Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.085
Filtrar
1.
J Agric Food Chem ; 72(17): 10005-10013, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626461

RESUMO

Dunaliella bardawil is a marine unicellular green algal that produces large amounts of ß-carotene and is a model organism for studying the carotenoid synthesis pathway. However, there are still many mysteries about the enzymes of the D. bardawil lycopene synthesis pathway that have not been revealed. Here, we have identified a CruP-like lycopene isomerase, named DbLyISO, and successfully cloned its gene from D. bardawil. DbLyISO showed a high homology with CruPs. We constructed a 3D model of DbLyISO and performed molecular docking with lycopene, as well as molecular dynamics testing, to identify the functional characteristics of DbLyISO. Functional activity of DbLyISO was also performed by overexpressing gene in both E. coli and D. bardawil. Results revealed that DbLyISO acted at the C-5 and C-13 positions of lycopene, catalyzing its cis-trans isomerization to produce a more stable trans structure. These results provide new ideas for the development of a carotenoid series from engineered bacteria, algae, and plants.


Assuntos
Clorofíceas , Liases Intramoleculares , Licopeno , cis-trans-Isomerases , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Proteínas de Algas/química , Sequência de Aminoácidos , Carotenoides/metabolismo , Carotenoides/química , Clorofíceas/enzimologia , Clorofíceas/genética , Clorofíceas/química , Clorofíceas/metabolismo , Clorófitas/enzimologia , Clorófitas/genética , Clorófitas/química , Clorófitas/metabolismo , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , cis-trans-Isomerases/química , Escherichia coli/genética , Escherichia coli/metabolismo , Licopeno/metabolismo , Licopeno/química , Simulação de Acoplamento Molecular , Alinhamento de Sequência
2.
Cell ; 187(1): 130-148.e17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38128538

RESUMO

The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.


Assuntos
Embriófitas , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Embriófitas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fosforilação , Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Algas/metabolismo
3.
Cell ; 185(25): 4788-4800.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36413996

RESUMO

The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.


Assuntos
Proteínas de Algas , Chlamydomonas , Cloroplastos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Membranas Intracelulares/metabolismo , Transporte Proteico , Chlamydomonas/química , Chlamydomonas/citologia , Complexos Multiproteicos/metabolismo , Proteínas de Algas/metabolismo
4.
Biochem Biophys Res Commun ; 596: 97-103, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121375

RESUMO

Reactive oxygen species (ROS) can both act as a poison causing cell death and important signaling molecules among various organisms. Photosynthetic organisms inevitably produce ROS, making the appropriate elimination of ROS an essential strategy for survival. Interestingly, the unicellular green alga Chlamydomonas reinhardtii expresses a mammalian form of thioredoxin reductase, TR1, which functions as a ROS scavenger in animal cells. To investigate the properties of TR1 in C. reinhardtii, we generated TR1 knockout strains using CRISPR/Cas9-based genome editing. We found a reduced tolerance to high-light and ROS stresses in the TR1 knockout strains compared to the parental strain. In addition, the regulation of phototactic orientation, known to be regulated by ROS, was affected in the knockout strains. These results suggest that TR1 contributes to a ROS-scavenging pathway in C. reinhardtii.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Luz , Tolerância a Radiação/genética , Tiorredoxina Redutase 1/genética , Proteínas de Algas/metabolismo , Animais , Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/efeitos da radiação , Edição de Genes/métodos , Técnicas de Inativação de Genes , Peróxido de Hidrogênio/farmacologia , Mamíferos/genética , Mamíferos/metabolismo , Oxidantes/farmacologia , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Fototaxia/efeitos dos fármacos , Fototaxia/efeitos da radiação , RNA-Seq/métodos , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Redutase 1/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054961

RESUMO

Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more "quenched" than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.


Assuntos
Proteínas de Algas/química , Proteínas de Algas/metabolismo , Fluorescência , Fotossíntese , Cinética , Multimerização Proteica , Transporte Proteico , Espectrometria de Fluorescência
6.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996872

RESUMO

The target of rapamycin (TOR) kinase is a master regulator that integrates nutrient signals to promote cell growth in all eukaryotes. It is well established that amino acids and glucose are major regulators of TOR signaling in yeast and metazoan, but whether and how TOR responds to carbon availability in photosynthetic organisms is less understood. In this study, we showed that photosynthetic assimilation of CO2 by the Calvin-Benson-Bassham (CBB) cycle regulates TOR activity in the model single-celled microalga Chlamydomonas reinhardtii Stimulation of CO2 fixation boosted TOR activity, whereas inhibition of the CBB cycle and photosynthesis down-regulated TOR. We uncovered a tight link between TOR activity and the endogenous level of a set of amino acids including Ala, Glu, Gln, Leu, and Val through the modulation of CO2 fixation and the use of amino acid synthesis inhibitors. Moreover, the finding that the Chlamydomonas starch-deficient mutant sta6 displayed disproportionate TOR activity and high levels of most amino acids, particularly Gln, further connected carbon assimilation and amino acids to TOR signaling. Thus, our results showed that CO2 fixation regulates TOR signaling, likely through the synthesis of key amino acids.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Sirolimo/farmacologia , Proteínas de Algas/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Transdução de Sinais/efeitos dos fármacos , Amido/metabolismo , Serina-Treonina Quinases TOR/metabolismo
7.
Elife ; 112022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982025

RESUMO

Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 co-migrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Cílios/metabolismo , Flagelos/metabolismo , Proteínas de Algas/metabolismo , Transporte Biológico , Chlamydomonas reinhardtii/metabolismo
8.
Plant Mol Biol ; 108(4-5): 363-378, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34546521

RESUMO

Ostreococcus tauri is a picoalga that contains a small and compact genome, which resembles that of higher plants in the multiplicity of enzymes involved in starch synthesis (ADP-glucose pyrophosphorylase, ADPGlc PPase; granule bound starch synthase, GBSS; starch synthases, SSI, SSII, SSIII; and starch branching enzyme, SBE, between others), except starch synthase IV (SSIV). Although its genome is fully sequenced, there are still many genes and proteins to which no function was assigned. Here, we identify the OT_ostta06g01880 gene that encodes CBM20CP, a plastidial protein which contains a central carbohydrate binding domain of the CBM20 family, and a coiled coil domain at the C-terminus that lacks catalytic activity. We demonstrate that CBM20CP has the ability to bind starch, amylose and amylopectin with different affinities. Furthermore, this protein interacts with OsttaSSIII-B, increasing its binding to starch granules, its catalytic efficiency and promoting granule growth. The results allow us to postulate a functional role for CBM20CP in starch metabolism in green algae. KEY MESSAGE: CBM20CP, a plastidial protein that has a modular structure but lacks catalytic activity, regulates the synthesis of starch in Ostreococcus tauri.


Assuntos
Proteínas de Algas/metabolismo , Clorófitas/metabolismo , Amido/metabolismo , Proteínas de Algas/genética , Sequência de Aminoácidos , Amilopectina/metabolismo , Amilose/metabolismo , Clorófitas/enzimologia , Clorófitas/genética , Clonagem Molecular , Plastídeos , Ligação Proteica , Alinhamento de Sequência
9.
Nitric Oxide ; 119: 41-49, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942379

RESUMO

Nitric oxide synthase (NOS) catalyzes NO formation from the substrate l-arginine (Arg). Previously, NOS with distinct biochemical properties were characterized from two photosynthetic microorganisms, the unicellular algae Ostreococcus tauri (OtNOS) and the cyanobacteria Synechococcus PCC 7335 (SyNOS). In this work we studied the effect of recombinant OtNOS and SyNOS expressed under IPTG-induced promoter in E. coli, a bacterium that lacks NOS. Results show that OtNOS and SyNOS expression promote E. coli growth in a nutrient replete medium and allow to better metabolize Arg as N source. In LB medium, OtNOS induces the expression of the NO dioxygenase hmp in E. coli, in accordance with high NO levels visualized with the probe DAF-FM DA. In contrast, SyNOS expression does not induce hmp and show a slight increase of NO production compared to OtNOS. NOS expression reduces ROS production and increases viability of E. coli cultures growing in LB. A strong nitrosative stress provoked by the addition of 1 mM of the NO donors sodium nitroprusside (SNP) and nitrosoglutathione (GSNO) inhibits bacterial growth rate. Under these conditions, the expression of OtNOS or SyNOS counteracts NO donor toxicity restoring bacterial growth. Finally, using bioinformatic tools and ligand docking analyses, we postulate that tetrahydromonapterin (MH4), an endogenous pterin found in E. coli, could act as cofactor required for NOS catalytic activity. Our findings could be useful for the development of biotechnological applications using NOS expression to improve growth in NOS-lacking bacteria.


Assuntos
Biopterinas/análogos & derivados , Coenzimas/metabolismo , Escherichia coli/crescimento & desenvolvimento , Óxido Nítrico Sintase/metabolismo , Estresse Nitrosativo/fisiologia , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopterinas/química , Biopterinas/metabolismo , Clorófitas/enzimologia , Coenzimas/química , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/química , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Synechococcus/enzimologia
10.
Biochem Biophys Res Commun ; 586: 74-80, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837835

RESUMO

Fatty acid desaturase (FADS) generates double bond at a certain position of the corresponding polyunsaturated fatty acids (PUFAs) with high selectivity, the enzyme activity and PUFAs products of which are essential to biological systems and are associated with a variety of physiological diseases. Little is known about the structure of FADSs and their amino acid residues related to catalytic activities. Identifying key residues of Micromonas pusilla delta 6 desaturase (MpFADS6) provides a point of departure for a better understanding of desaturation. In this study, conserved amino acids were anchored through gene consensus analysis, thereby generating corresponding variants by site-directed mutagenesis. To achieve stable and high-efficiency expression of MpFADS6 and its variants in Saccharomyces cerevisiae, the key points of induced expression were optimized. The contribution of conserved residues to the function of enzyme was determined by analyzing enzyme activity of the variants. Molecular modeling indicated that these residues are essential to catalytic activities, or substrate binding. Mutants MpFADS6[Q409R] and MpFADS6[M242P] abolished desaturation, while MpFADS6[F419V] and MpFADS6[A374Q] significantly reduced catalytic activities. Given that certain residues have been identified to have a significant impact on MpFADS6 activities, it is put forward that histidine-conserved region III of FADS6 is related to electronic transfer during desaturation, while histidine-conserved regions I and II are related to desaturation. These findings provide new insights and methods to determine the structure, mechanism and directed transformation of membrane-bound desaturases.


Assuntos
Proteínas de Algas/química , Clorófitas/enzimologia , Ácidos Graxos Dessaturases/química , Ácido Linoleico/química , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Clorófitas/química , Clonagem Molecular , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ácido Linoleico/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
FEBS J ; 289(4): 999-1022, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582628

RESUMO

Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, ß-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.


Assuntos
Proteínas de Algas/metabolismo , Carotenoides/metabolismo , Chlamydomonas reinhardtii/química , Proteínas de Algas/química , Sítios de Ligação , Carotenoides/química , Solubilidade
12.
Sci Rep ; 11(1): 22231, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811380

RESUMO

Germ-soma differentiation evolved independently in many eukaryotic lineages and contributed to complex multicellular organizations. However, the molecular genetic bases of such convergent evolution remain unresolved. Two multicellular volvocine green algae, Volvox and Astrephomene, exhibit convergent evolution of germ-soma differentiation. The complete genome sequence is now available for Volvox, while genome information is scarce for Astrephomene. Here, we generated the de novo whole genome sequence of Astrephomene gubernaculifera and conducted RNA-seq analysis of isolated somatic and reproductive cells. In Volvox, tandem duplication and neofunctionalization of the ancestral transcription factor gene (RLS1/rlsD) might have led to the evolution of regA, the master regulator for Volvox germ-soma differentiation. However, our genome data demonstrated that Astrephomene has not undergone tandem duplication of the RLS1/rlsD homolog or acquisition of a regA-like gene. Our RNA-seq analysis revealed the downregulation of photosynthetic and anabolic gene expression in Astrephomene somatic cells, as in Volvox. Among genes with high expression in somatic cells of Astrephomene, we identified three genes encoding putative transcription factors, which may regulate somatic cell differentiation. Thus, the convergent evolution of germ-soma differentiation in the volvocine algae may have occurred by the acquisition of different regulatory circuits that generate a similar division of labor.


Assuntos
Evolução Biológica , Diferenciação Celular/genética , Clorofíceas/genética , Clorófitas/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Células Germinativas , Volvox/genética , Sequenciamento Completo do Genoma
13.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768970

RESUMO

The papain-like cysteine proteases (PLCPs), the most important group of cysteine proteases, have been reported to participate in the regulation of growth, senescence, and abiotic stresses in plants. However, the functions of PLCPs and their roles in stress response in microalgae was rarely reported. The responses to different abiotic stresses in Haematococcus pluvialis were often observed, including growth regulation and astaxanthin accumulation. In this study, the cDNA of HpXBCP3 containing 1515 bp open reading frame (ORF) was firstly cloned from H. pluvialis by RT-PCR. The analysis of protein domains and molecular evolution showed that HpXBCP3 was closely related to AtXBCP3 from Arabidopsis. The expression pattern analysis revealed that it significantly responds to NaCl stress in H. pluvialis. Subsequently, transformants expressing HpXBCP3 in Chlamydomonas reinhardtii were obtained and subjected to transcriptomic analysis. Results showed that HpXBCP3 might affect the cell cycle regulation and DNA replication in transgenic Chlamydomonas, resulting in abnormal growth of transformants. Moreover, the expression of HpXBCP3 might increase the sensitivity to NaCl stress by regulating ubiquitin and the expression of WD40 proteins in microalgae. Furthermore, the expression of HpXBCP3 might improve chlorophyll content by up-regulating the expression of NADH-dependent glutamate synthases in C. reinhardtii. This study indicated for the first time that HpXBCP3 was involved in the regulation of cell growth, salt stress response, and chlorophyll synthesis in microalgae. Results in this study might enrich the understanding of PLCPs in microalgae and provide a novel perspective for studying the mechanism of environmental stress responses in H. pluvialis.


Assuntos
Proteínas de Algas/metabolismo , Clorofíceas/enzimologia , Cisteína Proteases/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Proteínas de Algas/química , Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/fisiologia , Clorofíceas/genética , Clorofila/biossíntese , Cisteína Proteases/química , Cisteína Proteases/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Microalgas/genética , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Transformação Genética
14.
Commun Biol ; 4(1): 1147, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593975

RESUMO

The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels.


Assuntos
Proteínas de Algas/genética , Clorófitas/fisiologia , Meio Ambiente , Periodicidade , Proteoma/genética , Proteínas de Algas/metabolismo , Clorófitas/genética , Proteoma/metabolismo , Análise Espaço-Temporal
15.
Plant Physiol ; 186(4): 1848-1858, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618103

RESUMO

Photosynthesis is a vital process, responsible for fixing carbon dioxide, and producing most of the organic matter on the planet. However, photosynthesis has some inherent limitations in utilizing solar energy, and a part of the energy absorbed is lost in the reduction of O2 to produce the superoxide radical (O2•-) via the Mehler reaction, which occurs principally within photosystem I (PSI). For decades, O2 reduction within PSI was assumed to take place solely in the distal iron-sulfur clusters rather than within the two asymmetrical cofactor branches. Here, we demonstrate that under high irradiance, O2 photoreduction by PSI primarily takes place at the phylloquinone of one of the branches (the A-branch). This conclusion derives from the light dependency of the O2 photoreduction rate constant in fully mature wild-type PSI from Chlamydomonas reinhardtii, complexes lacking iron-sulfur clusters, and a mutant PSI, in which phyllosemiquinone at the A-branch has a significantly longer lifetime. We suggest that the Mehler reaction at the phylloquinone site serves as a release valve under conditions where both the iron-sulfur clusters of PSI and the mobile ferredoxin pool are highly reduced.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Vitamina K 1/metabolismo
16.
PLoS One ; 16(8): e0256625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432852

RESUMO

Although docosahexaenoic acid (DHA), an important dietary omega-3 polyunsaturated fatty acid (PUFA), is at present primarily sourced from marine fish, bioengineered crops producing DHA may offer a more sustainable and cost-effective source. DHA has been produced in transgenic oilseed crops, however, DHA in seed oil primarily occupies the sn-1/3 positions of triacylglycerol (TAG) with relatively low amounts of DHA in the sn-2 position. To increase the amount of DHA in the sn-2 position of TAG and in seed oil, putative lysophosphatidic acid acyltransferases (LPAATs) were identified and characterized from the DHA-producing alga Schizochytrium sp. and from soybean (Glycine max). The affinity-purified proteins were confirmed to have LPAAT activity. Expression of the Schizochytrium or soybean LPAATs in DHA-producing Arabidopsis expressing the Schizochytrium PUFA synthase system significantly increased the total amount of DHA in seed oil. A novel sensitive band-selective heteronuclear single quantum coherence (HSQC) NMR method was developed to quantify DHA at the sn-2 position of glycerolipids. More than two-fold increases in sn-2 DHA were observed for Arabidopsis lines expressing Schizochytrium or soybean LPAATs, with one Schizochytrium LPAAT driving DHA accumulation in the sn-2 position to 61% of the total DHA. Furthermore, expression of a soybean LPAAT led to a redistribution of DHA-containing TAG species, with two new TAG species identified. Our results demonstrate that transgenic expression of Schizochytrium or soybean LPAATs can increase the proportion of DHA at the sn-2 position of TAG and the total amount of DHA in the seed oil of a DHA-accumulating oilseed plant. Additionally, the band-selective HSQC NMR method that we developed provides a sensitive and robust method for determining the regiochemistry of DHA in glycerolipids. These findings will benefit the advancement of sustainable sources of DHA via transgenic crops such as canola and soybean.


Assuntos
Aciltransferases/metabolismo , Proteínas de Algas/metabolismo , Arabidopsis/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Sequência de Aminoácidos , Genes de Plantas , Homozigoto , Espectroscopia de Ressonância Magnética , Filogenia , Plantas Geneticamente Modificadas
17.
Biochim Biophys Acta Proteins Proteom ; 1869(10): 140685, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216797

RESUMO

Selenoprotein W is widespread among pro- and eukaryotic organisms. It possesses antioxidant activity and plays pivotal roles in mammalian embryonic development and cellular functions. A very simple, prototypical selenoprotein W is SelW1 from Chlamydomonas. The U14C mutant of SelW1 was isolated and biophysically characterized. It contains an intramolecular disulfide bond and is thermally stable up to 70 °C. NMR resonance assignment of reduced and oxidized SelW1 showed that SelW1 adopts a thioredoxin fold. Interestingly, both forms show two additional sets of resonance for amino acid residues near the termini and have basically identical dynamic behavior. Since SelW1 from Chlamydomonas resembles the ancestor of mammalian selenoproteins in certain aspects, this study lays the basis for future characterization of SelW1 function and possible interaction partners.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Mutação , Selenoproteína W/química , Selenoproteína W/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Dissulfetos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estabilidade Proteica , Estrutura Secundária de Proteína , Selenoproteína W/genética , Termodinâmica
18.
Nutrients ; 13(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066103

RESUMO

Chlorella pyrenoidosa (C. pyrenoidosa) is a microalgae species with a remarkably high protein content that may potentially become a source of hypotensive and hypoglycemic peptides. In this study, C. pyrenoidosa proteins were extracted and hydrolyzed overnight with pepsin and trypsin with final degrees of hydrolysis of 18.7% and 35.5%, respectively. By LC-MS/MS, 47 valid peptides were identified in the peptic hydrolysate (CP) and 66 in the tryptic one (CT). At the concentration of 1.0 mg/mL, CP and CT hydrolysates inhibit in vitro the angiotensin-converting enzyme (ACE) activity by 84.2 ± 0.37% and 78.6 ± 1.7%, respectively, whereas, tested at cellular level at the concentration of 5.0 mg/mL, they reduce the ACE activity by 61.5 ± 7.7% and 69.9 ± 0.8%, respectively. At the concentration of 5.0 mg/mL, they decrease in vitro the DPP-IV activity by 63.7% and 69.6% and in Caco-2 cells by 38.4% and 42.5%, respectively. Short peptides (≤10 amino acids) were selected for investigating the potential interaction with ACE and DPP-IV by using molecular modeling approaches and four peptides were predicted to block both enzymes. Finally, the stability of these peptides was investigated against gastrointestinal digestion.


Assuntos
Proteínas de Algas/metabolismo , Chlorella , Inibidores da Dipeptidil Peptidase IV/metabolismo , Peptidil Dipeptidase A/metabolismo , Células CACO-2 , Chlorella/química , Inibidores da Dipeptidil Peptidase IV/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Simulação de Acoplamento Molecular , Peptídeos/análise , Peptídeos/metabolismo , Peptidil Dipeptidase A/análise
19.
Biomolecules ; 11(5)2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066751

RESUMO

In the chloroplast, Calvin-Benson-Bassham enzymes are active in the reducing environment created in the light by electrons from the photosystems. In the dark, these enzymes are inhibited, mainly caused by oxidation of key regulatory cysteine residues. CP12 is a small protein that plays a role in this regulation with four cysteine residues that undergo a redox transition. Using amide-proton exchange with solvent, measured by nuclear magnetic resonance (NMR) and mass-spectrometry, we confirmed that reduced CP12 is intrinsically disordered. Using real-time NMR, we showed that the oxidation of the two disulfide bridges is simultaneous. In oxidized CP12, the C23-C31 pair is in a region that undergoes a conformational exchange in the NMR-intermediate timescale. The C66-C75 pair is in the C-terminus that folds into a stable helical turn. We confirmed that these structural states exist in a physiologically relevant environment: a cell extract from Chlamydomonas reinhardtii. Consistent with these structural equilibria, the reduction is slower for the C66-C75 pair than for the C23-C31 pair. The redox mid-potentials for the two cysteine pairs differ and are similar to those found for glyceraldehyde 3-phosphate dehydrogenase and phosphoribulokinase, consistent with the regulatory role of CP12.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Cisteína/química , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Oxirredução , Fotossíntese , Conformação Proteica
20.
Nat Commun ; 12(1): 3805, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155202

RESUMO

Centrioles are evolutionarily conserved multi-protein organelles essential for forming cilia and centrosomes. Centriole biogenesis begins with self-assembly of SAS-6 proteins into 9-fold symmetrical ring polymers, which then stack into a cartwheel that scaffolds organelle formation. The importance of this architecture has been difficult to decipher notably because of the lack of precise tools to modulate the underlying assembly reaction. Here, we developed monobodies against Chlamydomonas reinhardtii SAS-6, characterizing three in detail with X-ray crystallography, atomic force microscopy and cryo-electron microscopy. This revealed distinct monobody-target interaction modes, as well as specific consequences on ring assembly and stacking. Of particular interest, monobody MBCRS6-15 induces a conformational change in CrSAS-6, resulting in the formation of a helix instead of a ring. Furthermore, we show that this alteration impairs centriole biogenesis in human cells. Overall, our findings identify monobodies as powerful molecular levers to alter the architecture of multi-protein complexes and tune centriole assembly.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Proteínas de Transporte/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Centríolos/ultraestrutura , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Microscopia de Força Atômica , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA