Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38478633

RESUMO

Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Imunidade Inata , Staphylococcus epidermidis , Fatores de Transcrição , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Staphylococcus epidermidis/imunologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Infecções Estafilocócicas/imunologia , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Transcriptoma
2.
Nat Commun ; 13(1): 17, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013162

RESUMO

Defense against intracellular infection has been extensively studied in vertebrate hosts, but less is known about invertebrate hosts; specifically, the transcription factors that induce defense against intracellular intestinal infection in the model nematode Caenorhabditis elegans remain understudied. Two different types of intracellular pathogens that naturally infect the C. elegans intestine are the Orsay virus, which is an RNA virus, and microsporidia, which comprise a phylum of fungal pathogens. Despite their molecular differences, these pathogens induce a common host transcriptional response called the intracellular pathogen response (IPR). Here we show that zip-1 is an IPR regulator that functions downstream of all known IPR-activating and regulatory pathways. zip-1 encodes a putative bZIP transcription factor, and we show that zip-1 controls induction of a subset of genes upon IPR activation. ZIP-1 protein is expressed in the nuclei of intestinal cells, and is at least partially required in the intestine to upregulate IPR gene expression. Importantly, zip-1 promotes resistance to infection by the Orsay virus and by microsporidia in intestinal cells. Altogether, our results indicate that zip-1 represents a central hub for triggers of the IPR, and that this transcription factor has a protective function against intracellular pathogen infection in C. elegans.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Caenorhabditis elegans , Enterócitos , Interações Hospedeiro-Patógeno/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Enterócitos/imunologia , Enterócitos/microbiologia , Enterócitos/virologia , Imunidade Inata/fisiologia , Intestinos/microbiologia , Intestinos/virologia , Invertebrados/imunologia , Microsporídios/patogenicidade , Vírus de RNA/patogenicidade
3.
Front Immunol ; 12: 744454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804026

RESUMO

Innate immunity is the first line of host defense against pathogen infection in metazoans. However, the molecular mechanisms of the complex immune regulatory network are not fully understood. Based on a transcriptome profiling of the nematode Caenorhabditis elegans, we found that a bZIP transcription factor ZIP-11 was up-regulated upon Pseudomonas aeruginosa PA14 infection. The tissue specific RNAi knock-down and rescue data revealed that ZIP-11 acts in intestine to promote host resistance against P. aeruginosa PA14 infection. We further showed that intestinal ZIP-11 regulates innate immune response through constituting a feedback loop with the conserved PMK-1/p38 mitogen-activated protein signaling pathway. Intriguingly, ZIP-11 interacts with a CCAAT/enhancer-binding protein, CEBP-2, to mediate the transcriptional response to P. aeruginosa PA14 infection independently of PMK-1/p38 pathway. In addition, human homolog ATF4 can functionally substitute for ZIP-11 in innate immune regulation of C. elegans. Our findings indicate that the ZIP-11/ATF4 genetic program activates local innate immune response through conserved PMK-1/p38 and CEBP-2/C/EBPγ immune signals in C. elegans, raising the possibility that a similar process may occur in other organisms.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Fator 4 Ativador da Transcrição/imunologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/imunologia , Humanos
4.
Cell Rep ; 37(8): 110040, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818546

RESUMO

Tissue damage induces immediate-early signals, activating Rho small GTPases to trigger actin polymerization essential for later wound repair. However, how tissue damage is sensed to activate Rho small GTPases locally remains elusive. Here, we found that wounding the C. elegans epidermis induces rapid relocalization of CDC-42 into plasma membrane-associated clusters, which subsequently recruits WASP/WSP-1 to trigger actin polymerization to close the wound. In addition, wounding induces a local transient increase and subsequent reduction of H2O2, which negatively regulates the clustering of CDC-42 and wound closure. CDC-42 CAAX motif-mediated prenylation and polybasic region-mediated cation-phospholipid interaction are both required for its clustering. Cysteine residues participate in intermolecular disulfide bonds to reduce membrane association and are required for negative regulation of CDC-42 clustering by H2O2. Collectively, our findings suggest that H2O2-regulated fine-tuning of CDC-42 localization can create a distinct biomolecular cluster that facilitates rapid epithelial wound repair after injury.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Cicatrização/fisiologia , Actinas , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Ciclo Celular/imunologia , Membrana Celular/metabolismo , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Proteínas de Ligação ao GTP/imunologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/metabolismo , Oxirredução , Polimerização , Transdução de Sinais , Família de Proteínas da Síndrome de Wiskott-Aldrich/imunologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Cicatrização/imunologia , Proteínas rho de Ligação ao GTP/metabolismo
5.
mBio ; 12(5): e0257921, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634942

RESUMO

A variety of effector proteins contribute to host defense in Caenorhabditis elegans. However, beyond lytic enzymes and antimicrobial peptides and proteins, little is known about the exact function of these infection-related effectors. This study set out to identify pathogen-dependent cytokine-like molecules, focusing on C-type lectin domain-containing proteins (CLECs). In total, 38 CLECs that are differentially regulated in response to bacterial infections have been previously identified by microarray and transcriptome sequencing (RNA-seq) analyses in C. elegans. We successfully cloned 18 of these 38 CLECs and chose to focus on CLEC-47 because, among these 18 cloned CLECs, it was the smallest protein and was recombinantly expressed at the highest levels in prokaryotic cells examined by SDS-PAGE. Quantitative real-time PCR (qRT-PCR/qPCR) showed that the expression of clec-47 was induced by a variety of Gram-positive bacterial pathogens, including Enterococcus faecium, Staphylococcus aureus, and Cutibacterium acnes, but was suppressed by the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. By expressing CLEC-47 in HEK 293 cells, we showed that CLEC-47 is released into the culture media, which the Golgi apparatus inhibitors (brefeldin A [BFA] and GolgiStop) could block. Purified recombinant CLEC-47 (maltose binding protein [MBP]-CLEC-47-His) did not display antimicrobial activity against ESKAPE pathogen isolates but bound directly to murine macrophage J774A.1 cells. Recombinant CLEC-47 attracted and recruited J774A.1 cells in a chemotaxis assay. In addition, qPCR studies and enzyme-linked immunosorbent assays (ELISAs) showed that CLEC-47 activates J774A.1 cells in a dose- and time-dependent manner to express the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6, and Macrophage Inflammatory Protein 2 (MIP-2). Moreover, C. elegans, fed with CLEC-47-expressing Escherichia coli, demonstrated enhanced expression of several antimicrobial proteins (CNC-1, CNC-2, CPR-1, and CPR-2) as well as the detoxification protein MTL-1. These data suggest that CLEC-47 functions as a novel cytokine-like signaling molecule and exemplify how the study of infection-related effectors in C. elegans can help elucidate the evolution of immune responses. IMPORTANCE A variety of effector proteins contribute to host defense in the nematode Caenorhabditis elegans. However, little is known about the exact function of these infection-related effectors beyond lytic enzymes and antimicrobial peptides and proteins. This study set out to identify pathogen-dependent cytokine-like molecules, and we focus on the C-type lectin domain-containing proteins (CLECs). Our data suggest that CLEC-47 functions as a novel cytokine-like signaling molecule and exemplify how the study of infection-related effectors in nematodes can help elucidate the evolution of immune responses.


Assuntos
Infecções Bacterianas/imunologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/química , Caenorhabditis elegans/imunologia , Citocinas/imunologia , Imunidade Inata , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Linhagem Celular , Citocinas/classificação , Citocinas/genética , Células HEK293 , Humanos , Camundongos , Domínios Proteicos
6.
Infect Immun ; 89(10): e0006721, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310887

RESUMO

To antagonize infection of pathogenic bacteria in soil and confer increased survival, Caenorhabditis elegans employs innate immunity and behavioral avoidance synchronously as the two main defensive strategies. Although both biological processes and their individual signaling pathways have been partially elucidated, knowledge of their interrelationship remains limited. The current study reveals that deficiency of innate immunity triggered by mutation of the classic immune gene pmk-1 promotes avoidance behavior in C. elegans and vice versa. Restoration of pmk-1 expression using the tissue-specific promoters suggested that the functional loss of both intestinal and neuronal pmk-1 is necessary for the enhanced avoidance. Additionally, PMK-1 colocalized with the E3 ubiquitin ligase HECW-1 in OLL neurons and regulated the expressional level of the latter, which consequently affected the production of NPR-1, a G-protein-coupled receptor (GPCR) homologous to the mammalian neuropeptide Y receptor, in RMG neurons in a non-cell-autonomous manner. Collectively, our study illustrates that once the innate immunity is impaired when C. elegans antagonizes bacterial infection, the other defensive strategy of behavioral avoidance can be enhanced accordingly via the HECW-1/NPR-1 module, suggesting that GPCRs in neural circuits may receive the inputs from the immune system and integrate those two systems for better adapting to the real-time status.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Pseudomonas aeruginosa/imunologia , Receptores de Neuropeptídeo Y/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Proteínas Quinases Ativadas por Mitógeno/imunologia , Mutação/imunologia , Neurônios/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/imunologia
7.
BMC Microbiol ; 21(1): 169, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090326

RESUMO

BACKGROUND: Campylobacter jejuni is the major micro-bacillary pathogen responsible for human coloenteritis. Lactic acid bacteria (LAB) have been shown to protect against Campylobacter infection. However, LAB with a good ability to inhibit the growth of C. jejuni in vitro are less effective in animals and animal models, and have the disadvantages of high cost, a long cycle, cumbersome operation and insignificant immune response indicators. Caenorhabditis elegans is increasingly used to screen probiotics for their anti-pathogenic properties. However, no research on the use of C. elegans to screen for probiotic candidates antagonistic to C. jejuni has been conducted to date. RESULTS: This study established a lifespan model of C. elegans, enabling the preselection of LAB to counter C. jejuni infection. A potential protective mechanism of LAB was identified. Some distinct LAB species offered a high level of protection to C. elegans against C. jejuni. The LAB strains with a high protection rate reduced the load of C. jejuni in C. elegans. The transcription of antibacterial peptide genes, MAPK and Daf-16 signalling pathway-related genes was elevated using the LAB isolates with a high protection rate. The reliability of the lifespan model of C. elegans was verified using mice and chickens infected with C. jejuni. CONCLUSIONS: The results showed that different LAB had different abilities to protect C. elegans against C. jejuni. C. elegans provides a reliable model for researchers to screen for LAB that are antagonistic to C. jejuni on a large scale.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/imunologia , Infecções por Campylobacter/tratamento farmacológico , Campylobacter jejuni/efeitos dos fármacos , Modelos Animais de Doenças , Lactobacillales/fisiologia , Probióticos/administração & dosagem , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Infecções por Campylobacter/genética , Infecções por Campylobacter/imunologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/crescimento & desenvolvimento , Galinhas/genética , Galinhas/imunologia , Galinhas/microbiologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Camundongos/genética , Camundongos/imunologia , Camundongos/microbiologia , Camundongos Endogâmicos C57BL , Nematoides/genética , Nematoides/imunologia , Nematoides/microbiologia
8.
PLoS Genet ; 17(6): e1009600, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166401

RESUMO

Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Enterotoxinas/genética , Hypocreales/patogenicidade , Imunidade Inata , Fatores de Transcrição STAT/genética , Esporos Fúngicos/patogenicidade , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Coevolução Biológica , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/imunologia , Enterotoxinas/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Hypocreales/crescimento & desenvolvimento , Longevidade/genética , Longevidade/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Vesículas Transportadoras/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972423

RESUMO

GABAergic neurotransmission constitutes a major inhibitory signaling mechanism that plays crucial roles in central nervous system physiology and immune cell immunomodulation. However, its roles in innate immunity remain unclear. Here, we report that deficiency in the GABAergic neuromuscular junctions (NMJs) of Caenorhabditis elegans results in enhanced resistance to pathogens, whereas pathogen infection enhances the strength of GABAergic transmission. GABAergic synapses control innate immunity in a manner dependent on the FOXO/DAF-16 but not the p38/PMK-1 pathway. Our data reveal that the insulin-like peptide INS-31 level was dramatically decreased in the GABAergic NMJ GABAAR-deficient unc-49 mutant compared with wild-type animals. C. elegans with ins-31 knockdown or loss of function exhibited enhanced resistance to Pseudomonas aeruginosa PA14 exposure. INS-31 may act downstream of GABAergic NMJs and in body wall muscle to control intestinal innate immunity in a cell-nonautonomous manner. Our results reveal a signaling axis of synapse-muscular insulin-intestinal innate immunity in vivo.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Insulina/imunologia , Intestinos/imunologia , Receptores de GABA-A/imunologia , Sinapses/imunologia , Adulto , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Neurônios GABAérgicos/imunologia , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Insulina/metabolismo , Intestinos/microbiologia , Intestinos/fisiologia , Mutação , Junção Neuromuscular/imunologia , Junção Neuromuscular/microbiologia , Junção Neuromuscular/fisiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Receptores de GABA-A/genética , Receptores de GABA-A/fisiologia , Transdução de Sinais/imunologia , Sinapses/microbiologia , Sinapses/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/imunologia , Transmissão Sináptica/fisiologia
10.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785621

RESUMO

Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.


Assuntos
Caenorhabditis elegans/imunologia , Sistema Nervoso/imunologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Transdução de Sinais
11.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408224

RESUMO

Traditionally, treatments for bacterial infection have focused on killing the microbe or preventing its growth. As antimicrobial resistance becomes more ubiquitous, the feasibility of this approach is beginning to wane and attention has begun to shift toward disrupting the host-pathogen interaction by improving the host defense. Using a high-throughput, fragment-based screen to identify compounds that alleviate Pseudomonas aeruginosa-mediated killing of Caenorhabditis elegans, we identified over 20 compounds that stimulated host defense gene expression. Five of these molecules were selected for further characterization. Four of five compounds showed little toxicity against mammalian cells or worms, consistent with their identification in a phenotypic, high-content screen. Each of the compounds activated several host defense pathways, but the pathways were generally dispensable for compound-mediated rescue in liquid killing, suggesting redundancy or that the activation of unknown pathway(s) may be driving compound effects. A genetic mechanism was identified for LK56, which required the Mediator subunit MDT-15/MED15 and NHR-49/HNF4 for its function. Interestingly, LK32, LK34, LK38, and LK56 also rescued C. elegans from P. aeruginosa in an agar-based assay, which uses different virulence factors and defense mechanisms. Rescue in an agar-based assay for LK38 entirely depended upon the PMK-1/p38 MAPK pathway. Three compounds-LK32, LK34, and LK56-also conferred resistance to Enterococcus faecalis, and the two lattermost, LK34 and LK56, also reduced pathogenesis from Staphylococcus aureus This study supports a growing role for MDT-15 and NHR-49 in immune response and identifies five molecules that have significant potential for use as tools in the investigation of innate immunity.IMPORTANCE Trends moving in opposite directions (increasing antimicrobial resistance and declining novel antimicrobial development) have precipitated a looming crisis: the nearly complete inability to safely and effectively treat bacterial infections. To avert this, new approaches are needed. One idea is to stimulate host defense pathways to improve the clearance of bacterial infection. Here, we describe five small molecules that promote resistance to infectious bacteria by activating C. elegans' innate immune pathways. Several are effective against both Gram-positive and Gram-negative pathogens. One of the compounds was mapped to the action of MDT-15/MED15 and NHR-49/HNF4, a pair of transcriptional regulators more generally associated with fatty acid metabolism, potentially highlighting a new link between these biological functions. These studies pave the way for future characterization of the anti-infective activity of the molecules in higher organisms and highlight the compounds' potential utility for further investigation of immune modulation as a novel therapeutic approach.


Assuntos
Antibacterianos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/imunologia , Fatores Imunológicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/imunologia , Animais , Antibacterianos/análise , Antibacterianos/imunologia , Infecções Bacterianas/tratamento farmacológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/patogenicidade , Expressão Gênica , Regulação da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/química , Pseudomonas aeruginosa/patogenicidade , Bibliotecas de Moléculas Pequenas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Fatores de Virulência
12.
FEBS J ; 288(6): 1759-1770, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32767821

RESUMO

Pathogens are abundant and drive evolution of host immunity. Whilst immune memory is classically associated with adaptive immunity, studies in diverse species now show that priming of innate immune defences can also protect against secondary infection. Remarkably, priming may also be passed on to progeny to enhance pathogen resistance and promote survival in future generations. Phenotypic changes that occur independent of DNA sequence underlie both 'within-generation' priming and 'multigenerational' priming. However, the molecular mechanisms responsible for these phenomena are still poorly understood. Caenorhabditis elegans is a simple and genetically tractable model organism that has enabled key advances in immunity and environmental epigenetics. Using both natural and human pathogens, researchers have uncovered numerous examples of innate immune priming in this animal. Viral infection models have provided key evidence for a conserved antiviral RNA silencing mechanism that is inherited in progeny. Bacterial infection models have explored mechanisms of within-generation and multigenerational priming that span chromatin modification and transcriptional changes, small RNA pathways, maternal provisioning and pathogen avoidance strategies. Together, these studies are providing novel insight into the immune reactivity of the genome and have important consequences for our understanding of health and evolution. In this review, we present the current evidence for learned protection against pathogens in C. elegans, discuss the significance and limitations of these findings and highlight important avenues of future investigation.


Assuntos
Infecções Bacterianas/imunologia , Caenorhabditis elegans/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Viroses/imunologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata/genética , Memória Imunológica/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Viroses/genética , Viroses/virologia
13.
Front Immunol ; 11: 561337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329523

RESUMO

Enterohemorrhagic Escherichia coli (EHEC), a human pathogen, also infects Caenorhabditis elegans. We demonstrated previously that C. elegans activates the p38 MAPK innate immune pathway to defend against EHEC infection. However, whether a C. elegans pattern recognition receptor (PRR) exists to regulate the immune pathway remains unknown. PRRs identified in other metazoans contain several conserved domains, including the leucine-rich repeat (LRR). By screening a focused RNAi library, we identified the IGLR-2, a transmembrane protein containing the LRR domain, as a potential immune regulator in C. elegans. Our data showed that iglr-2 regulates the host susceptibility to EHEC infection. Moreover, iglr-2 is required for pathogen avoidance to EHEC. The iglr-2 overexpressed strain, which was more resistant to EHEC originally, showed hypersusceptibility to EHEC upon knockdown of the p38 MAPK pathway. Together, our data suggested that iglr-2 plays an important role in C. elegans to defend EHEC by regulating pathogen-avoidance behavior and the p38 MAPK pathway.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Proteínas de Membrana/imunologia , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Infecções por Escherichia coli/microbiologia , Técnicas de Silenciamento de Genes , Imunidade Inata , Proteínas de Membrana/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717840

RESUMO

The muscle excess 3 (MEX-3) protein was first identified in Caenorhabditis elegans (C. elegans), and its respective homologues were also observed in vertebrates, including humans. It is a RNA-binding protein (RBP) with an additional ubiquitin E3 ligase function, which further acts as a post-transcriptional repressor through unknown mechanisms. In humans, MEX-3 proteins post-transcriptionally regulate a number of biological processes, including tumor immunological relevant ones. These have been shown to be involved in various diseases, including tumor diseases of distinct origins. This review provides information on the expression and function of the human MEX-3 family in healthy tissues, as well after malignant transformation. Indeed, the MEX-3 expression was shown to be deregulated in several cancers and to affect tumor biological functions, including apoptosis regulation, antigen processing, and presentation, thereby, contributing to the immune evasion of tumor cells. Furthermore, current research suggests MEX-3 proteins as putative markers for prognosis and as novel targets for the anti-cancer treatment.


Assuntos
Carcinogênese , Família Multigênica/imunologia , Proteínas de Neoplasias , Neoplasias , Animais , Apresentação de Antígeno/genética , Apoptose/genética , Apoptose/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Evasão Tumoral/genética
15.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32482643

RESUMO

Immune response to pathogens is energetically expensive to the host; however, the cellular source of energy to fuel immune response remains unknown. In this study, we show that Caenorhabditis elegans exposed to pathogenic Gram-positive and Gram-negative bacteria or yeast rapidly utilizes lipid droplets, the major energy reserve. The nematode's response to the pathogenic bacterium Enterococcus faecalis entails metabolic rewiring for the upregulation of several genes involved in lipid utilization and downregulation of lipid synthesis genes. Genes encoding acyl-CoA synthetase ACS-2, involved in lipid metabolism, and flavin monooxygenase FMO-2, involved in detoxification, are two highly upregulated genes during E. faecalis infection. We find that both ACS-2 and FMO-2 are necessary for survival and rely on NHR-49, a peroxisome proliferator-activated receptor alpha (PPARα) ortholog, for upregulation during E. faecalis infection. Thus, NHR-49 regulates an immunometabolic axis of survival in C. elegans by modulating breakdown of lipids as well as immune effector production upon E. faecalis exposure.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Coenzima A Ligases/genética , Enterococcus faecalis/imunologia , Metabolismo dos Lipídeos/imunologia , Oxigenases/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/imunologia , Coenzima A Ligases/imunologia , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/imunologia , Enterococcus faecalis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Gotículas Lipídicas/imunologia , Gotículas Lipídicas/metabolismo , Longevidade/genética , Longevidade/imunologia , Oxigenases/imunologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/imunologia , Receptores Citoplasmáticos e Nucleares/imunologia , Transdução de Sinais
16.
Methods Mol Biol ; 2144: 145-160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410032

RESUMO

The microscopic nematode Caenorhabditis elegans has emerged as a powerful system to characterize evolutionarily ancient mechanisms of pathogen sensing, innate immune activation, and protective host responses. Experimentally, C. elegans can be infected with a wide variety of human pathogens, as well as with natural pathogens of worms that were isolated from wild-caught nematodes. Here, we focus on an experimental model of bacterial pathogenesis that utilizes the human opportunistic bacterial pathogen Pseudomonas aeruginosa and present an algorithm that can be used to study mechanisms of immune function in nematodes. An initial comparison of the susceptibility of a C. elegans mutant to P. aeruginosa infection with its normal lifespan permits an understanding of a mutant's effect on pathogen susceptibility in the context of potential pleotropic consequences on general worm fitness. Assessing the behavior of nematodes in the presence of P. aeruginosa can also help determine if a gene of interest modulates pathogen susceptibility by affecting the host's ability to avoid a pathogen. In addition, quantification of the pathogen load in the C. elegans intestine during infection, characterization of immune effector transcription that are regulated by host defense pathways and an initial assessment of tissue specificity of immune gene function can refine hypotheses about the mechanism of action of a gene of interest. Together, these protocols offer one approach to characterize novel host defense mechanisms in a simple metazoan host.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Imunidade Inata/genética , Biologia Molecular/métodos , Animais , Evolução Biológica , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/imunologia , Humanos , Fenômenos do Sistema Imunitário/genética , Nematoides/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade
17.
Cell Rep ; 31(1): 107478, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268082

RESUMO

Olfactory neurons allow animals to discriminate nutritious food sources from potential pathogens. From a forward genetic screen, we uncovered a surprising requirement for the olfactory neuron gene olrn-1 in the regulation of intestinal epithelial immunity in Caenorhabditis elegans. During nematode development, olrn-1 is required to program the expression of odorant receptors in the AWC olfactory neuron pair. Here, we show that olrn-1 also functions in AWC neurons in the cell non-autonomous suppression of the canonical p38 MAPK PMK-1 immune pathway in the intestine. Low activity of OLRN-1, which activates the p38 MAPK signaling cassette in AWC neurons during larval development, also de-represses the p38 MAPK PMK-1 pathway in the intestine to promote immune effector transcription, increased clearance of an intestinal pathogen, and resistance to bacterial infection. These data reveal an unexpected connection between olfactory receptor development and innate immunity and show that anti-pathogen defenses in the intestine are developmentally programmed.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata/imunologia , Proteínas de Membrana/metabolismo , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Imunidade Inata/genética , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurogênese , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Olfato , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Proc Natl Acad Sci U S A ; 117(14): 7950-7960, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193347

RESUMO

Intracellular pathogen infection leads to proteotoxic stress in host organisms. Previously we described a physiological program in the nematode Caenorhabditis elegans called the intracellular pathogen response (IPR), which promotes resistance to proteotoxic stress and appears to be distinct from canonical proteostasis pathways. The IPR is controlled by PALS-22 and PALS-25, proteins of unknown biochemical function, which regulate expression of genes induced by natural intracellular pathogens. We previously showed that PALS-22 and PALS-25 regulate the mRNA expression of the predicted ubiquitin ligase component cullin cul-6, which promotes thermotolerance in pals-22 mutants. However, it was unclear whether CUL-6 acted alone, or together with other cullin-ring ubiquitin ligase components, which comprise a greatly expanded gene family in C. elegans Here we use coimmunoprecipitation studies paired with genetic analysis to define the cullin-RING ligase components that act together with CUL-6 to promote thermotolerance. First, we identify a previously uncharacterized RING domain protein in the TRIM family we named RCS-1, which acts as a core component with CUL-6 to promote thermotolerance. Next, we show that the Skp-related proteins SKR-3, SKR-4, and SKR-5 act redundantly to promote thermotolerance with CUL-6. Finally, we screened F-box proteins that coimmunoprecipitate with CUL-6 and find that FBXA-158 and FBXA-75 promote thermotolerance. In summary, we have defined the three core components and two F-box adaptors of a cullin-RING ligase complex that promotes thermotolerance as part of the IPR in C. elegans, which adds to our understanding of how organisms cope with proteotoxic stress.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Proteínas Culina/metabolismo , Proteínas F-Box/metabolismo , Microsporídios/imunologia , Termotolerância/imunologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Proteínas Culina/genética , Proteínas Culina/imunologia , Proteínas F-Box/imunologia , Interações Hospedeiro-Patógeno/imunologia , Modelos Animais , Proteostase/imunologia
19.
PLoS Pathog ; 16(1): e1008134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917826

RESUMO

Caenorhabditis elegans are soil-dwelling nematodes and models for understanding innate immunity and infection. Previously, we developed a novel fluorescent dye (KR35) that accumulates in the intestine of C. elegans and reports a dynamic wave in intestinal pH associated with the defecation motor program. Here, we use KR35 to show that mutations in the Ca2+-binding protein, PBO-1, abrogate the pH wave, causing the anterior intestine to be constantly acidic. Surprisingly, pbo-1 mutants were also more susceptible to infection by several bacterial pathogens. We could suppress pathogen susceptibility in pbo-1 mutants by treating the animals with pH-buffering bicarbonate, suggesting the pathogen susceptibility is a function of the acidity of the intestinal pH. Furthermore, we use KR35 to show that upon infection by pathogens, the intestinal pH becomes neutral in a wild type, but less so in pbo-1 mutants. C. elegans is known to increase production of reactive oxygen species (ROS), such as H2O2, in response to pathogens, which is an important component of pathogen defense. We show that pbo-1 mutants exhibited decreased H2O2 in response to pathogens, which could also be partially restored in pbo-1 animals treated with bicarbonate. Ultimately, our results support a model whereby PBO-1 functions during infection to facilitate pH changes in the intestine that are protective to the host.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Calcineurina/imunologia , Imunidade Inata , Mucosa Intestinal/imunologia , Animais , Bicarbonatos/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Calcineurina/genética , Concentração de Íons de Hidrogênio , Mucosa Intestinal/química , Mucosa Intestinal/efeitos dos fármacos , Mutação
20.
Nat Commun ; 10(1): 3042, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316054

RESUMO

Stress resistance and longevity are positively correlated but emerging evidence indicates that they are physiologically distinct. Identifying factors with distinctive roles in these processes is challenging because pro-longevity genes often enhance stress resistance. We demonstrate that TCER-1, the Caenorhabditis elegans homolog of human transcription elongation and splicing factor, TCERG1, has opposite effects on lifespan and stress resistance. We previously showed that tcer-1 promotes longevity in germline-less C. elegans and reproductive fitness in wild-type animals. Surprisingly, tcer-1 mutants exhibit exceptional resistance against multiple stressors, including infection by human opportunistic pathogens, whereas, TCER-1 overexpression confers immuno-susceptibility. TCER-1 inhibits immunity only during fertile stages of life. Elevating its levels ameliorates the fertility loss caused by infection, suggesting that TCER-1 represses immunity to augment fecundity. TCER-1 acts through repression of PMK-1 as well as PMK-1-independent factors critical for innate immunity. Our data establish key roles for TCER-1 in coordinating immunity, longevity and fertility, and reveal mechanisms that distinguish length of life from functional aspects of aging.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/fisiologia , Imunidade Inata/genética , Longevidade/genética , Fatores de Alongamento de Peptídeos/metabolismo , Estresse Fisiológico/imunologia , Envelhecimento/genética , Envelhecimento/imunologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Suscetibilidade a Doenças/imunologia , Fertilidade/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Modelos Animais , Mutação , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/imunologia , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA