Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.774
Filtrar
1.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163971

RESUMO

The non-mevalonate or also called MEP pathway is an essential route for the biosynthesis of isoprenoid precursors in most bacteria and in microorganisms belonging to the Apicomplexa phylum, such as the parasite responsible for malaria. The absence of this pathway in mammalians makes it an interesting target for the discovery of novel anti-infectives. As last enzyme of this pathway, IspH is an oxygen sensitive [4Fe-4S] metalloenzyme that catalyzes 2H+/2e- reductions and a water elimination by involving non-conventional bioinorganic and bioorganometallic intermediates. After a detailed description of the discovery of the [4Fe-4S] cluster of IspH, this review focuses on the IspH mechanism discussing the results that have been obtained in the last decades using an approach combining chemistry, enzymology, crystallography, spectroscopies, and docking calculations. Considering the interesting druggability of this enzyme, a section about the inhibitors of IspH discovered up to now is reported as well. The presented results constitute a useful and rational help to inaugurate the design and development of new potential chemotherapeutics against pathogenic organisms.


Assuntos
Anti-Infecciosos/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxirredutases/metabolismo , Terpenos/química , Catálise , Cristalografia por Raios X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxirredutases/fisiologia
2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969846

RESUMO

The biogenesis of integral ß-barrel outer membrane proteins (OMPs) in gram-negative bacteria requires transport by molecular chaperones across the aqueous periplasmic space. Owing in part to the extensive functional redundancy within the periplasmic chaperone network, specific roles for molecular chaperones in OMP quality control and assembly have remained largely elusive. Here, by deliberately perturbing the OMP assembly process through use of multiple folding-defective substrates, we have identified a role for the periplasmic chaperone Skp in ensuring efficient folding of OMPs by the ß-barrel assembly machine (Bam) complex. We find that ß-barrel substrates that fail to integrate into the membrane in a timely manner are removed from the Bam complex by Skp, thereby allowing for clearance of stalled Bam-OMP complexes. Following the displacement of OMPs from the assembly machinery, Skp subsequently serves as a sacrificial adaptor protein to directly facilitate the degradation of defective OMP substrates by the periplasmic protease DegP. We conclude that Skp acts to ensure efficient ß-barrel folding by directly mediating the displacement and degradation of assembly-compromised OMP substrates from the Bam complex.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Chaperonas Moleculares/fisiologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Dobramento de Proteína , Proteólise
3.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299422

RESUMO

The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein-protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.


Assuntos
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Holarrhena/metabolismo , Receptores de Enterotoxina/metabolismo , Alcaloides/metabolismo , Antidiarreicos/farmacologia , Sítios de Ligação , Simulação por Computador , Diarreia/tratamento farmacológico , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/fisiologia , Proteínas de Escherichia coli/fisiologia , Guanilato Ciclase/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Casca de Planta/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Biochemistry ; 60(20): 1619-1625, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33945270

RESUMO

The natural product colibactin, along with its associated biosynthetic gene cluster, is an example system for the role microbially derived small molecules play in the human microbiome. This is particularly relevant in the human gut, where host microbiota is involved in various disorders, including colorectal cancer pathogenesis. Bacteria harboring the colibactin gene cluster induce alkylation of nucleobases in host DNA, forming interstrand cross-links both in vivo and in vitro. These lesions can lead to deleterious double-strand breaks and have been identified as the primary mechanism of colibactin-induced cytotoxicity. The gene product ClbS is one of several mechanisms utilized by the producing bacteria to maintain genome integrity. ClbS catalyzes hydrolytic inactivation of colibactin and has been shown to bind DNA, incurring self-resistance. Presented is the molecular basis for ClbS bound to a DNA oligonucleotide. The structure shows the interaction of the protein with the ends of a DNA duplex with terminal nucleotides flipped to the enzyme active site. The structure suggests an additional function for ClbS, the binding to damaged DNA followed by repair. Additionally, our study provides general insight into the function of the widely distributed and largely uncharacterized DUF1706 protein family.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Alquilação , DNA/química , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Mutagênicos/metabolismo , Peptídeos/farmacologia , Policetídeos/farmacologia , RNA/química
5.
Biochemistry ; 60(20): 1569-1572, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33938220

RESUMO

IscU serves as a scaffold for the de novo assembly of a [2Fe-2S] cluster prior to its delivery to recipient protein. It has also been proposed that on one dimer of bacterial IscU, two [2Fe-2S] clusters can be converted into a single [4Fe-4S] cluster. However, lack of structural information about the dimeric state of IscU has hindered our understanding of the underlying mechanisms. In this study, we determine the X-ray crystal structure of IscU from the thermophilic archaeon Methanothrix thermoacetophila and demonstrate a dimer structure of IscU in which two [2Fe-2S] clusters are facing each other in close proximity at the dimer interface. Our structure also reveals for the first time that Asp40 serves as a fourth ligand to the [2Fe-2S] cluster with three Cys ligands in each monomer, consistent with previous spectroscopic data. We confirm by EPR spectroscopic analysis that in solution two adjacent [2Fe-2S] clusters in the wild-type dimer are converted to a [4Fe-4S] cluster via reductive coupling. Furthermore, we find that the H106A substitution abolishes the reductive conversion to the [4Fe-4S] cluster without structural alteration, suggesting that His106 is functionally involved in this process. Overall, these findings provide a structural explanation for the assembly and conversion of Fe-S clusters on IscU and highlight a dynamic process that advances via association and dissociation of the IscU dimer.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Methanosarcinaceae/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Escherichia coli/fisiologia , Ferro/metabolismo , Proteínas Ferro-Enxofre/fisiologia , Relação Estrutura-Atividade , Enxofre/metabolismo
6.
Curr Genet ; 67(5): 723-727, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33839884

RESUMO

In this mini-review, we summarize the known and novel regulation mechanisms of small heat shock proteins (sHsps). sHsps belong to a well-conserved family of ATP-independent oligomeric chaperones that protect denatured proteins from forming irreversible aggregates by co-aggregation. The functions of sHsps as a first line of defense against acute stresses require the high abundance of sHsps on demand. The heat stress-induced expression of IbpA, one of the sHsps in Escherichia coli, is regulated by σ32, an RNA polymerase subunit, and the thermoresponsive mRNA structures in the 5' untranslated region, called RNA thermometers. In addition to the known mechanisms, a recent study has revealed unexpected processes by which the oligomeric IbpA self-represses the ibpA translation via the direct binding of IbpA to its own mRNA, and mediates the mRNA degradation. In summary, the role of IbpA as an aggregation-sensor, combined with other mechanisms, tightly regulates the expression level of IbpA, thus enabling the sHsp to function as a "sequestrase" upon acute aggregation stress, and provides new insights into the mechanisms of other sHsps in both bacteria and eukaryotes.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico Pequenas/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico/fisiologia , Proteínas de Choque Térmico Pequenas/genética , Fator sigma/fisiologia
7.
Nucleic Acids Res ; 49(7): 3981-3996, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33721023

RESUMO

The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China.


Assuntos
Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Plasmídeos , Proteínas de Ligação a RNA/fisiologia , Antibacterianos/farmacologia , Colistina/farmacologia
8.
IUBMB Life ; 73(6): 883-892, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773019

RESUMO

Escherichia coli is able to utilize the mixture of carbon sources and produce molecular hydrogen (H2 ) via formate hydrogen lyase (FHL) complexes. In current work role of transcriptional activator of formate regulon FhlA in generation of fermentation end products and proton motive force, N'N'-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase activity at 20 and 72 hr growth during utilization of mixture of glucose, glycerol, and formate were investigated. It was shown that in fhlA mutant specific growth rate was ~1.5 fold lower compared to wt, while addition of DCCD abolished the growth in fhlA but not in wt. Formate was not utilized in fhlA mutant but wt cells simultaneously utilized formate with glucose. Glycerol utilization started earlier (from 2 hr) in fhlA than in wt. The DCCD-sensitive ATPase activity in wt cells membrane vesicles increased ~2 fold at 72 hr and was decreased 70% in fhlA. Addition of formate in the assays increased proton ATPase activity in wt and mutant strain. FhlA absence mainly affected the ΔpH but not ΔΨ component of Δp in the cells grown at 72 hr but not in 24 hr. The Δp in wt cells decreased from 24 to 72 hr of growth ~40 mV while in fhlA mutant it was stable. Taken together, it is suggested that FhlA regulates the concentration of fermentation end products and via influencing FO F1 -ATPase activity contributes to the proton motive force generation.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Força Próton-Motriz/genética , ATPases Translocadoras de Prótons/genética , Transativadores/fisiologia , Acetatos/metabolismo , Carbono/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Fermentação , Formiatos/metabolismo , Formiatos/farmacologia , Glucose/metabolismo , Glicerol/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Transativadores/genética
9.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674434

RESUMO

Acid tolerance of microorganisms is a desirable phenotype for many industrial fermentation applications. In Escherichia coli, the stress response sigma factor RpoS is a promising target for engineering acid-tolerant phenotypes. However, the simple overexpression of RpoS alone is insufficient to confer these phenotypes. In this study, we show that the simultaneous overexpression of the noncoding small RNA (sRNA) DsrA and the sRNA chaperone Hfq, which act as RpoS activators, significantly increased acid tolerance in terms of cell growth under modest acidic pH, as well as cell survival upon extreme acid shock. Directed evolution of the DsrA-Hfq module further improved the acid tolerance, with the best mutants showing a 51 to 72% increase in growth performance at pH 4.5 compared with the starting strain, MG1655. Further analyses found that the improved acid tolerance of these DsrA-Hfq strains coincided with activation of genes associated with proton-consuming acid resistance system 2 (AR2), protein chaperone HdeB, and reactive oxygen species (ROS) removal in the exponential phase. This study illustrated that the fine-tuning of sRNAs and their chaperones can be a novel strategy for improving the acid tolerance of E. coliIMPORTANCE Many of the traditional studies on bacterial acid tolerance generally focused on improving cell survival under extreme-pH conditions, but cell growth under less harsh acidic conditions is more relevant to industrial applications. Under normal conditions, the general stress response sigma factor RpoS is maintained at low levels in the growth phase through a number of mechanisms. This study showed that RpoS can be activated prior to the stationary phase via engineering its activators, the sRNA DsrA and the sRNA chaperone Hfq, resulting in significantly improved cell growth at modest acidic pH. This work suggests that the sigma factors and likely other transcription factors can be retuned or retimed by manipulating the respective regulatory sRNAs along with the sufficient supply of the respective sRNA chaperones (i.e., Hfq). This provides a novel avenue for strain engineering of microbes.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Fator Proteico 1 do Hospedeiro/fisiologia , Pequeno RNA não Traduzido/fisiologia , Adaptação Fisiológica , Concentração de Íons de Hidrogênio
10.
J Biol Chem ; 296: 100460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639171

RESUMO

Bacterial survival during lethal heat stress relies on the cellular ability to reactivate aggregated proteins. This activity is typically executed by the canonical 70-kDa heat shock protein (Hsp70)-ClpB bichaperone disaggregase, which is most widespread in bacteria. The ClpB disaggregase is a member of the ATPase associated with diverse cellular activities protein family and exhibits an ATP-driven threading activity. Substrate binding and stimulation of ATP hydrolysis depends on the Hsp70 partner, which initiates the disaggregation reaction. Recently elevated heat resistance in gamma-proteobacterial species was shown to be mediated by the ATPase associated with diverse cellular activities protein ClpG as an alternative disaggregase. Pseudomonas aeruginosa ClpG functions autonomously and does not cooperate with Hsp70 for substrate binding, enhanced ATPase activity, and disaggregation. With the underlying molecular basis largely unknown, the fundamental differences in ClpG- and ClpB-dependent disaggregation are reflected by the presence of sequence alterations and additional ClpG-specific domains. By analyzing the effects of mutants lacking ClpG-specific domains and harboring mutations in conserved motifs implicated in ATP hydrolysis and substrate threading, we show that the N-terminal, ClpG-specific N1 domain generally mediates protein aggregate binding as the molecular basis of autonomous disaggregation activity. Peptide substrate binding strongly stimulates ClpG ATPase activity by overriding repression by the N-terminal N1 and N2 domains. High ATPase activity requires two functional nucleotide binding domains and drives substrate threading which ultimately extracts polypeptides from the aggregate. ClpG ATPase and disaggregation activity is thereby directly controlled by substrate availability.


Assuntos
Antígenos de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Antígenos de Bactérias/fisiologia , Endopeptidase Clp/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/fisiologia , Agregados Proteicos , Ligação Proteica , Domínios Proteicos/genética
11.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33637573

RESUMO

In many bacteria, cyclic diguanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclase (DGC), serves as a second messenger involved in the regulation of biofilm formation. Although studies have suggested that c-di-GMP also regulates the formation of electrochemically active biofilms (EABFs) by Shewanella oneidensis MR-1, DGCs involved in this process remained to be identified. Here, we report that the SO_1646 gene, hereafter named dgcS, is upregulated under medium flow conditions in electrochemical flow cells (EFCs), and its product (DgcS) functions as a major DGC in MR-1. In vitro assays demonstrated that purified DgcS catalyzed the synthesis of c-di-GMP from GTP. Comparisons of intracellular c-di-GMP levels in the wild-type strain and a dgcS deletion mutant (ΔdgcS mutant) showed that production of c-di-GMP was markedly reduced in the ΔdgcS mutant when cells were grown in batch cultures and on electrodes in EFCs. Cultivation of the ΔdgcS mutant in EFCs also revealed that the loss of DgcS resulted in impaired biofilm formation and decreased current generation. These findings demonstrate that MR-1 uses DgcS to synthesize c-di-GMP under medium flow conditions, thereby activating biofilm formation on electrodes.IMPORTANCE Bioelectrochemical systems (BESs) have attracted wide attention owing to their utility in sustainable biotechnology processes, such as microbial fuel cells and electrofermentation systems. In BESs, electrochemically active bacteria (EAB) form biofilms on electrode surfaces, thereby serving as effective catalysts for the interconversion between chemical and electric energy. It is therefore important to understand mechanisms for the formation of biofilm by EAB grown on electrodes. Here, we show that a model EAB, S. oneidensis MR-1, expresses DgcS as a major DGC, thereby activating the formation of biofilms on electrodes via c-di-GMP-dependent signal transduction cascades. The findings presented herein provide the molecular basis for improving electrochemical interactions between EAB and electrodes in BESs. The results also offer molecular insights into how Shewanella regulates biofilm formation on solid surfaces in the natural environment.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes , Proteínas de Escherichia coli/fisiologia , Fósforo-Oxigênio Liases/fisiologia , Shewanella/fisiologia , Proteínas de Bactérias/genética , Fontes de Energia Bioelétrica , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Eletrodos/microbiologia , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/genética , Shewanella/genética
12.
Gene ; 774: 145420, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33434627

RESUMO

ClpXP in Escherichia coli is a proteasome degrading protein substrates. It consists of one hexamer of ATPase (ClpX) and two heptamers of peptidase (ClpP). The ClpX binds ATP and translocates the substrate protein into the ClpP chamber by binding and hydrolysis of ATP. At single molecular level, ClpX harnesses cycles of power stroke (dwell and burst) to unfold the substrates, then releases the ADP and Pi. Based on the construction and function of ClpXP, especially the recent progress on how ClpX unfold protein substrates, in this mini-review, a currently proposed single ClpX molecular model system detected by optical tweezers, and its prospective for the elucidation of the mechanism of force generation of ClpX in its power stroke and the subunit interaction with each other, were discussed in detail.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/fisiologia , Endopeptidase Clp/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , Chaperonas Moleculares/fisiologia , Imagem Individual de Molécula , ATPases Associadas a Diversas Atividades Celulares/química , Pesquisa Biomédica , Endopeptidase Clp/química , Proteínas de Escherichia coli/química , Redes e Vias Metabólicas , Mitocôndrias/fisiologia , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Estrutura Molecular , Relação Estrutura-Atividade
13.
Nucleic Acids Res ; 49(4): 2226-2239, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503254

RESUMO

Ribosome hibernation is a universal translation stress response found in bacteria as well as plant plastids. The term was coined almost two decades ago and despite recent insights including detailed cryo-EM structures, the physiological role and underlying molecular mechanism of ribosome hibernation has remained unclear. Here, we demonstrate that Escherichia coli hibernation factors RMF, HPF and RaiA (HFs) concurrently confer ribosome hibernation. In response to carbon starvation and resulting growth arrest, we observe that HFs protect ribosomes at the initial stage of starvation. Consistently, a deletion mutant lacking all three factors (ΔHF) is severely inhibited in regrowth from starvation. ΔHF cells increasingly accumulate 70S ribosomes harbouring fragmented rRNA, while rRNA in wild-type 100S dimers is intact. RNA fragmentation is observed to specifically occur at HF-associated sites in 16S rRNA of assembled 70S ribosomes. Surprisingly, degradation of the 16S rRNA 3'-end is decreased in cells lacking conserved endoribonuclease YbeY and exoribonuclease RNase R suggesting that HFs directly block these ribonucleases from accessing target sites in the ribosome.


Assuntos
Proteínas de Escherichia coli/fisiologia , Ribonucleases/metabolismo , Proteínas Ribossômicas/fisiologia , Ribossomos/metabolismo , Carbono/fisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Mutação , Biossíntese de Proteínas , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/genética , Estresse Fisiológico/genética
14.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33397726

RESUMO

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) utilize a macromolecular type III secretion system (T3SS) to inject effector proteins into eukaryotic cells. This apparatus spans the inner and outer bacterial membranes and includes a helical needle protruding into the extracellular space. Thus far observed only in EPEC and EHEC and not found in other pathogenic Gram-negative bacteria that have a T3SS is an additional helical filament made by the EspA protein that forms a long extension to the needle, mediating both attachment to eukaryotic cells and transport of effector proteins through the intestinal mucus layer. Here, we present the structure of the EspA filament from EPEC at 3.4 Å resolution. The structure reveals that the EspA filament is a right-handed 1-start helical assembly with a conserved lumen architecture with respect to the needle to ensure the seamless transport of unfolded cargos en route to the target cell. This functional conservation is despite the fact that there is little apparent overall conservation at the level of sequence or structure with the needle. We also unveil the molecular details of the immunodominant EspA epitope that can now be exploited for the rational design of epitope display systems.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Sistemas de Secreção Tipo III/metabolismo , Microscopia Crioeletrônica/métodos , Citoesqueleto/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Humanos , Transporte Proteico/fisiologia , Sistemas de Secreção Tipo III/fisiologia
15.
Mol Microbiol ; 115(4): 591-609, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33068046

RESUMO

Several GntR/FadR transcriptional regulators govern sugar acid metabolism in bacteria. Although effectors have been identified for a few sugar acid regulators, the mode of effector binding is unknown. Even in the overall FadR subfamily, there are limited details on effector-regulator interactions. Here, we identified the effector-binding cavity in Escherichia coli DgoR, a FadR subfamily transcriptional repressor of D-galactonate metabolism that employs D-galactonate as its effector. Using a genetic screen, we isolated several dgoR superrepressor alleles. Blind docking suggested eight amino acids corresponding to these alleles to form a part of the effector-binding cavity. In vivo and in vitro assays showed that these mutations compromise the inducibility of DgoR without affecting its oligomeric status or affinity for target DNA. Taking Bacillus subtilis GntR as a representative, we demonstrated that the effector-binding cavity is similar among FadR subfamily sugar acid regulators. Finally, a comparison of sugar acid regulators with other FadR members suggested conserved features of effector-regulator recognition within the FadR subfamily. Sugar acid metabolism is widely implicated in bacterial colonization and virulence. The present study sets the basis to investigate the influence of natural genetic variations in FadR subfamily regulators on their sensitivity to sugar acids and ultimately on host-bacterial interactions.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Açúcares Ácidos/metabolismo , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Metabolismo dos Carboidratos , DNA Bacteriano , Escherichia coli/química , Simulação de Acoplamento Molecular , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/fisiologia , Fatores de Transcrição/química
16.
PLoS Biol ; 18(12): e3000986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378358

RESUMO

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Assuntos
Cálcio/metabolismo , Proteínas de Escherichia coli/metabolismo , Piroptose/fisiologia , Receptores de Superfície Celular/metabolismo , Actinas/metabolismo , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/fisiologia , Análise por Conglomerados , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transporte Proteico , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Sistemas de Secreção Tipo III/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(43): 26907-26914, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046656

RESUMO

The outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and ß-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ∆yhdP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.


Assuntos
Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Transferência de Fosfolipídeos/fisiologia , Fosfolipídeos/metabolismo , Escherichia coli K12
18.
Cell Host Microbe ; 28(6): 780-788.e5, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33053375

RESUMO

The intestinal epithelium separates host tissue and gut-associated microbial communities. During inflammation, the host releases reactive oxygen and nitrogen species as an antimicrobial response. The impact of these radicals on gut microbes is incompletely understood. We discovered that the cryptic appBCX genes, predicted to encode a cytochrome bd-II oxidase, conferred a fitness advantage for E. coli in chemical and genetic models of non-infectious colitis. This fitness advantage was absent in mice that lacked epithelial NADPH oxidase 1 (NOX1) activity. In laboratory growth experiments, supplementation with exogenous hydrogen peroxide enhanced E. coli growth through AppBCX-mediated respiration in a catalase-dependent manner. We conclude that epithelial-derived reactive oxygen species are degraded in the gut lumen, which gives rise to molecular oxygen that supports the aerobic respiration of E. coli. This work illustrates how epithelial host responses intersect with gut microbial metabolism in the context of gut inflammation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Escherichia coli/fisiologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , NADPH Oxidase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aerobiose , Animais , Colite/induzido quimicamente , DNA Bacteriano , Modelos Animais de Doenças , Proteínas de Escherichia coli/fisiologia , Feminino , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Peróxido de Hidrogênio/metabolismo , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota , NADPH Oxidase 1/genética , Oxigênio/metabolismo
19.
Cell Physiol Biochem ; 54(5): 888-898, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32930525

RESUMO

BACKGROUND/AIMS: Trace amines (TA) are small organic compounds that have neuromodulator activity due to their interaction with some neuron-related receptors, such as trace amine associated receptors (TAARs), α2-adrenergic receptor (α2-AR) and ß-adrenergic receptor (ß-AR). However, there is little information on whether TA and dopamine (DOP) can interact with other adrenergic receptors (ARs) such as the mammalian α1-AR and the bacterial counterpart QseC, which is involved in quorum sensing of some Gram-negative pathogens. The aim of this study was to investigate the interaction of TA and DOP with α1-AR and QseC. METHODS: We performed an in silico study using 3D structure from SWISS MODEL and analyzed the protein interaction via molecular docking using PyMol, PoseView and PyRX 8.0. For the in vitro study, we investigated the QseC kinase activity by measuring the remaining ATP in a reaction containing QseC-enriched membrane incubated together with purified QseB and EPI, TA, DOP, or PTL respectively. We also measured the intracellular Ca++ levels, which represents the α1-AR activation, in LNCAP (pancreatic cell line) cells treated with EPI, TA, DOP and PTL respectively using a fluorescence-based assay. The LNCAP cell proliferation was measured using an MTT-based assay. RESULTS: Our in silico analysis revealed that TAs and DOP have high binding affinity to the human α1-AR and the bacterial adrenergic receptor (QseC), comparable to epinephrine (EPI). Both are membrane-bound kinases. Experimental studies with pancreatic cell line (LNCAP) showed that the TAs and DOP act as α1-AR antagonist by counteracting the effect of EPI. In the presence of EPI, TA and DOP trigger an increase of the intracellular Ca++ levels in the LNCAP cells leading to an inhibition of cell proliferation. Although in silico data suggest an interaction of TA and DOP with QseC, they do not inhibit the kinase activity of QseC, a histidine kinase receptor involved in quorum sensing which is also sensitive to EPI. CONCLUSION: Our study showed that the TAs and DOP act as α1-AR antagonist but no effect was observed for QseC.


Assuntos
Aminas/metabolismo , Dopamina/metabolismo , Proteínas de Escherichia coli/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Simulação por Computador , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/fisiologia , Humanos , Simulação de Acoplamento Molecular , Fosforilação , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Oligoelementos/análise
20.
FEBS Open Bio ; 10(10): 2081-2088, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32812699

RESUMO

Small heat shock proteins (sHSPs) are known to bind non-native substrates and prevent irreversible aggregation in an ATP-independent manner. However, the dynamic interaction between sHSPs and their substrates in vivo is less studied. Here, by utilizing a genetically incorporated crosslinker, we characterized the interaction between sHSP IbpB and its endogenous substrates in living cells. Through photo-crosslinking analysis of five Bpa variants of IbpB, we found that the substrate binding of IbpB in living cells is reversible upon short-time exposure at 50 °C. Our data provide in vivo evidence that IbpB engages in dynamic substrate release under nonstress conditions and suggest that photo-crosslinking may be a suitable method for investigating dynamic interaction between molecular chaperones and their substrates in living cells.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico/metabolismo , Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico/fisiologia , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/fisiologia , Chaperonas Moleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA