Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732086

RESUMO

The ability of the immune system to combat pathogens relies on processes like antigen sampling by dendritic cells and macrophages migrating through endo- and epithelia or penetrating them with their dendrites. In addition, other immune cell subtypes also migrate through the epithelium after activation. For paracellular migration, interactions with tight junctions (TJs) are necessary, and previous studies reported TJ protein expression in several immune cells. Our investigation aimed to characterize, in more detail, the expression profiles of TJ proteins in different immune cells in both naïve and activated states. The mRNA expression analysis revealed distinct expression patterns for TJ proteins, with notable changes, mainly increases, upon activation. At the protein level, LSR appeared predominant, being constitutively present in naïve cell membranes, suggesting roles as a crucial interaction partner. Binding experiments suggested the presence of claudins in the membrane only after stimulation, and claudin-8 translocation to the membrane occurred after stimulation. Our findings suggest a dynamic TJ protein expression in immune cells, implicating diverse functions in response to stimulation, like interaction with TJ proteins or regulatory roles. While further analysis is needed to elucidate the precise roles of TJ proteins, our findings indicate important non-canonical functions of TJ proteins in immune response.


Assuntos
Proteínas de Junções Íntimas , Junções Íntimas , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Junções Íntimas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Claudinas/metabolismo , Claudinas/genética , Membrana Celular/metabolismo
2.
Nutrients ; 16(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612971

RESUMO

Crohn's and ulcerative colitis are common conditions associated with inflammatory bowel disease as well as intestinal flora and epithelial barrier dysfunction. A novel fermented Lactobacillus brevis (AL0035) herein assayed in a trinitro benzene sulfonic acid (TNBS)-induced colitis mice model after oral administration significantly counteracted the body weight loss and improves the disease activity index and histological injury scores. AL0035 significantly decreased the mRNA and protein expression of different pro-inflammatory cytokines (TNFalpha, IL-1beta, IL-6, IL-12, IFN-gamma) and enhanced the expression of IL-10. In addition, the probiotic promoted the expression of tight junction proteins, such as ZO-1, keeping the intestinal mucosal barrier function to attenuate colitis symptoms in mice. Markers of inflammation cascade such as myeloperoxidase (MPO) and PPAR-gamma measured in the colon were also modified by AL0035 treatment. AL0035 was also able to reduce different lymphocyte markers' infiltration in the colon (GATA-3, T-Bet, NK1.1) and monocyte chemoattractant protein-1 (MCP-1/CCL2), a key chemokine involved in the migration and infiltration of monocytes/macrophages in the immunological surveillance of tissues and inflammation. In colonic microbiota profile analysis through 16S rRNA sequencing, AL0035 increased the microbial diversity depleted by TNBS administration and the relative abundance of the Lactobacillaceae and Lachnospiraceae families, whereas it decreased the abundance of Proteobacteria. Altogether, these data indicated that AL0035 could lower the severity of colitis induced by TNBS by regulating inflammatory cytokines, increasing the expression of tight junction proteins and modulating intestinal microbiota, thus preventing tissue damage induced by colitis.


Assuntos
Colite , Microbioma Gastrointestinal , Levilactobacillus brevis , Humanos , Animais , Camundongos , Verduras , RNA Ribossômico 16S , Colite/induzido quimicamente , Inflamação , Citocinas , Proteínas de Junções Íntimas/genética
3.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206189

RESUMO

Recent studies have highlighted the importance of maternal nutrition during gestation and lactation in modulating the gastrointestinal development and health of offspring. Therefore, the objective of this study was to determine the effects of live yeast (LY) supplementation to sows during late gestation and throughout lactation on markers of gut health of piglets prior to weaning and immediately postweaning. On day 77 of gestation, forty sows were allotted based on parity and expected farrowing dates to two dietary treatments: without (CON) or with (LY) supplementation at 0.05% and 0.1% of diet during gestation and lactation, respectively. On postnatal days (PND) 0, 10, 18, and postweaning days (PWD) 7 and 14, one piglet from each of 10 sows per treatment were selected for intestinal tissue collection (n = 10). Real-time PCR and western blotting analyses were used to determine the mucosal expression of immune and antioxidant-regulatory genes and tight junction markers of gut health in the duodenum, jejunum, and ileum. Inflammatory and tight junction markers on PND 0 were not affected by maternal dietary treatment. On PND 18, maternal LY supplementation increased (P < 0.05) mRNA expression of interleukin (IL)-6 and tended (P = 0.08) to increase expression of IL-10 in the ileal muocsa. Maternal LY supplementation also increased (P < 0.05) expression of IL-1ß in the ileal mucosa on PWD 14. Likewise, expression of superoxide dismutase (SOD) 1 was increased (P < 0.05) by LY on PND 10, 18, and PWD 14, with a tendency (P = 0.09) for a greater mRNA abundance of catalase on PND 14 in the ileal mucosa. Compared to CON piglets, LY piglets had a higher (P < 0.05) protein abundance of E-cadherin in the jejunal mucosa on PND 0, PWD 7, and PWD 14. Levels of occludin and claudin-4 were also higher (P < 0.05) in the jejunum of LY piglets on PWD 14. No differences were found in jejunal histomorphological measurements between treatments. In conclusion, this study shows that maternal LY supplementation affects key markers of gut health and development in the offspring that may impact the future growth potential and health of newborn piglets.


Increasing evidence supports the benefits of improving sow nutrition during gestation and lactation to promote gastrointestinal development and overall health of piglets. The objective of this research was to investigate the effects of maternal live yeast (LY) supplementation to sows during late gestation and lactation periods on the intestinal health of suckling and weaned piglets. Sows were fed LY during gestation and lactation and piglets were killed for sampling at different time points to track the temporal effect of maternal LY supplementation on changes in markers of intestinal health and development on postnatal days 0, 10, and 18, and postweaning days 7 and 14. Results showed that maternal LY supplementation affected several markers of health and development in the offspring, especially the expression of tight junction proteins, inflammatory cytokines, and antioxidant enzymes. These results indicate that nutritional intervention during gestation and lactation could serve as an effective strategy for raising piglets with better health and growth performance.


Assuntos
Suplementos Nutricionais , Saccharomyces cerevisiae , Feminino , Gravidez , Animais , Suínos , Colostro/metabolismo , Citocinas/genética , Citocinas/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Dieta/veterinária , Lactação , Desmame , RNA Mensageiro/metabolismo , Ração Animal/análise
4.
J Neurovirol ; 30(1): 1-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280928

RESUMO

Opioid overdose deaths have dramatically increased by 781% from 1999 to 2021. In the setting of HIV, opioid drug abuse exacerbates neurotoxic effects of HIV in the brain, as opioids enhance viral replication, promote neuronal dysfunction and injury, and dysregulate an already compromised inflammatory response. Despite the rise in fentanyl abuse and the close association between opioid abuse and HIV infection, the interactive comorbidity between fentanyl abuse and HIV has yet to be examined in vivo. The HIV-1 Tat-transgenic mouse model was used to understand the interactive effects between fentanyl and HIV. Tat is an essential protein produced during HIV that drives the transcription of new virions and exerts neurotoxic effects within the brain. The Tat-transgenic mouse model uses a glial fibrillary acidic protein (GFAP)-driven tetracycline promoter which limits Tat production to the brain and this model is well used for examining mechanisms related to neuroHIV. After 7 days of fentanyl exposure, brains were harvested. Tight junction proteins, the vascular cell adhesion molecule, and platelet-derived growth factor receptor-ß were measured to examine the integrity of the blood brain barrier. The immune response was assessed using a mouse-specific multiplex chemokine assay. For the first time in vivo, we demonstrate that fentanyl by itself can severely disrupt the blood-brain barrier and dysregulate the immune response. In addition, we reveal associations between inflammatory markers and tight junction proteins at the blood-brain barrier.


Assuntos
Barreira Hematoencefálica , Fentanila , HIV-1 , Camundongos Transgênicos , Doenças Neuroinflamatórias , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Camundongos , Fentanila/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos Opioides/farmacologia , Analgésicos Opioides/efeitos adversos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia , Transtornos Relacionados ao Uso de Opioides/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255907

RESUMO

Tight junction (TJ) proteins (Tjps), Tjp1 and Tjp2, are tight junction-associated scaffold proteins that bind to the transmembrane proteins of tight junctions and the underlying cytoskeleton. In this study, we first analyzed the tumorigenic characteristics of B16-F10 melanoma cells, including cell proliferation, migration, invasion, metastatic potential, and the expression patterns of related proteins, after the CRISPR-Cas9-mediated knockout (KO) of Tjp genes. The proliferation of Tjp1 and Tjp2 KO cells significantly increased in vitro. Other tumorigenic characteristics, including migration and invasion, were significantly enhanced in Tjp1 and Tjp2 KO cells. Zonula occludens (ZO)-associated protein Claudin-1 (CLDN-1), which is a major component of tight junctions and functions in controlling cell-to-cell adhesion, was decreased in Tjp KO cells. Additionally, Tjp KO significantly stimulated tumor growth and metastasis in an in vivo mouse model. We performed a transcriptome analysis using next-generation sequencing (NGS) to elucidate the key genes involved in the mechanisms of action of Tjp1 and Tjp2. Among the various genes affected by Tjp KO-, cell cycle-, cell migration-, angiogenesis-, and cell-cell adhesion-related genes were significantly altered. In particular, we found that the Ninjurin-1 (Ninj1) and Catenin alpha-1 (Ctnna1) genes, which are known to play fundamental roles in Tjps, were significantly downregulated in Tjp KO cells. In summary, tumorigenic characteristics, including cell proliferation, migration, invasion, tumor growth, and metastatic potential, were significantly increased in Tjp1 and Tjp2 KO cells, and the knockout of Tjp genes significantly affected the expression of related proteins.


Assuntos
Melanoma Experimental , Junções Íntimas , Animais , Camundongos , Carcinogênese/genética , Proliferação de Células , Proteínas de Junções Íntimas/genética , Melanoma Experimental/genética , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
6.
Food Funct ; 15(2): 481-492, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197139

RESUMO

Studies have shown that dietary polysaccharides, which are widely present in natural foods, have an important impact on the intestinal mucosal barrier. Dietary polysaccharides can maintain the intestinal barrier function through multiple mechanisms. The intestinal barrier is composed of mechanical, chemical, immune, and biological barriers, and dietary polysaccharides, as a bioactive component, can promote and regulate these four barriers. Dietary polysaccharides can enhance the expression of tight junction proteins and mucins such as occludin-1 and zonula occludens-1 (ZO-1) between intestinal epithelial cells, inhibit inflammatory response and oxidative stress, increase the growth of beneficial bacteria, produce beneficial metabolites such as short chain fatty acids (SCFAs), and promote the proliferation and metabolism of immune cells. Given the critical role of the intestinal mucosal system in health and disease, the protective effects of dietary polysaccharides may be potentially valuable for the prevention and treatment of gut-related diseases. Therefore, it is of great significance to further study the mechanism and application prospects of the intestinal mucosal barrier derived from plant, animal, fungal and bacterial sources.


Assuntos
Mucosa Intestinal , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliais , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 411-421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458776

RESUMO

The decrease in tight junction proteins and their adapter proteins in the hypertensive brain is remarkable. Here, we aimed to investigate tight junction proteins and peroxisome proliferator-activated receptor (PPARγ) activation as well as inflammation factors and cell death proteins in the brainstem of hypertension models, namely spontaneously hypertensive rats (SHR) and borderline hypertensive rats (BHR). At first, SHR and BHR groups were treated with PPARγ agonist, pioglitazone. Then, occludin, claudin-1, claudin-2, claudin-12, ZO-1, and NF-κB p65 gene expression levels; pIKKß, NF-κB p65, TNF, IL-1ß, caspase-3, caspase-9 levels, and PARP-1 cleavage were evaluated. Significantly lower pIKKß, NF-κB p65, TNF, and IL-1ß levels were measured in pioglitazone-treated SHR. Results from this study confirm higher occludin (1.35-fold), claudin-2 (7.45-fold), claudin-12 (1.12-fold), and NF-κB p65 subunit (4.76-fold) expressions in the BHR group when compared to the SHR group. Pioglitazone was found effective in terms of regulating gene expression in SHR. Pioglitazone significantly increased occludin (8.17-fold), claudin-2 (2.41-fold), and claudin-12 (1.85-fold) mRNA levels, which were accompanied by decreased cleaved caspase-3, caspase-9 levels, PARP-1 activation, and proinflammatory factor levels in SHR (p ˂ 0.05). Our work has led us to conclude that alterations in tight junction proteins, particularly occludin, and cell death parameters in the brainstem following PPARγ activation may contribute to neuroprotection in essential hypertension.


Assuntos
Hipertensão , PPAR gama , Ratos , Animais , Pioglitazona/farmacologia , PPAR gama/metabolismo , NF-kappa B/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Agonistas PPAR-gama , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Claudina-2/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Morte Celular , Tronco Encefálico/metabolismo
8.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142130

RESUMO

The aim of this experiment was to investigate the effects of Ageratina adenophora on the expression of epithelium tight junction proteins and inflammatory factors in the rumen of goats. Twelve goats were randomly divided into three groups. The first group was the blank control group (n = 3, C) which was fed normal diet. The second group was fistulas control group (n = 3, RFC), which was fitted with rumen fistulas, and fed normal diet. The third group was the A. adenophora test group (n = 6, AA), which was fitted with rumen fistulas and fed a mixture of 60% of normal diet and 40% of A. adenophora grass powder. The feeding experiment lasted for 90 d, after which all goats were sacrificed and samples were collected from the rumen dorsal sac and ventral sac. The relative expression of mRNA of inflammatory factors in the rumen epithelium (tumor necrosis factor alpha [TNF-α], interferon gamma [IFN-γ], interleukin 1 beta [IL-1ß], IL-2, IL-4, IL-6, and IL-10) and tight junction protein genes (occludin, claudin-1, and ZO-1) was measured by quantitative real-time fluorescence PCR. Expression of tight junction proteins in the rumen epithelium was measured by Western blot. A correlation was established between the expression of inflammatory factors and tight junction protein genes using Graph Pad Prism. The results showed that A. adenophora caused a significant increase in the mRNA expression levels of TNF-α, IFN-γ, IL-1ß, IL-2, IL-6, and IL-10 in the rumen epithelial (P < 0.05 or P < 0.01). The expression of tight junction proteins at both gene and protein levels was significantly decreased (P < 0.05 or P < 0.01). Furthermore, the correlation analysis revealed that the changes in tight junction protein expression in the test group were closely related to the upregulation of the expression of inflammatory factors TNF-α and IFN-γ in rumen epithelial cells. In conclusion, the expression of inflammatory factors was increased and the expression of tight junction proteins was decreased in goats after feeding on A. adenophora, which caused some damage to the rumen epithelium.


The article aims to investigate the toxic effects of Ageratina adenophora, an invasive plant on the integrity of the rumen epithelium by measuring the changes in the expression of inflammatory factors and tight junction proteins after the consumption of A. adenophora in goats. The results showed that A. adenophora causes damage to the rumen epithelium by increasing the expression of pro-inflammatory markers like TNF-α and IFN-γ and reducing the expression of tight junction proteins such as occludin and claudin-1 in goats.


Assuntos
Ageratina , Fístula , Doenças das Cabras , Animais , Rúmen/metabolismo , Interleucina-10 , Ageratina/genética , Ageratina/metabolismo , Cabras/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Epitélio/metabolismo , RNA Mensageiro/genética , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Fístula/metabolismo , Fístula/veterinária
9.
Food Funct ; 15(2): 625-646, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38099724

RESUMO

Delayed mucosal healing and impaired intestinal epithelial barrier function have been implicated in the pathogenesis of ulcerative colitis (UC). Accordingly, restoration of epithelial barrier function as a means to reshape mucosal homeostasis represents an important strategy for use in the treatment of UC. In this study, we examined the role and mechanisms of D-mannose in the recovery of colitis as assessed in both animal and cell models. We found that D-mannose ameliorated inflammation, promoted mucosal healing in the colon and therefore was able to induce the recovery of UC. Furthermore, D-mannose increased the expression of tight junction (TJ) proteins and reduced the intestinal permeability during the recovery of colitis. Moreover, D-mannose inhibited M1 macrophage polarization and promoted M2 macrophage polarization via inducing AMPK phosphorylation while reducing mTOR phosphorylation in both models. In addition, increased TJ protein expression and decreased paracellular permeability were observed in NCM460 cells when incubated with the supernatants of D-mannose-treated RAW264.7 cells, suggesting that M1/M2 polarization induced by D-mannose modulates the expression of TJ proteins. Further study showed that D-mannose significantly upregulated the expression of TJ proteins in DSS-treated NCM460 cells by inducing AMPK phosphorylation, indicating a direct protective effect on epithelial cells. Finally, the protective effects of D-mannose were significantly abrogated by the presence of compound C, an AMPK inhibitor. Taken together, our data indicate that D-mannose can alleviate inflammation and foster epithelial restitution in UC recovery by inducing the TJ protein expression, which are achieved by inducing AMPK phosphorylation in the epithelium and/or macrophages.


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Manose/metabolismo , Fosforilação , Mucosa Intestinal/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/induzido quimicamente , Inflamação/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
10.
Toxins (Basel) ; 15(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38133186

RESUMO

Under natural conditions, T-2 toxin can be easily metabolized to HT-2 toxin by deacetylation, and T-2 and HT-2 are usually co-contaminated in grain and feed at a high detected rate. Our previous information indicated that T-2 toxin could injure the function of the intestinal barrier, but the combined toxicity and mechanism of T-2 and HT-2 on the intestinal cells of porcines are still unknown. Therefore, we aimed to explore T-2 and HT-2 individually and combined on cellular viability, cell membrane integrity, the expression of tight junction-related proteins, and the generation of inflammatory factors in porcine intestinal epithelial cells (IPEC-J2). The results showed that T-2 and HT-2, individually or in combination, could induce a decrease in cell viability, an increase in LDH release and IL-1, IL-6, and TNF-α generation, and a decrease in the anti-inflammatory factor IL-10. Based on the analysis of immunofluorescence staining, real-time PCR, and western blotting, the tight junction protein expressions of Claudin-1, Occludin, and ZO-1 were significantly decreased in the T-2 and HT-2 individual or combination treated groups compared with the control. Furthermore, all the parameter changes in the T-2 + HT-2 combination group were much more serious than those in the individual dose groups. These results suggest that T-2 and HT-2, individually and in combination, could induce an intestinal function injury related to an inflammatory response and damage to the intestinal barrier function in porcine intestinal epithelial cells. Additionally, T-2 and HT-2 in combination showed a synergistic toxic effect, which will provide a theoretical basis to assess the risk of T-2 + HT-2 co-contamination in porcine feed.


Assuntos
Mucosa Intestinal , Toxina T-2 , Animais , Suínos , Toxina T-2/metabolismo , Função da Barreira Intestinal , Intestinos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Células Epiteliais
11.
J Comp Neurol ; 531(17): 1828-1845, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37814509

RESUMO

The blood-brain barrier (BBB) is a physical interface between the blood and the brain parenchyma, playing key roles in brain homeostasis. In mammals, the BBB is established thanks to tight junctions between cerebral endothelial cells, involving claudin, occludin, and zonula occludens proteins. Estrogens have been documented to modulate BBB permeability. Interestingly, in the brain of zebrafish, the estrogen-synthesizing activity is strong due to the high expression of Aromatase B protein, encoded by the cyp19a1b gene, in radial glial cells (neural stem cells). Given the roles of estrogens in BBB function, we investigated their impact on the expression of genes involved in BBB tight junctions. We treated zebrafish embryos and adult males with 17ß-estradiol and observed an increased cerebral expression of tight junction and claudin 5 genes in adult males only. In females, treatment with the nuclear estrogen receptor antagonist (ICI182,780 ) had no impact. Interestingly, telencephalic injuries performed in males decreased tight junction gene expression that was partially reversed with 17ß-estradiol. This was further confirmed by extravasation experiments of Evans blue showing that estrogenic treatment limits BBB leakage. We also highlighted the intimate links between endothelial cells and neural stem cells, suggesting that cholesterol and peripheral steroids could be taken up by endothelial cells and used as precursors for estrogen synthesis by neural stem cells. Together, our results show that zebrafish provides an alternative model to further investigate the role of steroids on the expression of genes involved in BBB integrity, both in constitutive and regenerative physiological conditions. The link we described between capillaries endothelial cells and steroidogenic neural cells encourages the use of this model in understanding the mechanisms by which peripheral steroids get into neural tissue and modulate neurogenic activity.


Assuntos
Barreira Hematoencefálica , Peixe-Zebra , Animais , Feminino , Masculino , Barreira Hematoencefálica/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Estrogênios/metabolismo , Expressão Gênica , Mamíferos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Peixe-Zebra/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
12.
Mycotoxin Res ; 39(4): 453-467, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37794205

RESUMO

Aflatoxin M1 (AFM1) is a mycotoxin that is commonly found as a milk contaminant, and its presence in milk has been linked to cytotoxicity. The present study aimed to evaluate the acute cytotoxic effects of AFM1 on intestinal Caco-2 cells. Initially, we checked the morphology and viability of Caco-2 cells after treatment with different concentrations of AFM1 (5 ng/L, 50 ng/L, 250 ng/L, 500 ng/L, 1000 ng/L, and 2000 ng/L) for different time intervals (6 h, 12 h, and 24 h). It was found that AFM1 did not show any effect on cell morphology, but 10% decrease in viability above 1000 ng/L after 12 h. Furthermore, DCFDA assay showed increased ROS production after 6 h treatments. qPCR analysis showed an increased expression of epithelial-specific cytoskeleton marker genes, Cytokeratin, Villin, Vimentin, and JAM-1, and a decreased expression of tight junction protein genes, Claudin-1, Occludin, and ZO-1. Similarly, we found an increased expression of Cyp1a1 transcript with an increasing AFM1 concentration and incubation time. This gene expression analysis showed AFM1 can cause disruption of tight junctions between intestinal cells, which was further confirmed by a transwell experiment. In conclusion, consumption of AFM1-contaminated milk does not show any effect on cells morphology and viability but decreases the expression of intestinal barrier transcripts that may lead to the disruption of intestinal barrier function and leaky gut.


Assuntos
Aflatoxina M1 , Proteínas de Junções Íntimas , Humanos , Animais , Aflatoxina M1/análise , Células CACO-2 , Proteínas de Junções Íntimas/genética , Leite/química , Contaminação de Alimentos/análise
13.
J Neurovirol ; 29(6): 658-668, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37899420

RESUMO

Although the widespread use of antiretroviral therapy (ART) has prolonged the life span of people living with HIV (PLWH), the incidence of HIV-associated neurocognitive disorders (HAND) in PLWH is also gradually increasing, seriously affecting the quality of life for PLWH. However, the pathogenesis of HAND has not been elucidated, which leaves HAND without effective treatment. HIV protein transactivator of transcription (Tat), as an important regulatory protein, is crucial in the pathogenesis of HAND, and its mechanism of HAND has received widespread attention. The blood-brain barrier (BBB) and its cellular component brain microvascular endothelial cells (BMVECs) play a necessary role in protecting the central nervous system (CNS), and their damage associated with Tat is a potential therapeutic target of HAND. In this review, we will study the Tat-mediated damage mechanism of the BBB and present multiple lines of evidence related to BMVEC damage caused by Tat.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Transativadores/metabolismo , Qualidade de Vida , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/metabolismo , Encéfalo/metabolismo , Infecções por HIV/patologia
14.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1874-1883, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37766457

RESUMO

Hyperglycemia drives dysfunction of the intestinal barrier. 5-Hydroxytryptaine 4 receptor (5-HT 4R) agonists have been considered therapeutics for constipation in clnic. However, the roles of 5-HT 4R activation in mucosa should be fully realized. Here, we investigate the effects of 5-HT 4R activation on diabetes-induced disruption of the tight junction (TJ) barrier in the colon. Not surprisingly, the TJ barrier in diabetic mice with or without 5-HT 4R is tremendously destroyed, as indicated by increased serum fluorescein isothiocyanate (FITC)-dextran and decreased transepithelial electrical resistance (TER). Simultaneously, decreased expressions of TJ proteins are shown in both wild-type (WT) and 5-HT 4R knockout (KO) mice with diabetes. Notably, chronic treatment with intraperitoneal injection of a 5-HT 4R agonist in WT mice with diabetes repairs the TJ barrier and promotes TJ protein expressions, including occludin, claudin-1 and ZO-1, in the colon, whereas a 5-HT 4R agonist does not improve TJ barrier function or TJ protein expressions in 5-HT 4R KO mice with diabetes. Furthermore, stimulation of 5-HT 4R inhibits diabetes-induced upregulation of myosin light chain kinase (MLCK), Rho-associated coiled coil protein kinase 1 (ROCK1), and phosphorylated myosin light chain (p-MLC), which are key molecules that regulate TJ integrity, in the colonic mucosa of WT mice. However, such action induced by a 5-HT 4R agonist is not observed in 5-HT 4R KO mice with diabetes. These findings indicate that 5-HT 4R activation may restore TJ integrity by inhibiting the expressions of MLCK, ROCK1 and p-MLC, improving epithelial barrier function in diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Receptores 5-HT4 de Serotonina , Animais , Camundongos , Colo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Mucosa Intestinal/metabolismo , Receptores 5-HT4 de Serotonina/genética , Receptores 5-HT4 de Serotonina/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas
15.
Poult Sci ; 102(9): 102875, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406432

RESUMO

During the transition from incubation to hatch, the chicks shift from obtaining nutrients from the yolk sac to the intestine. The yolk sac tissue (YST) and small intestine serve as biological barriers between the yolk or gut contents and the blood circulation. These barriers must maintain structural integrity for optimal nutrient uptake as well as protection from pathogens. The objective of this study was to investigate the effect of high incubation temperature on mRNA abundance of the tight junction (TJ) proteins zona occludens 1 (ZO1), occludin (OCLN), claudin 1 (CLDN1), and junctional adhesion molecules A and 2 (JAMA, JAM2) and the heat shock proteins (HSP70 and HSP90) in the YST and small intestine of embryonic broilers. Broiler eggs were incubated at 37.5°C. On embryonic day 12 (E12), half of the eggs were switched to 39.5°C. YST samples were collected from E7 to day of hatch (DOH), while small intestinal samples were collected from E17 to DOH. The temporal expression of TJ protein mRNA from E7 to DOH at 37.5°C and the effect of incubation temperature from E13 to DOH were analyzed by one-way and two-way ANOVA, respectively and Tukey's test. Significance was set at P < 0.05. The temporal expression pattern of ZO1, OCLN, and CLDN1 mRNA showed a pattern of decreased expression from E7 to E13 followed by an increase to DOH. High incubation temperature caused an upregulation of ZO1 and JAM2 mRNA in the YST and small intestine. Using in situ hybridization, OCLN and JAMA mRNA were detected in the epithelial cells of the YST. In addition, JAMA mRNA was detected in epithelial cells of the small intestine, whereas JAM2 mRNA was detected in the vascular system of the villi and lamina propria. In conclusion, the YST expressed mRNA for TJ proteins and high incubation temperature increased ZO1 and JAM2 mRNA. This suggests that the TJ in the vasculature of the YST and intestine is affected by high incubation temperature.


Assuntos
Galinhas , Saco Vitelino , Animais , Galinhas/genética , Saco Vitelino/metabolismo , Temperatura , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Óvulo/metabolismo , Intestino Delgado/metabolismo , Ocludina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Junções Íntimas
16.
Nutrients ; 15(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513639

RESUMO

Kale (Brassica oleracea var. acephala), a food rich in bioactive phytochemicals, prevents diet-induced inflammation and gut dysbiosis. We hypothesized that the phytochemicals protect against the lipopolysaccharide (LPS)-induced acute inflammation which results from gut dysbiosis and loss of gut barrier integrity. We designed this study to test the protective effects of the whole vegetable by feeding C57BL/6J mice a rodent high-fat diet supplemented with or without 4.5% kale (0.12 g per 30 g mouse) for 2 weeks before administering 3% dextran sulfate sodium (DSS) via drinking water. After one week, DSS increased the representation of proinflammatory LPS (P-LPS)-producing genera Enterobacter and Klebsiella in colon contents, reduced the representation of anti-inflammatory LPS (A-LPS)-producing taxa from Bacteroidales, reduced the expression of tight junction proteins, increased serum LPS binding protein, upregulated molecular and histopathological markers of inflammation in the colon and shortened the colons. Mice fed kale for 2 weeks before the DSS regime had a significantly reduced representation of Enterobacter and Klebsiella and instead had increased Bacteroidales and Gram-positive taxa and enhanced expression of tight junction proteins. Downstream positive effects of dietary kale were lack of granuloma in colon samples, no shortening of the colon and prevention of inflammation; the expression of F4/80, TLR4 and cytokines 1L-1b, IL-6, TNF-a and iNOS was not different from that of the control group. We conclude that through reducing the proliferation of P-LPS-producing bacteria and augmenting the integrity of the gut barrier, kale protects against DSS-induced inflammation.


Assuntos
Brassica , Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/metabolismo , Lipopolissacarídeos/efeitos adversos , Verduras/metabolismo , Dextranos/efeitos adversos , Brassica/metabolismo , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Colo/metabolismo , Inflamação/metabolismo , Bactérias/metabolismo , Anti-Inflamatórios/efeitos adversos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Sulfatos/metabolismo , Sódio/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
17.
Eur J Nutr ; 62(7): 3033-3054, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37493680

RESUMO

PURPOSE: The leaky gut barrier is an important factor leading to various inflammatory gastrointestinal disorders. The nutritional value of honey and variety of its health benefits have long been recognized. This study was undertaken to assess the role of Indian mustard honey in preventing lipopolysaccharide (LPS)-induced intestinal barrier dysfunction using a combination of in vitro and in vivo experimental model systems. METHODS: LPS was used to induce intestinal barrier damage in a trans-well model of Caco-2 cells (1 µg/ml) and in Swiss albino mice (5 mg/kg body weight). Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyse sugar and phenolic components in honey samples. The Caco-2 cell monolayer integrity was evaluated by transepithelial electrical resistance (TEER) and paracellular permeability assays. The histopathology of intestinal tissue was analysed by haematoxylin and eosin dual staining. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the transcription of genes. The protein expression was analysed by immunofluorescence, western blot and ELISA-based techniques. RESULTS: The in vitro data showed that honey prevented LPS-induced intestinal barrier dysfunction dose dependently as was measured by TEER and paracellular flux of FITC-dextran dye. Further, the in vivo data showed a prophylactic effect of orally administered honey as it prevented the loss of intestinal barrier integrity and villus structure. The cellular localization and expression of tight junction (TJ) proteins were upregulated along with downregulation of pro-inflammatory cytokines in response to the administration of honey with LPS. CONCLUSIONS: The findings of this study suggest a propitious role of honey in the maintenance of TJ protein integrity, thereby preventing LPS-induced intestinal barrier disintegration.


Assuntos
Gastroenteropatias , Mel , Enteropatias , Humanos , Camundongos , Animais , Células CACO-2 , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Regulação para Cima , Lipopolissacarídeos/metabolismo , Junções Íntimas/metabolismo , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Mucosa Intestinal/metabolismo , Permeabilidade
18.
Food Chem Toxicol ; 178: 113870, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271275

RESUMO

L-theanine is a natural bioactive component in tea leaves and has anti-inflammatory effects. The study aimed to investigated the effects and underlying mechanisms of L-theanine on lipopolysaccharide (LPS)-induced intestinal tight junction damage in IPEC-J2 cells. Results showed that LPS induced tight junction damage by increasing reactive oxygen species production and lactate dehydrogenase (LDH) release and decreasing the mRNA expression of tight junction proteins related genes zonula occludens-1 (ZO-1, also known as Tjp1), Occludin and Claudin-1, while L-theanine reversed such an effect and attenuated the increase of p38 mitogen-activated protein kinase (p38 MAPK) mRNA expression. The p38 MAPK inhibitor (SB203580) attenuated the mRNA expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome and interleukin-1ß (Il-1ß), and increased the mRNA expression of Tjp1, Occludin and Claudin-1, which showed a similar effect with L-theanine. In addition, NLRP3 inhibitor MCC950 attenuated the Il-1ß expression and LDH release, while increased the expression of tight-junction protein-related genes. In conclusion, L-theanine could protect LPS-induced intestinal tight junction damage by inhibiting the activation of p38 MAPK-mediated NLRP3 inflammasome pathway.


Assuntos
Lipopolissacarídeos , Junções Íntimas , Animais , Suínos , Lipopolissacarídeos/toxicidade , Ocludina/genética , Ocludina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos/metabolismo , Claudina-1 , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno , RNA Mensageiro/genética
19.
Life Sci ; 325: 121769, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178865

RESUMO

AIM: Inflammatory bowel disease (IBD) may be a risk factor in the development of brain inflammation. It has been demonstrated noninvasive neuromodulation through sub-organ ultrasound stimulation. The purpose of this study was to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) alleviates lipopolysaccharide (LPS)-induced cortical inflammation via inhibition of colonic inflammation. MATERIALS AND METHODS: Colonic and cortical inflammation was induced in mice by LPS (0.75 mg/kg, i.p. injection) for 7 days, followed by application of LIPUS (0.5 and 1.0 W/cm2) to the abdominal area for 6 days. Biological samples were collected for Western blot analysis, gelatin zymography, colon length measurement, and histological evaluation. KEY FINDINGS: LIPUS treatment significantly attenuated LPS-induced increases in IL-6, IL-1ß, COX-2, and cleaved caspase-3 expression in the colon and cortex of mice. Moreover, LIPUS significantly increased the levels of tight junction proteins in the epithelial barrier in the mouse colon and cortex with LPS-induced inflammation. Compared to the group treated only with LPS, the LIPUS-treated groups showed decreased muscle thickness and increased crypt length and colon length. Furthermore, LIPUS treatment reduced inflammation by inhibiting the LPS-induced activation of TLR4/NF-κB inflammatory signaling in the brain. SIGNIFICANCE: We found that LIPUS alleviated LPS-induced colonic and cortical inflammation through abdominal stimulation of mice. These results suggest that abdominal LIPUS stimulation may be a novel therapeutic strategy against neuroinflammation via enhancement of tight junction protein levels and inhibition of inflammatory responses in the colon.


Assuntos
NF-kappa B , Animais , Camundongos , Inflamação/induzido quimicamente , Inflamação/terapia , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
20.
Anim Biotechnol ; 34(8): 3693-3699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37067399

RESUMO

The experiment investigated the effect of caffeic acid on bacteria, short-chain fatty acids (SCFA), and the expression of tight junction protein and inflammation related genes in the colon of weaning piglets. Thirty-six weaning piglets were allocated to three treatment groups, which were fed with a basal diet, a basal diet supplemented with 250 mg/kg or 500 mg/kg caffeic acid for 28 days. The results showed that caffeic acid treatment increased the contents of acetate acid, propionate acid and total SCFA. Moreover, real-time quantitative PCR showed that the number of Bifidobacterium (p < 0.05) and Lactobacillus (p < 0.05) were increased and the number of Escherichia coli (p < 0.05) was decreased by caffeic acid in colonic mucosa. Real-time quantitative PCR also showed that the mRNA levels of zonula occludens-1 (p < 0.01), claudin-1 (p < 0.01), occludin (p < 0.01), mucin 1 (MUC1) (p < 0.01), MUC2 (p < 0.01), interleukin 4 (IL-4) (p < 0.01) and IL-10 (p < 0.05) were increased, while the mRNA expression levels of histone deacetylases (p < 0.01), IL-1 (p < 0.01), IL-6 (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.01) were decreased, by caffeic acid in colonic mucosa. These results suggested that caffeic acid could improve intestinal barrier function in weaned pigs, which might be mediated by regulating colonic bacteria and tight junction protein expression and alleviating inflammation.


Assuntos
Doenças dos Suínos , Proteínas de Junções Íntimas , Suínos , Animais , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Função da Barreira Intestinal , Desmame , Suplementos Nutricionais , Escherichia coli/genética , Inflamação/tratamento farmacológico , RNA Mensageiro/metabolismo , Doenças dos Suínos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA