Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Science ; 384(6701): eado0713, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870284

RESUMO

Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.


Assuntos
Bacteriocinas , Fagos de Pseudomonas , Pseudomonas , Proteínas da Cauda Viral , Antibiose , Membrana Externa Bacteriana/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Variação Genética , Genoma Bacteriano , Polissacarídeos Bacterianos/metabolismo , Pseudomonas/metabolismo , Pseudomonas/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/genética , Terapia por Fagos/métodos
2.
Cell Host Microbe ; 32(7): 1059-1073.e8, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38821063

RESUMO

Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Escherichia coli/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Bacteriófago lambda/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/fisiologia , Antitoxinas/metabolismo , Antitoxinas/genética , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/genética
3.
Nat Commun ; 15(1): 4442, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789435

RESUMO

Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.


Assuntos
Proteínas de Bactérias , Bacteriófagos , Esporos Bacterianos , Streptomyces , Streptomyces/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Filogenia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/genética
4.
Viruses ; 16(5)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793652

RESUMO

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Assuntos
Acinetobacter , Cápsulas Bacterianas , Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/enzimologia , Bacteriófagos/classificação , Acinetobacter/virologia , Acinetobacter/genética , Acinetobacter/enzimologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/genética , Acinetobacter baumannii/virologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Glicosídeo Hidrolases
5.
Nat Commun ; 15(1): 4185, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760367

RESUMO

Bacteriophage infection, a pivotal process in microbiology, initiates with the phage's tail recognizing and binding to the bacterial cell surface, which then mediates the injection of viral DNA. Although comprehensive studies on the interaction between bacteriophage lambda and its outer membrane receptor, LamB, have provided rich information about the system's biochemical properties, the precise molecular mechanism remains undetermined. This study revealed the high-resolution cryo-electron microscopy (cryo-EM) structures of the bacteriophage lambda tail complexed with its irreversible Shigella sonnei 3070 LamB receptor and the closed central tail fiber. These structures reveal the complex processes that trigger infection and demonstrate a substantial conformational change in the phage lambda tail tip upon LamB binding. Providing detailed structures of bacteriophage lambda infection initiation, this study contributes to the expanding knowledge of lambda-bacterial interaction, which holds significance in the fields of microbiology and therapeutic development.


Assuntos
Bacteriófago lambda , Microscopia Crioeletrônica , Shigella sonnei , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Bacteriófago lambda/fisiologia , Shigella sonnei/virologia , Shigella sonnei/metabolismo , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/genética , Porinas/metabolismo , Porinas/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Ligação Proteica , Modelos Moleculares , Conformação Proteica , Receptores Virais
6.
Commun Biol ; 7(1): 590, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755280

RESUMO

Infection of bacteria by phages is a complex multi-step process that includes specific recognition of the host cell, creation of a temporary breach in the host envelope, and ejection of viral DNA into the bacterial cytoplasm. These steps must be perfectly regulated to ensure efficient infection. Here we report the dual function of the tail completion protein gp16.1 of bacteriophage SPP1. First, gp16.1 has an auxiliary role in assembly of the tail interface that binds to the capsid connector. Second, gp16.1 is necessary to ensure correct routing of phage DNA to the bacterial cytoplasm. Viral particles assembled without gp16.1 are indistinguishable from wild-type virions and eject DNA normally in vitro. However, they release their DNA to the extracellular space upon interaction with the host bacterium. The study shows that a highly conserved tail completion protein has distinct functions at two essential steps of the virus life cycle in long-tailed phages.


Assuntos
Proteínas da Cauda Viral , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Bacteriófagos/metabolismo , DNA Viral/metabolismo , DNA Viral/genética , Vírion/metabolismo
7.
Nat Microbiol ; 9(5): 1312-1324, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565896

RESUMO

Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.


Assuntos
Prófagos , Staphylococcus aureus , Prófagos/genética , Staphylococcus aureus/virologia , Staphylococcus aureus/imunologia , Autoimunidade , Lisogenia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/imunologia , Fagos de Staphylococcus/fisiologia , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Bacteriófagos/genética , Bacteriófagos/imunologia , Bacteriófagos/fisiologia
8.
Virus Res ; 345: 199370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614253

RESUMO

Non-infectious virus-like nanoparticles mimic native virus structures and can be modified by inserting foreign protein fragments, making them immunogenic tools for antigen presentation. This study investigated, for the first time, the immunogenicity of long and flexible polytubes formed by yeast-expressed tail tube protein gp39 of bacteriophage vB_EcoS_NBD2 and evaluated their ability to elicit an immune response against the inserted protein fragments. Protein gp39-based polytubes induced humoral immune response in mice, even without the use of adjuvant. Bioinformatics analysis guided the selection of protein fragments from Acinetobacter baumannii for insertion into the C-terminus of gp39. Chimeric polytubes, displaying 28-amino acid long OmpA protein fragment, induced IgG response against OmpA protein fragment in immunized mice. These polytubes demonstrated their effectiveness both as antigen carrier and an adjuvant, when the OmpA fragments were either displayed on chimeric polytubes or used alongside with the unmodified polytubes. Our findings expand the potential applications of long and flexible polytubes, contributing to the development of novel antigen carriers with improved immunogenicity and antigen presentation capabilities.


Assuntos
Proteínas da Membrana Bacteriana Externa , Bacteriófagos , Vacinas de Subunidades Antigênicas , Animais , Camundongos , Proteínas da Membrana Bacteriana Externa/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Feminino , Acinetobacter baumannii/imunologia , Camundongos Endogâmicos BALB C , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas da Cauda Viral/imunologia , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/química , Imunidade Humoral , Imunização , Anticorpos Antibacterianos/imunologia
9.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38649301

RESUMO

BACKGROUND: Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehensive understanding of the specificity of individual phages. Yet the significant diversity within phage populations presents a considerable challenge. Currently, there is a notable lack of tools designed for large-scale characterization of phage receptor-binding proteins, which are crucial in determining the phage host range. RESULTS: In this study, we present SpikeHunter, a deep learning method based on the ESM-2 protein language model. With SpikeHunter, we identified 231,965 diverse phage-encoded tailspike proteins, a crucial determinant of phage specificity that targets bacterial polysaccharide receptors, across 787,566 bacterial genomes from 5 virulent, antibiotic-resistant pathogens. Notably, 86.60% (143,200) of these proteins exhibited strong associations with specific bacterial polysaccharides. We discovered that phages with identical tailspike proteins can infect different bacterial species with similar polysaccharide receptors, underscoring the pivotal role of tailspike proteins in determining host range. The specificity is mainly attributed to the protein's C-terminal domain, which strictly correlates with host specificity during domain swapping in tailspike proteins. Importantly, our dataset-driven predictions of phage-host specificity closely match the phage-host pairs observed in real-world phage therapy cases we studied. CONCLUSIONS: Our research provides a rich resource, including both the method and a database derived from a large-scale genomics survey. This substantially enhances understanding of phage specificity determinants at the strain level and offers a valuable framework for guiding phage selection in therapeutic applications.


Assuntos
Bacteriófagos , Aprendizado Profundo , Especificidade de Hospedeiro , Bacteriófagos/genética , Especificidade de Hospedeiro/genética , Genômica/métodos , Genoma Bacteriano , Proteínas da Cauda Viral/genética , Genoma Viral , Bactérias/virologia , Bactérias/genética , Glicosídeo Hidrolases/genética
10.
Virology ; 593: 110017, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382161

RESUMO

Bacteriophage Mu is a temperate phage known to infect various species of Enterobacteria, playing a role in bacterial mutation induction and horizontal gene transfer. The phage possesses two types of tail fibers important for host recognition, which enable it to expand its range of hosts. The alternate tail fibers are formed through the action of genes 49-50 or 52-51, allowing the Mu phage to recognize different surfaces of host cells. In a previous study, we presented the X-ray crystal structure of the C-terminal lipopolysaccharide (LPS)-binding domain of gene product (gp) 49, one of the subunits comprising the Mu tail fiber. In this study, we have determined the structure of the alternative tail fiber subunit, gp52, and compared it with other tail fibers. The results revealed that Mu phage employs different structural motifs for two individual tail fibers for recognizing different hosts.


Assuntos
Bacteriófago mu , Bacteriófagos , Bacteriófago mu/química , Bacteriófago mu/genética , Bacteriófagos/genética , Proteínas da Cauda Viral/genética
11.
PLoS Biol ; 21(12): e3002441, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096144

RESUMO

Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda "wild type," the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ligação Proteica , Proteínas do Capsídeo/metabolismo , DNA/metabolismo , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/química , Proteínas da Cauda Viral/metabolismo
12.
J Mol Biol ; 435(24): 168365, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952769

RESUMO

Bacteriophage P22 is a prototypical member of the Podoviridae superfamily. Since its discovery in 1952, P22 has become a paradigm for phage transduction and a model for icosahedral viral capsid assembly. Here, we describe the complete architecture of the P22 tail apparatus (gp1, gp4, gp10, gp9, and gp26) and the potential location and organization of P22 ejection proteins (gp7, gp20, and gp16), determined using cryo-EM localized reconstruction, genetic knockouts, and biochemical analysis. We found that the tail apparatus exists in two equivalent conformations, rotated by ∼6° relative to the capsid. Portal protomers make unique contacts with coat subunits in both conformations, explaining the 12:5 symmetry mismatch. The tail assembles around the hexameric tail hub (gp10), which folds into an interrupted ß-propeller characterized by an apical insertion domain. The tail hub connects proximally to the dodecameric portal protein and head-to-tail adapter (gp4), distally to the trimeric tail needle (gp26), and laterally to six trimeric tailspikes (gp9) that attach asymmetrically to gp10 insertion domain. Cryo-EM analysis of P22 mutants lacking the ejection proteins gp7 or gp20 and biochemical analysis of purified recombinant proteins suggest that gp7 and gp20 form a molecular complex associated with the tail apparatus via the portal protein barrel. We identified a putative signal transduction pathway from the tailspike to the tail needle, mediated by three flexible loops in the tail hub, that explains how lipopolysaccharide (LPS) is sufficient to trigger the ejection of the P22 DNA in vitro.


Assuntos
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Bacteriófago P22/química , Bacteriófago P22/metabolismo , Proteínas do Capsídeo/química , Salmonella typhimurium/virologia , Proteínas da Cauda Viral/genética
13.
J Mol Biol ; 434(21): 167829, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116540

RESUMO

Enterobacteria phage P1 expresses two types of tail fibre, S and S'. Despite the wide usage of phage P1 for transduction, the host range and the receptor for its alternative S' tail fibre was never determined. Here, a ΔS-cin Δpac E. coli P1 lysogenic strain was generated to allow packaging of phagemid DNA into P1 phage having either S or S' tail fibre. P1(S') could transduce phagemid DNA into Shigella flexneri 2a 2457O, Shigella flexneri 5a M90T and Escherichia coli O3 efficiently. Mutational analysis of the O-antigen assembly genes and LPS inhibition assays indicated that P1(S') transduction requires at least one O-antigen unit. E. coli O111:B4 LPS produced a high neutralising effect against P1(S') transduction, indicating that this E. coli strain could be susceptible to P1(S')-mediated transduction. Mutations in the O-antigen modification genes of S. flexneri 2a 2457O and S. flexneri 5a M90T did not cause significant changes to P1(S') transduction efficiency. A higher transduction efficiency of P1(S') improved the delivery of a cas9 antimicrobial phagemid into both S. flexneri 2457O and M90T. These findings provide novel insights into P1 tropism-switching, by identifying the bacterial strains which are susceptible to P1(S')-mediated transduction, as well as demonstrating its potential for delivering a DNA sequence-specific Cas9 antimicrobial into clinically relevant S. flexneri.


Assuntos
Bacteriófago P1 , Escherichia coli , Antígenos O , Shigella flexneri , Transdução Genética , Proteínas da Cauda Viral , Escherichia coli/genética , Escherichia coli/virologia , Antígenos O/genética , Antígenos O/fisiologia , Shigella flexneri/genética , Shigella flexneri/virologia , Bacteriófago P1/genética , Bacteriófago P1/fisiologia , Proteínas da Cauda Viral/genética
14.
J Virol ; 96(16): e0092922, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35894604

RESUMO

The first critical step in a virus's infection cycle is attachment to its host. This interaction is precise enough to ensure the virus will be able to productively infect the cell, but some flexibility can be beneficial to enable coevolution and host range switching or expansion. Bacteriophage Sf6 utilizes a two-step process to recognize and attach to its host Shigella flexneri. Sf6 first recognizes the lipopolysaccharide (LPS) of S. flexneri and then binds outer membrane protein (Omp) A or OmpC. This phage infects serotype Y strains but can also form small, turbid plaques on serotype 2a2; turbid plaques appear translucent rather than transparent, indicating greater survival of bacteria. Reduced plating efficiency further suggested inefficient infection. To examine the interactions between Sf6 and this alternate host, phages were experimentally evolved using mixed populations of S. flexneri serotypes Y and 2a2. The recovered mutants could infect serotype 2a2 with greater efficiency than the ancestral Sf6, forming clear plaques on both serotypes. All mutations mapped to two distinct regions of the receptor-binding tailspike protein: (i) adjacent to the LPS binding site near the N terminus; and (ii) at the distal, C-terminal tip of the protein. Although we anticipated interactions between the Sf6 tailspike and 2a2 O-antigen to be weak, LPS of this serotype appears to inhibit infection through strong binding of particles, effectively removing them from the environment. The mutations of the evolved strains reduce the inhibitory effect by either reducing electrostatic interactions with the O-antigen or increasing reliance on the Omp secondary receptors. IMPORTANCE Viruses depend on host cells to propagate themselves. In mixed populations and communities of host cells, finding these susceptible host cells may have to be balanced with avoiding nonhost cells. Alternatively, being able to infect new cell types can increase the fitness of the virus. Many bacterial viruses use a two-step process to identify their hosts, binding first to an LPS receptor and then to a host protein. For Shigella virus Sf6, the tailspike protein was previously known to bind the LPS receptor. Genetic data from this work imply the tailspike also binds to the protein receptor. By experimentally evolving Sf6, we also show that point mutations in this protein can dramatically affect the binding of one or both receptors. This may provide Sf6 flexibility in identifying host cells and the ability to rapidly alter its host range under selective pressure.


Assuntos
Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Mutação Puntual , Shigella flexneri/virologia , Proteínas da Cauda Viral/genética , Especificidade de Hospedeiro , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Antígenos O/química , Antígenos O/genética , Antígenos O/metabolismo
15.
Virology ; 566: 9-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826709

RESUMO

Tape measure (TM) proteins are essential for the formation of long-tailed phages. TM protein assembly into tails requires the action of tail assembly chaperones (TACs). TACs (e.g. gpG and gpT of E. coli phage lambda) are usually produced in a short (TAC-N) and long form (TAC-NC) with the latter comprised of TAC-N with an additional C-terminal domain (TAC-C). TAC-NC is generally synthesized through a ribosomal frameshifting mechanism. TAC encoding genes have never been identified in the intensively studied Escherichia coli phage T4, or any related phages. Here, we have bioinformatically identified putative TAC encoding genes in diverse T4-like phage genomes. The frameshifting mechanism for producing TAC-NC appears to be conserved in several T4-like phage groups. However, the group including phage T4 itself likely employs a different strategy whereby TAC-N and TAC-NC are encoded by separate genes (26 and 51 in phage T4).


Assuntos
Bacteriófago T4/genética , Escherichia coli/virologia , Genoma Viral , Chaperonas Moleculares/genética , Proteínas da Cauda Viral/química , Vírion/genética , Sequência de Aminoácidos , Bactérias/virologia , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestrutura , Biologia Computacional/métodos , Sequência Conservada , Mudança da Fase de Leitura do Gene Ribossômico , Chaperonas Moleculares/classificação , Chaperonas Moleculares/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas da Cauda Viral/classificação , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus/genética
16.
Viruses ; 13(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696524

RESUMO

Phage G is recognized as having a remarkably large genome and capsid size among isolated, propagated phages. Negative stain electron microscopy of the host-phage G interaction reveals tail sheaths that are contracted towards the distal tip and decoupled from the head-neck region. This is different from the typical myophage tail contraction, where the sheath contracts upward, while being linked to the head-neck region. Our cryo-EM structures of the non-contracted and contracted tail sheath show that: (1) The protein fold of the sheath protein is very similar to its counterpart in smaller, contractile phages such as T4 and phi812; (2) Phage G's sheath structure in the non-contracted and contracted states are similar to phage T4's sheath structure. Similarity to other myophages is confirmed by a comparison-based study of the tail sheath's helical symmetry, the sheath protein's evolutionary timetree, and the organization of genes involved in tail morphogenesis. Atypical phase G tail contraction could be due to a missing anchor point at the upper end of the tail sheath that allows the decoupling of the sheath from the head-neck region. Explaining the atypical tail contraction requires further investigation of the phage G sheath anchor points.


Assuntos
Myoviridae/ultraestrutura , Proteínas da Cauda Viral/ultraestrutura , Bacteriófagos/metabolismo , Bacteriófagos/ultraestrutura , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Myoviridae/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
17.
J Mol Biol ; 433(18): 167112, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34153288

RESUMO

Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.


Assuntos
Bacillus subtilis/virologia , Capsídeo/metabolismo , Genoma Viral , Siphoviridae/fisiologia , Proteínas da Cauda Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Chaperonas Moleculares , Siphoviridae/química , Siphoviridae/genética , Proteínas da Cauda Viral/genética
18.
Viruses ; 13(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070371

RESUMO

Acinetobacter baumannii, one of the most significant nosocomial pathogens, is capable of producing structurally diverse capsular polysaccharides (CPSs) which are the primary receptors for A. baumannii bacteriophages encoding polysaccharide-degrading enzymes. To date, bacterial viruses specifically infecting A. baumannii strains belonging to more than ten various capsular types (K types) were isolated and characterized. In the present study, we investigate the biological properties, genomic organization, and virus-bacterial host interaction strategy of novel myovirus TaPaz isolated on the bacterial lawn of A. baumannii strain with a K47 capsular polysaccharide structure. The phage linear double-stranded DNA genome of 93,703 bp contains 178 open reading frames. Genes encoding two different tailspike depolymerases (TSDs) were identified in the phage genome. Recombinant TSDs were purified and tested against the collection of A. baumannii strains belonging to 56 different K types. One of the TSDs was demonstrated to be a specific glycosidase that cleaves the K47 CPS by the hydrolytic mechanism.


Assuntos
Acinetobacter baumannii/virologia , Bacteriófagos/genética , Glicosídeo Hidrolases/genética , Interações Hospedeiro-Patógeno , Proteínas da Cauda Viral/genética , Bacteriófagos/enzimologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Genoma Viral , Genômica/métodos , Glicosídeo Hidrolases/metabolismo , Especificidade de Hospedeiro , Fases de Leitura Aberta , Filogenia
19.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947754

RESUMO

The high specificity of bacteriophages is driven by their receptor-binding proteins (RBPs). Many Klebsiella bacteriophages target the capsular exopolysaccharide as the receptor and encode RBPs with depolymerase activity. The modular structure of these RBPs with an N-terminal structural module to attach the RBP to the phage tail, and a C-terminal specificity module for exopolysaccharide degradation, supports horizontal transfer as a major evolutionary driver for Klebsiella phage RBPs. We mimicked this natural evolutionary process by the construction of modular RBP chimeras, exchanging N-terminal structural modules and C-terminal specificity modules. All chimeras strictly follow the capsular serotype specificity of the C-terminal module. Transplanting chimeras with a K11 N-terminal structural RBP module in a Klebsiella phage K11 scaffold results in a capsular serotype switch and corresponding host range modification of the synthetic phages, demonstrating that horizontal transfer of C-terminal specificity modules offers Klebsiella phages an evolutionary highway for rapid adaptation to new capsular serotypes.IMPORTANCE The antimicrobial resistance crisis has rekindled interest in bacteriophage therapy. Phages have been studied over a century as therapeutics to treat bacterial infections, but one of the biggest challenges for the use of phages in therapeutic interventions remains their high specificity. In particular, many Klebsiella phages have a narrow spectrum constrained by the high diversity of exopolysaccharide capsules that shield access to the cells. In this work, we have elaborated how Klebsiella phages deal with this high diversity by exchanging building blocks of their receptor-binding proteins.


Assuntos
Bacteriófagos/genética , Klebsiella/virologia , Sorogrupo , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Cápsulas Bacterianas , Bacteriófagos/química , Bacteriófagos/metabolismo , Proteínas de Transporte/metabolismo , Genoma Viral , Ligação Proteica , Proteínas da Cauda Viral/química
20.
ACS Synth Biol ; 10(6): 1292-1299, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33983709

RESUMO

Bacterial transduction particles were critical to early advances in molecular biology and are currently experiencing a resurgence in interest within the diagnostic and therapeutic fields. The difficulty of developing a robust and specific transduction reagent capable of delivering a genetic payload to the diversity of strains constituting a given bacterial species or genus is a major impediment to their expanded utility as commercial products. While recent advances in engineering the reactivity of these reagents have made them more attractive for product development, considerable improvements are still needed. Here, we demonstrate a synthetic biology platform derived from bacteriophage P1 as a chassis to target transduction reagents against four clinically prevalent species within the Enterobacterales order. Bacteriophage P1 requires only a single receptor binding protein to enable attachment and injection into a target bacterium. By engineering and screening particles displaying a diverse array of chimeric receptor binding proteins, we generated a potential transduction reagent for a future rapid phenotypic carbapenem-resistant Enterobacterales diagnostic assay.


Assuntos
Bacteriófago P1/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecções por Enterobacteriaceae/diagnóstico , Engenharia Genética/métodos , Proteínas da Cauda Viral/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Ertapenem/farmacologia , Testes de Sensibilidade Microbiana/métodos , Fenótipo , Biologia Sintética/métodos , Transdução Genética/métodos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA