Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.631
Filtrar
1.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38689446

RESUMO

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Escherichia coli , Processamento de Proteína Pós-Traducional , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Nanopartículas/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731924

RESUMO

Förster resonance energy transfer (FRET) spectrometry is a method for determining the quaternary structure of protein oligomers from distributions of FRET efficiencies that are drawn from pixels of fluorescence images of cells expressing the proteins of interest. FRET spectrometry protocols currently rely on obtaining spectrally resolved fluorescence data from intensity-based experiments. Another imaging method, fluorescence lifetime imaging microscopy (FLIM), is a widely used alternative to compute FRET efficiencies for each pixel in an image from the reduction of the fluorescence lifetime of the donors caused by FRET. In FLIM studies of oligomers with different proportions of donors and acceptors, the donor lifetimes may be obtained by fitting the temporally resolved fluorescence decay data with a predetermined number of exponential decay curves. However, this requires knowledge of the number and the relative arrangement of the fluorescent proteins in the sample, which is precisely the goal of FRET spectrometry, thus creating a conundrum that has prevented users of FLIM instruments from performing FRET spectrometry. Here, we describe an attempt to implement FRET spectrometry on temporally resolved fluorescence microscopes by using an integration-based method of computing the FRET efficiency from fluorescence decay curves. This method, which we dubbed time-integrated FRET (or tiFRET), was tested on oligomeric fluorescent protein constructs expressed in the cytoplasm of living cells. The present results show that tiFRET is a promising way of implementing FRET spectrometry and suggest potential instrument adjustments for increasing accuracy and resolution in this kind of study.


Assuntos
Estudos de Viabilidade , Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Humanos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Espectrometria de Fluorescência/métodos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Fluorescência
3.
Anal Chim Acta ; 1305: 342580, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677837

RESUMO

BACKGROUND: The accurate and rapid detection of blood lead concentration is of paramount importance for assessing human lead exposure levels. Fluorescent protein-based probes, known for their high detection capabilities and low toxicity, are extensively used in analytical sciences. However, there is currently a shortage of such probes designed for ultrasensitive detection of Pb2+, and no reported probes exist for the quantitative detection of Pb2+ in blood samples. This study aims to fill this critical void by developing and evaluating a novel fluorescent protein-based probe that promises accurate and rapid lead quantification in blood. RESULTS: A simple and small-molecule fluorescent protein-based probe was successfully constructed herein using a peptide PbrBD designed for Pb2+ recognition coupled to a single fluorescent protein, sfGFP. The probe retains a three-coordinate configuration to identify Pb2+ and has a high affinity for it with a Kd' of 1.48 ± 0.05 × 10-17 M. It effectively transfers the conformational changes of the peptide to the chromophore upon Pb2+ binding, leading to fast fluorescence quenching and a sensitive response to Pb2+. The probe offers a broad dynamic response range of approximately 37-fold and a linear detection range from 0.25 nM to 3500 nM. More importantly, the probe can resist interference of metal ions in living organisms, enabling quantitative analysis of Pb2+ in the picomolar to millimolar range in serum samples with a recovery percentage of 96.64%-108.74 %. SIGNIFICANCE: This innovative probe, the first to employ a single fluorescent protein-based probe for ultrasensitive and precise analysis of Pb2+ in animal and human serum, heralds a significant advancement in environmental monitoring and public health surveillance. Furthermore, as a genetically encoded fluorescent probe, this probe also holds potential for the in vivo localization and concentration monitoring of Pb2+.


Assuntos
Corantes Fluorescentes , Chumbo , Chumbo/sangue , Chumbo/química , Corantes Fluorescentes/química , Animais , Humanos , Espectrometria de Fluorescência , Limite de Detecção , Proteínas Luminescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética
4.
Anal Chem ; 96(17): 6802-6811, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38647189

RESUMO

Autophagy is a widely conserved and multistep cellular catabolic process and maintains cellular homeostasis and normal cellular functions via the degradation of some harmful intracellular components. It was reported that high basal autophagic activity may be closely related to tumorigenesis. So far, the fluorescence imaging technique has been widely used to study autophagic processes, but this method is only suitable for distinguishing autophagosomes and autolysosomes. Simultaneously monitoring multiple autophagic processes remains a significant challenge due to the lack of an efficient detection method. Here, we demonstrated a new method for simultaneously monitoring multiple autophagic processes and assessing autophagic flux in single cells based on in situ fluorescence cross-correlation spectroscopy (FCCS). In this study, microtubule-associated protein 1A/1B-light chain 3B (LC3B) was fused with two tandem fluorescent proteins [mCherry red fluorescent protein (mCherry) and enhanced green fluorescent protein (EGFP)] to achieve the simultaneous labeling and distinguishing of multiple autophagic structures based on the differences in characteristic diffusion time (τD). Furthermore, we proposed a new parameter "delivery efficiency of autophagosome (DEAP)" to assess autophagic flux based on the cross correlation (CC) value. Our results demonstrate that FCCS can efficiently distinguish three autophagic structures, assess the induced autophagic flux, and discriminate different autophagy regulators. Compared with the commonly used fluorescence imaging technique, the resolution of FCCS remains unaffected by Brownian motion and fluorescent monomers in the cytoplasm and is well suitable to distinguishing differently colored autophagic structures and monitoring autophagy.


Assuntos
Autofagia , Análise de Célula Única , Espectrometria de Fluorescência , Humanos , Espectrometria de Fluorescência/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Células HeLa , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/química , Proteína Vermelha Fluorescente , Autofagossomos/metabolismo
5.
ACS Sens ; 9(4): 1743-1748, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38515268

RESUMO

To monitor the Ca2+ dynamics in cells, various genetically encoded Ca2+ indicators (GECIs) based on Förster resonance energy transfer (FRET) between fluorescent proteins are widely used for live imaging. Conventionally, cyan and yellow fluorescent proteins have been often used as FRET pairs. Meanwhile, bathochromically shifted indicators with green and red fluorescent protein pairs have various advantages, such as low toxicity and autofluorescence in cells. However, it remains difficult to develop them with a similar level of dynamic range as cyan and yellow fluorescent protein pairs. To improve this, we used Gamillus, which has a unique trans-configuration chromophore, as a green fluorescent protein. Based on one of the best high-dynamic-range GECIs, Twitch-NR, we developed a GECI with 1.5-times higher dynamic range (253%), Twitch-GmRR, using RRvT as a red fluorescent protein. Twitch-GmRR had high brightness and photostability and was successfully applied for imaging the Ca2+ dynamics in live cells. Our results suggest that Gamillus with trans-type chromophores contributes to improving the dynamic range of GECIs. Therefore, selection of the cis-trans isomer of the chromophore may be a fundamental approach to improve the dynamic range of green-red FRET indicators, unlimited by GECIs.


Assuntos
Cálcio , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Transferência Ressonante de Energia de Fluorescência/métodos , Cálcio/química , Cálcio/metabolismo , Cálcio/análise , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Humanos , Proteína Vermelha Fluorescente , Células HEK293
6.
Analyst ; 149(9): 2719-2727, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38525957

RESUMO

Protein phase separation plays a very important role in many biological processes and is closely related to the occurrence and development of some serious diseases. So far, the fluorescence imaging method and fluorescence correlation spectroscopy (FCS) have been frequently used to study the phase separation behavior of proteins. Due to the wide size distribution of protein condensates in phase separation from nano-scale to micro-scale in solution and living cells, it is difficult for the fluorescence imaging method and conventional FCS to fully reflect the real state of protein phase separation in the solution due to the low spatio-temporal resolution of the conventional fluorescence imaging method and the limited detection area of FCS. Here, we proposed a novel method for studying the protein phase separation process by objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS). In this study, CRDBP proteins were used as a model and respectively fused with fluorescent proteins (EGFP and mCherry). We first compared conventional FCS and Scan-FCS methods for characterizing the CRDBP protein phase separation behaviors and found that the reproducibility of Scan-FCS is significantly improved by the scanning mode. We studied the self-fusion process of mCherry-CRDBP and EGFP-CRDBP and observed that the phase change concentration of CRDBP was 25 nM and the fusion of mCherry-CRDBP and EGFP-CRDBP at 500 nM was completed within 70 min. We studied the effects of salt concentration and molecular crowding agents on the phase separation of CRDBP and found that salt can prevent the self-fusion of CRDBP and molecular crowding agents can improve the self-fusion of CRDBP. Furthermore, we found the recruitment behavior of CRDBP to ß-catenin proteins and studied their recruitment dynamics. Compared to conventional FCS, Scan-FCCS can significantly improve the reproducibility of measurements due to the dramatic increase of detection zone, and more importantly, this method can provide information about self-fusion and recruitment dynamics in protein phase separation.


Assuntos
Proteínas de Fluorescência Verde , Espectrometria de Fluorescência , Espectrometria de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Proteínas Recombinantes de Fusão/química , Proteína Vermelha Fluorescente , Separação de Fases
7.
Int J Biol Macromol ; 262(Pt 2): 130092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354920

RESUMO

Protein glutaminase (PG; EC 3.5.1.44) is a novel deamidase that helps to improve functional properties of food proteins. Currently, the highest activated PG enzyme activity was 26 U/mg when recombinantly expressed via the twin-arginine translocation (Tat) pathway in Corynebacterium glutamicum. In this study, superfolder green fluorescent protein (sfGFP) was used to replace traditional signal peptides to facilitate efficient heterologous expression and secretion of Propeptide-Protein glutaminase (PP) in Bacillus subtilis. The fusion protein, sfGFP-PP, was secreted from 12 h of fermentation and reached its highest extracellular expression at 28 h, with a secretion efficiency of about 93 %. Moreover, when fusing sfGFP with PP at the N-terminus, it significantly enhances PG expression up to 26 U/mL by approximately 2.2-fold compared to conventional signal-peptides- guided PP with 11.9 U/mL. Finally, the PG enzyme activity increased from 26 U/mL to 36.9 U/mL after promoter and RBS optimization. This strategy not only provides a new approach to increase PG production as well as extracellular secretion but also offers sfGFP as an effective N-terminal tag for increased secreted production of difficult-to-express proteins.


Assuntos
Bacillus subtilis , Glutaminase , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Glutaminase/genética , Glutaminase/metabolismo , Transporte Proteico , Sinais Direcionadores de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
8.
Nat Methods ; 21(5): 882-888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395993

RESUMO

Light-sheet fluorescence microscopy is an invaluable tool for four-dimensional biological imaging of multicellular systems due to the rapid volumetric imaging and minimal illumination dosage. However, it is challenging to retrieve fine subcellular information, especially in living cells, due to the width of the sheet of light (>1 µm). Here, using reversibly switchable fluorescent proteins (RSFPs) and a periodic light pattern for photoswitching, we demonstrate a super-resolution imaging method for rapid volumetric imaging of subcellular structures called multi-sheet RESOLFT. Multiple emission-sheets with a width that is far below the diffraction limit are created in parallel increasing recording speed (1-2 Hz) to provide super-sectioning ability (<100 nm). Our technology is compatible with various RSFPs due to its minimal requirement in the number of switching cycles and can be used to study a plethora of cellular structures. We track cellular processes such as cell division, actin motion and the dynamics of virus-like particles in three dimensions.


Assuntos
Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Animais , Actinas/metabolismo , Imageamento Tridimensional/métodos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Células HeLa
9.
J Phys Chem Lett ; 15(6): 1644-1651, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315162

RESUMO

Fluorescent proteins (FPs) for bioimaging are typically developed by screening mutant libraries for clones with improved photophysical properties. This approach has resulted in FPs with high brightness, but the mechanistic origins of the improvements are often unclear. We focused on improving the molecular brightness in the FusionRed family of FPs with fluorescence lifetime selections on targeted libraries, with the aim of reducing nonradiative decay rates. Our new variants show fluorescence quantum yields of up to 75% and lifetimes >3.5 ns. We present a comprehensive analysis of these new FPs, including trends in spectral shifts, photophysical data, photostability, and cellular brightness resulting from codon optimization. We also performed all-atom molecular dynamics simulations to investigate the impact of side chain mutations. The trajectories reveal that individual mutations reduce the flexibility of the chromophore and side chains, leading to an overall reduction in nonradiative rates.


Assuntos
Corantes , Simulação de Dinâmica Molecular , Fluorescência , Proteínas de Fluorescência Verde/química , Mutação , Conformação Proteica , Espectrometria de Fluorescência
10.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353309

RESUMO

Photoexcitation of green fluorescent protein (GFP) triggers long-range proton transfer along a "wire" of neighboring protein residues, which, in turn, activates its characteristic green fluorescence. The GFP proton wire is one of the simplest, most well-characterized models of biological proton transfer but remains challenging to simulate due to the sensitivity of its energetics to the surrounding protein conformation and the possibility of non-classical behavior associated with the movement of lightweight protons. Using a direct dynamics variational multiconfigurational Gaussian wavepacket method to provide a fully quantum description of both electrons and nuclei, we explore the mechanism of excited state proton transfer in a high-dimensional model of the GFP chromophore cluster over the first two picoseconds following excitation. During our simulation, we observe the sequential starts of two of the three proton transfers along the wire, confirming the predictions of previous studies that the overall process starts from the end of the wire furthest from the fluorescent chromophore and proceeds in a concerted but asynchronous manner. Furthermore, by comparing the full quantum dynamics to a set of classical trajectories, we provide unambiguous evidence that tunneling plays a critical role in facilitating the leading proton transfer.


Assuntos
Prótons , Proteínas de Fluorescência Verde/química , Fluorescência , Conformação Proteica , Simulação por Computador
11.
J Phys Chem B ; 128(5): 1188-1193, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38282329

RESUMO

High photostability is a desirable property of fluorescent proteins (FPs) for imaging, yet its molecular basis is poorly understood. We performed ultrafast spectroscopy on TagRFP and its 9-fold more photostable variant TagRFP-T (TagRFP S158T) to characterize their initial photoreactions. We find significant differences in their electronic and vibrational dynamics, including faster excited-state proton transfer and transient changes in the frequency of the v520 mode in the excited electronic state of TagRFP-T. The frequency of v520, which is sensitive to chromophore planarity, downshifts within 0.58 ps and recovers within 0.87 ps. This vibrational mode modulates the distance from the chromophore phenoxy to the side chain of residue N143, which we suggest can trigger cis/trans photoisomerization. In TagRFP, the dynamics of v520 is missing, and this FP therefore lacks an important channel for chromophore isomerization. These dynamics are likely to be a key mechanism differentiating the photostability of the two FPs.


Assuntos
Prótons , Proteínas de Fluorescência Verde/química
12.
Biosensors (Basel) ; 14(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275307

RESUMO

Introducing 3-aminotyrosine (aY), a noncanonical amino acid (ncAA), into green fluorescent protein (GFP)-like chromophores shows promise for achieving red-shifted fluorescence. However, inconsistent results, including undesired green fluorescent species, hinder the effectiveness of this approach. In this study, we optimized expression conditions for an aY-derived cpGFP (aY-cpGFP). Key factors like rich culture media and oxygen restriction pre- and post-induction enabled high-yield, high-purity production of the red-shifted protein. We also engineered two variants of aY-cpGFP with enhanced brightness by mutating a few amino acid residues surrounding the chromophore. We further investigated the sensitivity of the aY-derived protein to metal ions, reactive oxygen species (ROS), and reactive nitrogen species (RNS). Incorporating aY into cpGFP had minimal impact on metal ion reactivity but increased the response to RNS. Expanding on these findings, we examined aY-cpGFP expression in mammalian cells and found that reductants in the culture media significantly increased the red-emitting product. Our study indicates that optimizing expression conditions to promote a reduced cellular state proved effective in producing the desired red-emitting product in both E. coli and mammalian cells, while targeted mutagenesis-based protein engineering can further enhance brightness and increase method robustness.


Assuntos
Aminoácidos , Escherichia coli , Tirosina/análogos & derivados , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/química , Escherichia coli/genética , Meios de Cultura , Mamíferos
13.
Org Biomol Chem ; 22(2): 337-347, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38063860

RESUMO

The photochemically active sites of the proteins sfGFP66azF and Venus66azF, members of the green fluorescent protein (GFP) family, contain a non-canonical amino acid residue p-azidophenylalanine (azF) instead of Tyr66. The light-induced decomposition of azF at these sites leads to the formation of reactive arylnitrene (nF) intermediates followed by the formation of phenylamine-containing chromophores. We report the first study of the reaction mechanism of the reduction of the arylnitrene intermediates in sfGFP66nF and Venus66nF using molecular modeling methods. The Gibbs energy profiles for the elementary steps of the chemical reaction in sfGFP66nF are computed using molecular dynamics simulations with quantum mechanics/molecular mechanics (QM/MM) potentials. Structures and energies along the reaction pathway in Venus66nF are evaluated using a QM/MM approach. According to the results of the simulations, arylnitrene reduction is coupled with oxidation of the histidine side chain on the His148 residue located near the chromophore.


Assuntos
Azidas , Histidina , Proteínas de Fluorescência Verde/química , Histidina/química , Simulação de Dinâmica Molecular , Oxirredução , Corantes , Teoria Quântica
14.
Protein Sci ; 33(2): e4886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151801

RESUMO

Fluorescent proteins (FPs) are versatile biomarkers that facilitate effective detection and tracking of macromolecules of interest in real time. Engineered FPs such as superfolder green fluorescent protein (sfGFP) and superfolder Cherry (sfCherry) have exceptional refolding capability capable of delivering fluorescent readout in harsh environments where most proteins lose their native functions. Our recent work on the development of a split FP from a species of strawberry anemone, Corynactis californica, delivered pairs of fragments with up to threefold faster complementation than split GFP. We present the biophysical, biochemical, and structural characteristics of five full-length variants derived from these split C. californica GFP (ccGFP). These ccGFP variants are more tolerant under chemical denaturation with up to 8 kcal/mol lower unfolding free energy than that of the sfGFP. It is likely that some of these ccGFP variants could be suitable as biomarkers under more adverse environments where sfGFP fails to survive. A structural analysis suggests explanations of the variations in stabilities among the ccGFP variants.


Assuntos
Proteínas de Fluorescência Verde , Proteínas de Fluorescência Verde/química , Biomarcadores
15.
Org Biomol Chem ; 21(47): 9463-9470, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997774

RESUMO

Uracil has been modified at the 5-position to derive a small library of nucleobase-chromophores which were inspired by green fluorescent protein (GFP). The key steps in the syntheses were Erlenmeyer azlactone synthesis followed by amination by use of hexamethyl disilazane (HMDS) to produce the imidazolinone derivatives. The uracil analogues displayed emission in the green region of visible spectrum and exhibited microenvironmental sensitivity exemplified by polarity-based solvatochromism and viscosity-dependent emission enhancement. Solid-state quantum yields of approximately 0.2 and solvent dependent emission wavelengths beyond 500 nm were observed. Select analogues were incorporated into peptide nucleic acid (PNA) strands which upon duplex formation with DNA showed good response ranging from a turn-off of fluorescence in presence of an opposing mismatched residue to a greater than 3-fold turn-on of fluorescence upon binding to fully complementary DNA strand.


Assuntos
DNA , Uracila , Proteínas de Fluorescência Verde/química , Uracila/química , Estrutura Molecular , Fluorescência , DNA/química
16.
ACS Sens ; 8(11): 4233-4244, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37956352

RESUMO

Genetically encoded fluorescent indicators (GEFIs) are protein-based optogenetic tools that change their fluorescence intensity when binding specific ligands in cells and tissues. GEFI encoding DNA can be expressed in cell subtypes while monitoring cellular physiological responses. However, engineering GEFIs with physiological sensitivity and pharmacological specificity often requires iterative optimization through trial-and-error mutagenesis while assessing their biophysical function in vitro one by one. Here, the vast mutational landscape of proteins constitutes a significant obstacle that slows GEFI development, particularly for sensors that rely on mammalian host systems for testing. To overcome these obstacles, we developed a multiplexed high-throughput engineering platform called the optogenetic microwell array screening system (Opto-MASS) that functionally tests thousands of GEFI variants in parallel in mammalian cells. Opto-MASS represents the next step for engineering optogenetic tools as it can screen large variant libraries orders of magnitude faster than current methods. We showcase this system by testing over 13,000 dopamine and 21,000 opioid sensor variants. We generated a new dopamine sensor, dMASS1, with a >6-fold signal increase to 100 nM dopamine exposure compared to its parent construct. Our new opioid sensor, µMASS1, has a ∼4.6-fold signal increase over its parent scaffold's response to 500 nM DAMGO. Thus, Opto-MASS can rapidly engineer new sensors while significantly shortening the optimization time for new sensors with distinct biophysical properties.


Assuntos
Dopamina , Optogenética , Animais , Analgésicos Opioides , Proteínas de Fluorescência Verde/química , Corantes Fluorescentes/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
17.
Chem Commun (Camb) ; 59(98): 14575-14578, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37988171

RESUMO

Mapping molecular deformation and forces in protein biomaterials is critical to understanding mechanochemistry. Here we use intramolecular Förster resonance energy transfer (FRET) of dual-labeled fibrin to distinguish molecular conformations of proteins in situ during mechanical loading. The FRET approach offers increased spatial resolution compared to our previous vibrational imaging. By using fluorescence lifetime microscopy (FLIM), we demonstrate that the combination of FRET and FLIM can probe the molecular changes in fibrin with high spatial (nanometer) and temporal (nanosecond) resolution. Our results map changes in fibrin monomer deformation during the macroscopic loading of the fibrin network, paving the way to directly visualizing the biomaterial mechanics and structure in cell-ECM scaffolds for the first time.


Assuntos
Fibrina , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Microscopia de Fluorescência/métodos
18.
Bioconjug Chem ; 34(11): 2089-2095, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37856672

RESUMO

Oligonucleotide conjugation has emerged as a versatile molecular tool for regulating protein activity. A state-of-the-art labeling strategy includes the site-specific conjugation of DNA, by employing bioorthogonal groups genetically incorporated in proteins through unnatural amino acids (UAAs). The incorporation of UAAs in chemokines has to date, however, remained underexplored, probably due to their sometimes poor stability following recombinant expression. In this work, we designed a fluorescent stromal-derived factor-1ß (SDF-1ß) chemokine fusion protein with a bioorthogonal functionality amenable for click reactions. Using amber stop codon suppression, p-azido-L-phenylalanine was site-specifically incorporated in the fluorescent N-terminal fusion partner, superfolder green fluorescent protein (sfGFP). Conjugation to single-stranded DNAs (ssDNA), modified with a photocleavable spacer and a reactive bicyclononyne moiety, was performed to create a DNA-caged species that blocked the receptor binding ability. This inhibition was completely reversible by means of photocleavage of the ssDNA strands. The results described herein provide a versatile new direction for spatiotemporally regulating chemokine-receptor interactions, which is promising for tissue engineering purposes.


Assuntos
Aminoácidos , Fenilalanina , Aminoácidos/química , Fenilalanina/química , Proteínas de Fluorescência Verde/química , DNA , Quimiocinas
19.
Sci Rep ; 13(1): 17489, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840037

RESUMO

Reverse pH-dependent fluorescent protein, including dKeima, is a type of fluorescent protein in which the chromophore protonation state depends inversely on external pH. The dependence is maintained even when immobilized at the metal-solution interface. But, interestingly, its responses to the hydrogen evolution reaction (HER) at the interface are not reversed: HER rises the pH of the solution around the cathode, but, highly active HER induces chromophore deprotonation regardless of the reverse pH dependence, reflecting an interface-specific deprotonation effect by HER. Here, we exploit this phenomenon to perform scanning-less, real-time visualization of interfacial proton dynamics during HER at a wide field of view. By using dKeima, the HER-driven deprotonation effect was well discriminated from the solution pH effect. In the electrodes of composite structures with a catalyst, dKeima visualized keen dependence of the proton depletion pattern on the electrode configuration. In addition, propagations of optical signals were observed, which seemingly reflect long-range proton hopping confined to the metal-solution interface. Thus, reverse pH-dependent fluorescent proteins provide a unique tool for spatiotemporal analysis of interfacial proton dynamics, which is expected to contribute to a better understanding of the HER process and ultimately to the safe and efficient production of molecular hydrogen.


Assuntos
Hidrogênio , Prótons , Hidrogênio/química , Fluorescência , Concentração de Íons de Hidrogênio , Proteínas de Fluorescência Verde/química
20.
J Biochem ; 175(1): 25-34, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37812399

RESUMO

Akanes are fluorescent proteins that have several fluorescence maxima. In this report, Akane1 and Akane3 from Scleronephthya gracillima were selected, successfully overexpressed in Escherichia coli and purified by affinity chromatography. Fluorescence spectra of the recombinant Akanes matured in darkness, or ambient light were found to have several fluorescence peaks. SDS-PAGE analysis revealed that Akanes matured in ambient light have two fragments. MS/MS analysis of Akanes digested with trypsin showed that the cleavage site is the same as observed for the photoconvertible fluorescent protein Kaede. The differences between the calculated masses from the amino acid sequence of Akane1 and the measured masses of Akane1 fragments obtained under ambient light coincided with those of Kaede. In contrast, a mass difference between the measured N-terminal Akane3 fragment and the calculated mass indicated that Akane3 is modified in the N-terminal region. These results indicate that numerous peaks in the fluorescent spectra of Akanes partly arise from isoproteins of Akanes and photoconversion. Photoconversion of Akane1 caused a fluorescence change from green to red, which was also observed for Akane3; however, the fluorescent intensity decreased dramatically when compared with that of Akane3.


Assuntos
Luz , Espectrometria de Massas em Tandem , Proteínas Luminescentes/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA