentarium by facilitating detailed characterization of intra- and intertumoral biology while also demonstrating promise for point-of-care tumor quantitation and assessment. Recent and ongoing clinical trials highlight accelerating interest to translate laboratory breakthroughs in chordoma biology and immunology into clinical care. In this review, the authors dissect the landmark studies exploring the molecular pathogenesis of chordoma. Incorporating this into an outline of ongoing clinical trials and discussion of emerging technologies, the authors aimed to summarize recent advancements in understanding chordoma pathogenesis and how neurosurgical care of chordomas may be augmented by improvements in adjunctive treatments.


Assuntos
Cordoma , Proteínas Fetais , Cordoma/genética , Cordoma/terapia , Humanos , Carcinogênese/genética , Proteínas com Domínio T/genética , Neoplasias da Base do Crânio/genética , Neoplasias da Base do Crânio/terapia
6.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38579720

RESUMO

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Assuntos
Diferenciação Celular , Gastrulação , Camadas Germinativas , Animais , Camundongos , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Linha Primitiva/citologia , Linha Primitiva/metabolismo , Proteínas Fetais/metabolismo , Proteínas Fetais/genética , Via de Sinalização Wnt , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo
7.
Immunohorizons ; 8(4): 355-362, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687282

RESUMO

To defend against intracellular pathogens such as Toxoplasma gondii, the host generates a robust type 1 immune response. Specifically, host defense against T. gondii is defined by an IL-12-dependent IFN-γ response that is critical for host resistance. Previously, we demonstrated that host resistance is mediated by T-bet-dependent ILC-derived IFN-γ by maintaining IRF8+ conventional type 1 dendritic cells during parasitic infection. Therefore, we hypothesized that innate lymphoid cells are indispensable for host survival. Surprisingly, we observed that T-bet-deficient mice succumb to infection quicker than do mice lacking lymphocytes, suggesting an unknown T-bet-dependent-mediated host defense pathway. Analysis of parasite-mediated inflammatory myeloid cells revealed a novel subpopulation of T-bet+ myeloid cells (TMCs). Our results reveal that TMCs have the largest intracellular parasite burden compared with other professional phagocytes, suggesting they are associated with active killing of T. gondii. Mechanistically, we established that IL-12 is necessary for the induction of inflammatory TMCs during infection and these cells are linked to a role in host survival.


Assuntos
Interleucina-12 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides , Proteínas com Domínio T , Toxoplasma , Toxoplasmose , Animais , Toxoplasma/imunologia , Camundongos , Interleucina-12/metabolismo , Interleucina-12/imunologia , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Interferon gama/metabolismo , Interferon gama/imunologia , Imunidade Inata , Toxoplasmose Animal/imunologia , Resistência à Doença/imunologia , Feminino
8.
Am J Hum Genet ; 111(5): 939-953, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38608674

RESUMO

Changes in gene regulatory elements play critical roles in human phenotypic divergence. However, identifying the base-pair changes responsible for the distinctive morphology of Homo sapiens remains challenging. Here, we report a noncoding single-nucleotide polymorphism (SNP), rs41298798, as a potential causal variant contributing to the morphology of the skull base and vertebral structures found in Homo sapiens. Screening for differentially regulated genes between Homo sapiens and extinct relatives revealed 13 candidate genes associated with basicranial development, with TBX1, implicated in DiGeorge syndrome, playing a pivotal role. Epigenetic markers and in silico analyses prioritized rs41298798 within a TBX1 intron for functional validation. CRISPR editing revealed that the 41-base-pair region surrounding rs41298798 modulates gene expression at 22q11.21. The derived allele of rs41298798 acts as an allele-specific enhancer mediated by E2F1, resulting in increased TBX1 expression levels compared to the ancestral allele. Tbx1-knockout mice exhibited skull base and vertebral abnormalities similar to those seen in DiGeorge syndrome. Phenotypic differences associated with TBX1 deficiency are observed between Homo sapiens and Neanderthals (Homo neanderthalensis). In conclusion, the regulatory divergence of TBX1 contributes to the formation of skull base and vertebral structures found in Homo sapiens.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas com Domínio T , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Humanos , Animais , Camundongos , Síndrome de DiGeorge/genética , Homem de Neandertal/genética , Camundongos Knockout , Crânio/anatomia & histologia , Alelos , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/anormalidades , Cromossomos Humanos Par 22/genética , Fenótipo
9.
Circ Res ; 134(10): e112-e132, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38618720

RESUMO

BACKGROUND: The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS: Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS: The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS: Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.


Assuntos
Aorta Torácica , Células Endoteliais , Cardiopatias Congênitas , Proteínas com Domínio T , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Camundongos , Aorta Torácica/embriologia , Aorta Torácica/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/embriologia , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Celular , Camundongos Endogâmicos C57BL
10.
Ital J Pediatr ; 50(1): 41, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443964

RESUMO

TBX4 gene, located on human chromosome 17q23.2, encodes for T-Box Transcription Factor 4, a transcription factor that belongs to the T-box gene family and it is involved in the regulation of some embryonic developmental processes, with a significant impact on respiratory and skeletal illnesses. Herein, we present the case of a female neonate with persistent pulmonary hypertension (PH) who underwent extracorporeal membrane oxygenation (ECMO) on the first day of life and then resulted to have a novel variant of the TBX4 gene identified by Next-Generation Sequencing. We review the available literature about the association between PH with neonatal onset or emerging during the first months of life and mutations of the TBX4 gene, and compare our case to previously reported cases. Of 24 cases described from 2010 to 2023 sixteen (66.7%) presented with PH soon after birth. Skeletal abnormalities have been described in 5 cases (20%). Eleven cases (46%) were due to de novo mutations. Three patients (12%) required ECMO. Identification of this variant in affected individuals has implications for perinatal and postnatal management and genetic counselling. We suggest including TBX4 in genetic studies of neonates with pulmonary hypertension, even in the absence of skeletal abnormalities.


Assuntos
Hipertensão Pulmonar , Recém-Nascido , Gravidez , Humanos , Feminino , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/genética , Aconselhamento Genético , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Proteínas com Domínio T/genética
11.
Hum Genomics ; 18(1): 23, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448978

RESUMO

BACKGROUND/OBJECTIVES: Rare genetic disorders causing specific congenital developmental abnormalities often manifest in single families. Investigation of disease-causing molecular features are most times lacking, although these investigations may open novel therapeutic options for patients. In this study, we aimed to identify the genetic cause in an Iranian patient with severe skeletal dysplasia and to model its molecular function in zebrafish embryos. RESULTS: The proband displays short stature and multiple skeletal abnormalities, including mesomelic dysplasia of the arms with complete humero-radio-ulna synostosis, arched clavicles, pelvic dysplasia, short and thin fibulae, proportionally short vertebrae, hyperlordosis and mild kyphosis. Exome sequencing of the patient revealed a novel homozygous c.374G > T, p.(Arg125Leu) missense variant in MSGN1 (NM_001105569). MSGN1, a basic-Helix-Loop-Helix transcription factor, plays a crucial role in formation of presomitic mesoderm progenitor cells/mesodermal stem cells during early developmental processes in vertebrates. Initial in vitro experiments show protein stability and correct intracellular localization of the novel variant in the nucleus and imply retained transcription factor function. To test the pathogenicity of the detected variant, we overexpressed wild-type and mutant msgn1 mRNA in zebrafish embryos and analyzed tbxta (T/brachyury/ntl). Overexpression of wild-type or mutant msgn1 mRNA significantly reduces tbxta expression in the tailbud compared to control embryos. Mutant msgn1 mRNA injected embryos depict a more severe effect, implying a gain-of-function mechanism. In vivo analysis on embryonic development was performed by clonal msgn1 overexpression in zebrafish embryos further demonstrated altered cell compartments in the presomitic mesoderm, notochord and pectoral fin buds. Detection of ectopic tbx6 and bmp2 expression in these embryos hint to affected downstream signals due to Msgn1 gain-of-function. CONCLUSION: In contrast to loss-of-function effects described in animal knockdown models, gain-of-function of MSGN1 explains the only mildly affected axial skeleton of the proband and rather normal vertebrae. In this context we observed notochord bending and potentially disruption of pectoral fin buds/upper extremity after overexpression of msgn1 in zebrafish embryos. The latter might result from Msgn1 function on mesenchymal stem cells or on chondrogenesis in these regions. In addition, we detected ectopic tbx6 and bmp2a expression after gain of Msgn1 function in zebrafish, which are interconnected to short stature, congenital scoliosis, limb shortening and prominent skeletal malformations in patients. Our findings highlight a rare, so far undescribed skeletal dysplasia syndrome associated with a gain-of-function mutation in MSGN1 and hint to its molecular downstream effectors.


Assuntos
Anormalidades Múltiplas , Nanismo , Osteocondrodisplasias , Animais , Feminino , Humanos , Gravidez , Mutação com Ganho de Função , Irã (Geográfico) , RNA Mensageiro , Proteínas com Domínio T/genética , Fatores de Transcrição , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
Iran J Allergy Asthma Immunol ; 23(1): 107-114, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38485905

RESUMO

T helper 1 (TH1) and TH2 lymphocytes are the most important components of the immune system affected by blood transfusion. This study aimed`` to evaluate the effect of blood transfusion on gene expression of transcription factors related to the development of TH1, TH2, TH17 and regulatory T cells (Tregs). In this cross-sectional study, 20 patients diagnosed with abdominal aortic aneurysms requiring surgical repair were studied from January 2018 to August 2020. We utilized real-time PCR to evaluate the expression of transcription factor genes associated with TH1, TH2, TH17, and Treg, namely T-box-expressed-in-T-cells (T-bet), GATA-binding protein 3 (GATA-3), retinoid-related orphan receptor (RORγt), and fork head box protein 3 (Foxp3), respectively. The sampling occurred before anesthesia, 24- and 72 hours post-transfusion, and at the time of discharge. The results showed that the T-bet gene expression, compared to the time before transfusion, was significantly decreased 24 hours after blood transfusion and upon discharge while GATA3 genes exhibited a significant reduction both 24 and 72 hours after the transfusion, as compared to the pre-transfusion levels and the time of patient discharge. The Foxp3 gene demonstrated an increase at all study stages, with a notable surge, particularly 72 hours after red blood cell (RBC) transfusion. Conversely, the expression of RORγt gene, consistently decreased throughout all stages of the study. RBC transfusion in abdominal aortic aneurysm patients altered the balance of transcription gene expression of TH1, TH2, TH17, and Treg cells.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Linfócitos T Reguladores , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Estudos Transversais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Transfusão de Sangue , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Células Th17/metabolismo , Proteínas com Domínio T/genética
13.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542387

RESUMO

Mesenchymal-epithelial transition (MET) is a widely spread and evolutionarily conserved process across species during development. In Ciona embryogenesis, the notochord cells undergo the transition from the non-polarized mesenchymal state into the polarized endothelial-like state to initiate the lumen formation between adjacent cells. Based on previously screened MET-related transcription factors by ATAC-seq and Smart-Seq of notochord cells, Ciona robusta Snail (Ci-Snail) was selected for its high-level expression during this period. Our current knockout results demonstrated that Ci-Snail was required for notochord cell MET. Importantly, overexpression of the transcription factor Brachyury in notochord cells resulted in a similar phenotype with failure of lumen formation and MET. More interestingly, expression of Ci-Snail in the notochord cells at the late tailbud stage could partially rescue the MET defect caused by Brachyury-overexpression. These results indicated an inverse relationship between Ci-Snail and Brachyury during notochord cell MET, which was verified by RT-qPCR analysis. Moreover, the overexpression of Ci-Snail could significantly inhibit the transcription of Brachyury, and the CUT&Tag-qPCR analysis demonstrated that Ci-Snail is directly bound to the upstream region of Brachyury. In summary, we revealed that Ci-Snail promoted the notochord cell MET and was essential for lumen formation via transcriptionally repressing Brachyury.


Assuntos
Ciona intestinalis , Notocorda , Animais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Ciona intestinalis/genética , Regulação da Expressão Gênica no Desenvolvimento
14.
Int J Immunogenet ; 51(3): 143-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468428

RESUMO

Genome-wide association studies analysis has revealed associations between ankylosing spondylitis (AS) and loci on the TBX21 gene across various populations. This study aimed to investigate if there is a connection between a higher risk of AS in a Chinese population and two polymorphism loci on the TBX21 gene. To achieve this, we performed a case-control investigation involving 363 patients with AS and 907 healthy individuals. Genotyping was carried out using the iPLEX Gold genotyping assay. The analysis of genotypes and haplotypes was performed using SPSS 23.0 and SHEsis software. The results revealed no statistically significant correlation between the two specified single-nucleotide polymorphisms of TBX21 (rs11657479 C/T and rs4794067 C/T) and susceptibility to AS. However, upon conducting stratification analysis, our findings demonstrated a significant association between rs11657479 and susceptibility to human leucocyte antigen (HLA)-B27+ AS in allelic (C vs. T: odds ratio [OR] = 1.52, 95%CI = 1.09-2.11, corrected p [pc] = .028), heterozygous (CT vs. TT: OR = 1.63, 95%CI = 1.13-2.34, pc = .016) and dominant (CT + CC vs. TT: OR = 1.60, 95%CI = 1.12-2.28, pc = .018) models. Furthermore, the haplotype rs4794067/C-rs11657479/C of TBX21 was found to increase the risk of HLA-B27+ AS cases. In conclusion, our findings indicate a correlation between TBX21 gene polymorphism and HLA-B27+ AS patients within the Chinese population.


Assuntos
Povo Asiático , Predisposição Genética para Doença , Haplótipos , Polimorfismo de Nucleotídeo Único , Espondilite Anquilosante , Proteínas com Domínio T , Humanos , Espondilite Anquilosante/genética , Proteínas com Domínio T/genética , Masculino , Feminino , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Antígeno HLA-B27/genética , Alelos , Genótipo , Frequência do Gene , Pessoa de Meia-Idade , Estudo de Associação Genômica Ampla , População do Leste Asiático
15.
Microbiol Spectr ; 12(5): e0364623, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497717

RESUMO

Anti-interferon-γ autoantibody (AIGA) syndrome may be the basis of disseminated Talaromyces marneffei infection in human immunodeficiency virus (HIV)-negative adults. However, the pathogenesis of Th1 cell immunity in T. marneffei infection with AIGA syndrome is unknown. A multicenter study of HIV-negative individuals with T. marneffei infection was conducted between September 2018 and September 2020 in Guangdong and Guangxi, China. Patients were divided into AIGA-positive (AP) and AIGA-negative (AN) groups according to the AIGA titer and neutralizing activity. The relationship between AIGA syndrome and Th1 immune deficiency was investigated by using AP patient serum and purification of AIGA. Fifty-five HIV-negative adults with disseminated T. marneffei infection who were otherwise healthy were included. The prevalence of AIGA positivity was 83.6%. Based on their AIGA status, 46 and 9 patients were assigned to the AP and AN groups, respectively. The levels of Th1 cells, IFN-γ, and T-bet were higher in T. marneffei-infected patients than in healthy controls. However, the levels of CD4+ T-cell STAT-1 phosphorylation (pSTAT1) and Th1 cells were lower in the AP group than in the AN group. Both the serum of patients with AIGA syndrome and the AIGA purified from the serum of patients with AIGA syndrome could reduce CD4+ T-cell pSTAT1, Th1 cell differentiation and T-bet mRNA, and protein expression. The Th1 cell immune response plays a pivotal role in defense against T. marneffei infection in HIV-negative patients. Inhibition of the Th1 cell immune response may be an important pathological effect of AIGA syndrome.IMPORTANCEThe pathogenesis of Th1 cell immunity in Talaromyces marneffei infection with anti-interferon-γ autoantibody (AIGA) syndrome is unknown. This is an interesting study addressing an important knowledge gap regarding the pathogenesis of T. marneffei in non-HIV positive patients; in particular patients with AIGA. The finding of the Th1 cell immune response plays a pivotal role in defense against T. marneffei infection in HIV-negative patients, and inhibition of the Th1 cell immune response may be an important pathological effect of AIGA syndrome, which presented in this research could help bridge the current knowledge gap.


Assuntos
Autoanticorpos , Interferon gama , Micoses , Talaromyces , Células Th1 , Humanos , Talaromyces/imunologia , Células Th1/imunologia , Interferon gama/imunologia , Autoanticorpos/imunologia , Autoanticorpos/sangue , Masculino , Adulto , Feminino , China , Micoses/imunologia , Micoses/microbiologia , Pessoa de Meia-Idade , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT1/genética
16.
Nucleic Acids Res ; 52(7): e40, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499482

RESUMO

Genome-wide binding assays aspire to map the complete binding pattern of gene regulators. Common practice relies on replication-duplicates or triplicates-and high stringency statistics to favor false negatives over false positives. Here we show that duplicates and triplicates of CUT&RUN are not sufficient to discover the entire activity of transcriptional regulators. We introduce ICEBERG (Increased Capture of Enrichment By Exhaustive Replicate aGgregation), a pipeline that harnesses large numbers of CUT&RUN replicates to discover the full set of binding events and chart the line between false positives and false negatives. We employed ICEBERG to map the full set of H3K4me3-marked regions, the targets of the co-factor ß-catenin, and those of the transcription factor TBX3, in human colorectal cancer cells. The ICEBERG datasets allow benchmarking of individual replicates, comparing the performance of peak calling and replication approaches, and expose the arbitrary nature of strategies to identify reproducible peaks. Instead of a static view of genomic targets, ICEBERG establishes a spectrum of detection probabilities across the genome for a given factor, underlying the intrinsic dynamicity of its mechanism of action, and permitting to distinguish frequent from rare regulation events. Finally, ICEBERG discovered instances, undetectable with other approaches, that underlie novel mechanisms of colorectal cancer progression.


Assuntos
Software , Transcrição Gênica , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Sítios de Ligação , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Genoma Humano , Histonas/metabolismo , Histonas/genética , Ligação Proteica , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
17.
Circ Genom Precis Med ; 17(2): e004404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353104

RESUMO

BACKGROUND: Less than 40% of patients with dilated cardiomyopathy (DCM) have a pathogenic/likely pathogenic genetic variant identified. TBX20 has been linked to congenital heart defects; although an association with left ventricular noncompaction (LVNC) and DCM has been proposed, it is still considered a gene with limited evidence for these phenotypes. This study sought to investigate the association between the TBX20 truncating variant (TBX20tv) and DCM/LVNC. METHODS: TBX20 was sequenced by next-generation sequencing in 7463 unrelated probands with a diagnosis of DCM or LVNC, 22 773 probands of an internal comparison group (hypertrophic cardiomyopathy, channelopathies, or aortic diseases), and 124 098 external controls (individuals from the gnomAD database). Enrichment of TBX20tv in DCM/LVNC was calculated, cosegregation was determined in selected families, and clinical characteristics and outcomes were analyzed in carriers. RESULTS: TBX20tv was enriched in DCM/LVNC (24/7463; 0.32%) compared with internal (1/22 773; 0.004%) and external comparison groups (4/124 098; 0.003%), with odds ratios of 73.23 (95% CI, 9.90-541.45; P<0.0001) and 99.76 (95% CI, 34.60-287.62; P<0.0001), respectively. TBX20tv was cosegregated with DCM/LVNC phenotype in 21 families for a combined logarythm of the odds score of 4.53 (strong linkage). Among 57 individuals with TBX20tv (49.1% men; mean age, 35.9±20.8 years), 41 (71.9%) exhibited DCM/LVNC, of whom 14 (34.1%) had also congenital heart defects. After a median follow-up of 6.9 (95% CI, 25-75:3.6-14.5) years, 9.7% of patients with DCM/LVNC had end-stage heart failure events and 4.8% experienced malignant ventricular arrhythmias. CONCLUSIONS: TBX20tv is associated with DCM/LVNC; congenital heart defect is also present in around one-third of cases. TBX20tv-associated DCM/LVNC is characterized by a nonaggressive phenotype, with a low incidence of major cardiovascular events. TBX20 should be considered a definitive gene for DCM and LVNC and routinely included in genetic testing panels for these phenotypes.


Assuntos
Cardiomiopatia Dilatada , Cardiopatias Congênitas , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Feminino , Cardiomiopatia Dilatada/patologia , Cardiopatias Congênitas/genética , Arritmias Cardíacas , Fenótipo , Proteínas com Domínio T/genética
18.
Eur J Med Genet ; 68: 104920, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336121

RESUMO

T-Box Transcription Factor 5 (TBX5) variants are associated with Holt-Oram syndrome. Holt-Oram syndrome display phenotypic variability, regarding upper limb defects, congenital heart defects, and arrhythmias. To investigate the genotype-phenotype relationship between TBX5 variants and cardiac disease, we performed a systematic review of the literature. Through the systematic review we identified 108 variants in TBX5 associated with a cardiac phenotype in 277 patients. Arrhythmias were more frequent in patients with a missense variant (48% vs 30%, p = 0.009) and upper limb abnormalities were more frequent in patients with protein-truncating variants (85% vs 64%, p = 0.0008). We found clustering of missense variants in the T-box domain. Furthermore, we present a family with atrial septal defects. By whole exome sequencing, we identified a novel missense variant p.Phe232Leu in TBX5. The cardiac phenotype included atrial septal defect, arrhythmias, heart failure, and dilated cardiomyopathy. Clinical examination revealed subtle upper limb abnormalities. Thus, the family corresponds to the diagnostic criteria of Holt-Oram syndrome. We provide an overview of cardiac phenotypes associated with TBX5 variants and show an increased risk of arrhythmias associated to missense variants compared to protein-truncating variants. We report a novel missense variant in TBX5 in a family with an atypical Holt-Oram syndrome phenotype.


Assuntos
Anormalidades Múltiplas , Cardiopatias Congênitas , Comunicação Interatrial , Deformidades Congênitas das Extremidades Inferiores , Deformidades Congênitas das Extremidades Superiores , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/diagnóstico , Comunicação Interatrial/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Fenótipo , Proteínas com Domínio T/genética , Deformidades Congênitas das Extremidades Superiores/genética , Deformidades Congênitas das Extremidades Superiores/diagnóstico
19.
Eur J Immunol ; 54(4): e2350675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396108

RESUMO

Human CD4+EOMES+ T cells are heterogeneous and contain Th1-cells, Tr1-cells, and CD4+CTL. Tr1- cells and non-classical EOMES+ Th1-cells displayed, respectively, anti- and pro-inflammatory cytokine profiles, but both expressed granzyme-K, produced IFN-γ, and suppressed T-cell proliferation. Diffusion map suggested a progressive CD4+T-cell differentiation from naïve to cytotoxic cells and identified EOMES+Th1-cells as putative Tr1-cell precursors (pre-Tr1).


Assuntos
Interleucina-10 , Subpopulações de Linfócitos T , Humanos , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Células Th1 , Diferenciação Celular , Proteínas com Domínio T/genética
20.
Int J Biol Macromol ; 263(Pt 1): 130220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368983

RESUMO

Human trophoblastic lineage development is intertwined with placental development and pregnancy outcomes, but the regulatory mechanisms underpinning this process remain inadequately understood. In this study, based on single-nuclei RNA sequencing (snRNA-seq) analysis of the human early maternal-fetal interface, we compared the gene expression pattern of trophoblast at different developmental stages. Our findings reveal a predominant upregulation of TBX3 during the transition from villous cytotrophoblast (VCT) to syncytiotrophoblast (SCT), but downregulation of TBX3 as VCT progresses into extravillous trophoblast cells (EVT). Immunofluorescence analysis verified the primary expression of TBX3 in SCT, partial expression in MKi67-positive VCT, and absence in HLA-G-positive EVT, consistent with our snRNA-seq results. Using immortalized trophoblastic cell lines (BeWo and HTR8/SVneo) and human primary trophoblast stem cells (hTSCs), we observed that TBX3 knockdown impedes SCT formation through RAS-MAPK signaling, while TBX3 overexpression disrupts the cytoskeleton structure of EVT and hinders EVT differentiation by suppressing FAK signaling. In conclusion, our study suggests that the spatiotemporal expression of TBX3 plays a critical role in regulating trophoblastic lineage development via distinct signaling pathways. This underscores TBX3 as a key determinant during hemochorial placental development.


Assuntos
Placenta , Placentação , Humanos , Gravidez , Feminino , Placenta/metabolismo , Placentação/genética , Primeiro Trimestre da Gravidez , Trofoblastos/metabolismo , RNA Nuclear Pequeno/metabolismo , Movimento Celular , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA