Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Nat Commun ; 15(1): 3595, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678016

RESUMO

Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.


Assuntos
Cromatina , Colo , Fator 4 Nuclear de Hepatócito , Intestino Delgado , Proteínas de Ligação à Região de Interação com a Matriz , Animais , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Intestino Delgado/metabolismo , Colo/metabolismo , Camundongos , Cromatina/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Plasticidade Celular/genética , Linhagem da Célula , Camundongos Knockout
2.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38604171

RESUMO

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteínas de Ligação à Região de Interação com a Matriz , RNA Polimerase II , Receptores de Estrogênio , Transcrição Gênica , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Regulação da Expressão Gênica , Ligação Proteica , Células HEK293 , Genoma Humano
3.
Aging Cell ; 23(4): e14077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38303548

RESUMO

Idiopathic Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilize human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Doença de Parkinson , Humanos , Camundongos , Animais , Neurônios Dopaminérgicos/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Glucosilceramidas/metabolismo , Gliose , Doenças Neuroinflamatórias , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Fatores de Transcrição/metabolismo , Fenótipo
4.
Cancer Biol Ther ; 25(1): 2320307, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38385627

RESUMO

Colorectal cancer (CRC) is a malignancy with high incidence and poor prognosis. It is urgent to identify valuable biomarkers for early diagnosis and potent therapeutic targets. It has been reported that SATB1 is associated with the malignant progression in CRC. To explore the role of SATB1 in CRC progression and the underlying mechanism, we evaluated the expression of SATB1 in the paired CRC tissues with immunohistochemistry. The results showed that the expression of SATB1 in lymph node metastasis was higher than that in primary lesion, and that in distant organ metastasis was higher than that in primary lesion. The retrospective analysis showed that patients with high expression of SATB1 had a significantly worse prognosis than those with negative and moderate expression. In vitro experiments that employing SATB1 over-expressing and depleted CRC cell lines confirmed that SATB1 contributes to cell proliferation and colonization, while inhibiting cell motility. Furthermore, the tissue immunofluorescence assay, Co-IP and Western blot were conducted to reveal that SATB1 induced translocation of ß-catenin and formed a protein complex with it in the nuclei. In conclusion, SATB1 mediated tumor colonization and ß-catenin nuclear localization are associated with the malignant progression and poor prognosis of CRC.


Assuntos
Neoplasias Colorretais , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , beta Catenina/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Estudos Retrospectivos , Prognóstico , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Via de Sinalização Wnt
5.
Mol Cell ; 84(4): 621-639.e9, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244545

RESUMO

The DNA-binding protein SATB2 is genetically linked to human intelligence. We studied its influence on the three-dimensional (3D) epigenome by mapping chromatin interactions and accessibility in control versus SATB2-deficient cortical neurons. We find that SATB2 affects the chromatin looping between enhancers and promoters of neuronal-activity-regulated genes, thus influencing their expression. It also alters A/B compartments, topologically associating domains, and frequently interacting regions. Genes linked to SATB2-dependent 3D genome changes are implicated in highly specialized neuronal functions and contribute to cognitive ability and risk for neuropsychiatric and neurodevelopmental disorders. Non-coding DNA regions with a SATB2-dependent structure are enriched for common variants associated with educational attainment, intelligence, and schizophrenia. Our data establish SATB2 as a cell-type-specific 3D genome modulator, which operates both independently and in cooperation with CCCTC-binding factor (CTCF) to set up the chromatin landscape of pyramidal neurons for cognitive processes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genoma , Cognição , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
6.
Med Mol Morphol ; 57(1): 1-10, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37583001

RESUMO

The relationship between the expression of the SATB2 and CDX2 proteins and common molecular changes and clinical prognosis in colorectal cancer (CRC) still needs further clarification. We collected 1180 cases of CRC and explored the association between the expression of SATB2 and CDX2 and clinicopathological characteristics, molecular alterations, and overall survival of CRC using whole-slide immunohistochemistry. Our results showed that negative expression of SATB2 and CDX2 was more common in MMR-protein-deficient CRC than in MMR-protein-proficient CRC (15.8% vs. 6.0%, P = 0.001; 14.5% vs. 4.0%, P = 0.000, respectively). Negative expression of SATB2 and CDX2 was more common in BRAF-mutant CRC than in BRAF wild-type CRC (17.2% vs. 6.1%, P = 0.003; 13.8% vs. 4. 2%; P = 0.004, respectively). There was no relationship between SATB2 and/or CDX2 negative expression and KRAS, NRAS, and PIK3CA mutations. The lack of expression of SATB2 and CDX2 was associated with poor histopathological features of CRC. In multivariate analysis, negative expression of SATB2 (P = 0.030), negative expression of CDX2 (P = 0.043) and late clinical stage (P = 0.000) were associated with decreased overall survival of CRC. In conclusion, the lack of SATB2 and CDX2 expression in CRC was associated with MMR protein deficiency and BRAF mutation, but not with KRAS, NRAS and PIK3CA mutation. SATB2 and CDX2 are prognostic biomarkers in patients with CRC.


Assuntos
Adenocarcinoma , Neoplasias Encefálicas , Neoplasias Colorretais , Proteínas de Ligação à Região de Interação com a Matriz , Síndromes Neoplásicas Hereditárias , Deficiência de Proteína , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/genética , Neoplasias Colorretais/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
7.
Am J Med Genet A ; 194(2): 203-210, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786328

RESUMO

Alterations in SATB2 result in SATB2-associated syndrome (SAS; Glass syndrome, OMIM 612313), an autosomal dominant multisystemic disorder predominantly characterized by developmental delay, craniofacial anomalies, and growth retardation. The bone phenotype of SAS has been less explored until recently and includes a variety of skeletal deformities, increased risk of low bone mineral density (BMD) with a propensity to fractures, and other biochemical abnormalities that suggest elevated bone turnover. We present the results of ongoing surveillance of bone health from 32 individuals (47% females, 3-18 years) with molecularly-confirmed SAS evaluated at a multidisciplinary clinic. Five individuals (5/32, 16%) were documented to have BMD Z-scores by DXA scans of -2.0 SD or lower and 7 more (7/32, 22%) had Z-scores between -1 and - 2 SD at the lumbar spine or the total hip. Alkaline phosphatase levels were found to be elevated in 19 individuals (19/30, 63%) and determined to correspond to bone-specific alkaline phosphatase elevations when measured (11/11, 100%). C-telopeptide levels were found to be elevated when adjusted by age and gender in 6 individuals (6/14, 43%). Additionally, the two individuals who underwent bone cross-sectional geometry evaluation by peripheral quantitative computed tomography were documented to have low cortical bone density for age and sex despite concurrent DXA scans that did not have this level of decreased density. While we could not identify particular biochemical abnormalities that predicted low BMD, the frequent elevations in markers of bone formation and resorption further confirmed the increased bone turnover in SAS. Based on our results and other recently published studies, we propose surveillance guidelines for the skeletal phenotype of SAS.


Assuntos
Doenças Ósseas Metabólicas , Proteínas de Ligação à Região de Interação com a Matriz , Feminino , Humanos , Masculino , Densidade Óssea/genética , Fosfatase Alcalina , Estudos Prospectivos , Osso e Ossos/diagnóstico por imagem , Absorciometria de Fóton/métodos , Síndrome , Fatores de Transcrição/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética
8.
Asian J Surg ; 47(1): 72-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37852859

RESUMO

Non-syndromic Cleft Lip and Palate (NSCLP) is one of the most common congenital craniofacial malformations. However, there is no enough knowledge about its mechanism, even through many relevant studies verify that cleft lip and palate is caused by interactions between environmental and genetic factors. SATB2 gene is one of the most common candidate genes of NSCLP, and the development of epigenetics provides a new direction on pathogenesis of cleft lip and palate. This review summarizes SATB2 gene in the pathogenesis of non-syndromic cleft lip and palate, expecting to provide strategies to prevent and treat cleft and palate in the future.


Assuntos
Fenda Labial , Fissura Palatina , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Polimorfismo de Nucleotídeo Único , Epigênese Genética/genética , Fatores de Transcrição/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética
9.
Cytokine ; 175: 156444, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38150791

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy of the head and neck epidermis. Accumulating long non-coding RNAs (lncRNAs) have been proven to be involved in the occurrence and development of HNSCC. LncRNA long intergenic non-protein coding RNA 491 (LINC00491) has been confirmed to regulate the progression of some cancers. In our study, we aimed to explore the potential biological function of LINC00491 and expound the regulatory mechanism by which LINC00491 affects the progression of HNSCC. RT-qPCR was utilized to analyze the expression of LINC00491 in HNSCC cell lines and the normal cell line. Functionally, we carried out a series of assays to measure cell proliferation, apoptosis, migration and invasion, such as EdU assay, colony formation, wound healing and western blot assays. Also, mechanism assays including RNA pull down and RIP were also implemented to investigate the interaction of LINC00491 and RNAs. As a result, we discovered that LINC00491 was highly expressed in HNSCC cells. In addition, LINC00491 depletion suppressed cell proliferation, migration and EMT process. Furthermore, we discovered that LINC00491 could bind to miR-508-3p. MiR-508-3p overexpression can restrain HNSCC cell growth. Importantly, miR-508-3p can target SATB homeobox 1 (SATB1) in HNSCC cells. Further, Wnt signaling pathway was proved to be activated by LINC00491 through SATB1 in HNSCC cells. In a word, LINC00491 accelerated HNSCC progression through regulating miR-508-3p/SATB1 axis and activating Wnt signaling pathway.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética
10.
Aging (Albany NY) ; 15(15): 7440-7450, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37540226

RESUMO

Glioma is a general neurological tumor and circular RNAs (circRNAs) have been implicated in glioma development. However, the underlying mechanisms and circRNA biological functions responsible for the regulation of glioma progression remain unknown. In this study, we employ next-generation sequencing (NGS) to investigate altered circRNA expression in glioma tissues. Regulatory mechanisms were studied using luciferase reporter analyses, transwell migration, CCK8, and EdU analysis. Tumorigenesis and metastasis assays were utilized to determine the function of hsa_circ_0010889 in glioma. Our results showed that hsa_circ_0010889 expression increased in glioma cell lines and tissues, indicating that hsa_circ_0010889 may be involved in glioma progression. Downregulation of hsa_circ_0010889 inhibited glioma invasion and proliferation in both in vitro and in vivo experiments and luciferase report assays found that miR-590-5p and SATB1 were downstream targets for hsa_circ_0010889. SATB1 overexpression or miR-590-5p inhibition reversed glioma cells proliferation and migration post-silencing of hsa_circ_0010889. Taken together, our study demonstrates that hsa_circ_0010889 downregulation inhibits glioma progression through the miR-590-5p/SATB1 axis.


Assuntos
Glioma , Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Regulação para Baixo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Glioma/patologia , Fatores de Transcrição/metabolismo , Proliferação de Células/genética
11.
Cell Mol Immunol ; 20(10): 1114-1126, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544964

RESUMO

SATB1 (Special A-T rich Binding protein 1) is a cell type-specific factor that regulates the genetic network in developing T cells and neurons. In T cells, SATB1 is required for lineage commitment, VDJ recombination, development and maturation. Considering that its expression varies during B-cell differentiation, the involvement of SATB1 needs to be clarified in this lineage. Using a KO mouse model in which SATB1 was deleted from the pro-B-cell stage, we examined the consequences of SATB1 deletion in naive and activated B-cell subsets. Our model indicates first, unlike its essential function in T cells, that SATB1 is dispensable for B-cell development and the establishment of a broad IgH repertoire. Second, we show that SATB1 exhibits an ambivalent function in mature B cells, acting sequentially as a positive and negative regulator of Ig gene transcription in naive and activated cells, respectively. Third, our study indicates that the negative regulatory function of SATB1 in B cells extends to the germinal center response, in which this factor limits somatic hypermutation of Ig genes.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Animais , Camundongos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Redes Reguladoras de Genes , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/metabolismo
12.
Br J Cancer ; 129(4): 586-600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400677

RESUMO

BACKGROUND: Dysregulation of histone deacetylases has been linked to diverse cancers. HDAC5 is a histone deacetylase belonging to Class IIa family of histone deacetylases. Limited substrate repertoire restricts the understanding of molecular mechanisms underlying its role in tumorigenesis. METHODS: We employed a biochemical screen to identify SATB1 as HDAC5-interacting protein. Coimmunoprecipitation and deacetylation assay were performed to validate SATB1 as a HDAC5 substrate. Proliferation, migration assay and xenograft studies were performed to determine the effect of HDAC5-SATB1 interaction on tumorigenesis. RESULTS: Here we report that HDAC5 binds to and deacetylates SATB1 at the conserved lysine 411 residue. Furthermore, dynamic regulation of acetylation at this site is determined by TIP60 acetyltransferase. We also established that HDAC5-mediated deacetylation is critical for SATB1-dependent downregulation of key tumor suppressor genes. Deacetylated SATB1 also represses SDHA-induced epigenetic remodeling and anti-proliferative transcriptional program. Thus, SATB1 spurs malignant phenotype in a HDAC5-dependent manner. CONCLUSIONS: Our study highlights the pivotal role of HDAC5 in tumorigenesis. Our findings provide key insights into molecular mechanisms underlying SATB1 promoted tumor growth and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fatores de Transcrição , Adenocarcinoma de Pulmão/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Carcinogênese
13.
Biol Open ; 12(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37283223

RESUMO

The Polycomb Repressive Complex 2 (PRC2) is a conserved enzyme that tri-methylates Lysine 27 on Histone 3 (H3K27me3) to promote gene silencing. PRC2 is remarkably responsive to the expression of certain long noncoding RNAs (lncRNAs). In the most notable example, PRC2 is recruited to the X-chromosome shortly after expression of the lncRNA Xist begins during X-chromosome inactivation. However, the mechanisms by which lncRNAs recruit PRC2 to chromatin are not yet clear. We report that a broadly used rabbit monoclonal antibody raised against human EZH2, a catalytic subunit of PRC2, cross-reacts with an RNA-binding protein called Scaffold Attachment Factor B (SAFB) in mouse embryonic stem cells (ESCs) under buffer conditions that are commonly used for chromatin immunoprecipitation (ChIP). Knockout of EZH2 in ESCs demonstrated that the antibody is specific for EZH2 by western blot (no cross-reactivity). Likewise, comparison to previously published datasets confirmed that the antibody recovers PRC2-bound sites by ChIP-Seq. However, RNA-IP from formaldehyde-crosslinked ESCs using ChIP wash conditions recovers distinct peaks of RNA association that co-localize with peaks of SAFB and whose enrichment disappears upon knockout of SAFB but not EZH2. IP and mass spectrometry-based proteomics in wild-type and EZH2 knockout ESCs confirm that the EZH2 antibody recovers SAFB in an EZH2-independent manner. Our data highlight the importance of orthogonal assays when studying interactions between chromatin-modifying enzymes and RNA.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , RNA Longo não Codificante , Humanos , Animais , Camundongos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , RNA Longo não Codificante/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Camundongos Knockout , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina , Proteínas de Ligação a RNA/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
14.
Nat Rev Immunol ; 23(12): 842-856, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37336954

RESUMO

Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Linfócitos T Reguladores , Humanos , Regulação da Expressão Gênica , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo
15.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37193606

RESUMO

The genome organizer, special AT-rich binding protein-1 (SATB1), functions to globally regulate gene networks during primary T cell development and plays a pivotal role in lineage specification in CD4+ helper-, CD8+ cytotoxic-, and FOXP3+ regulatory-T cell subsets. However, it remains unclear how Satb1 gene expression is controlled, particularly in effector T cell function. Here, by using a novel reporter mouse strain expressing SATB1-Venus and genome editing, we have identified a cis-regulatory enhancer, essential for maintaining Satb1 expression specifically in TH2 cells. This enhancer is occupied by STAT6 and interacts with Satb1 promoters through chromatin looping in TH2 cells. Reduction of Satb1 expression, by the lack of this enhancer, resulted in elevated IL-5 expression in TH2 cells. In addition, we found that Satb1 is induced in activated group 2 innate lymphoid cells (ILC2s) through this enhancer. Collectively, these results provide novel insights into how Satb1 expression is regulated in TH2 cells and ILC2s during type 2 immune responses.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Animais , Camundongos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Imunidade Inata , Linfócitos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular
16.
J Immunol ; 211(2): 209-218, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37256264

RESUMO

Double-positive thymocytes that have passed positive selection migrate from the cortex to the medulla, where negative selection and the development of thymic regulatory T cells (tTregs) take place. Medullary thymic epithelial cells (mTECs) play important roles in these selections, and their differentiation and maintenance depend on interaction with positively selected CD4+ single-positive cells. Therefore, migration and differentiation after positive selection must be coordinated to establish immune tolerance. However, the regulatory mechanisms of these processes are not fully understood. SATB1 is a genome organizer highly expressed in double-positive thymocytes, and SATB1 deletion causes various defects in T-cell development, including impaired positive and negative selection and tTreg differentiation. Here, we show that SATB1 is critical for temporally coordinated thymocyte trafficking after positive selection in mice. Satb1 knockout (ΔSatb1) led to precocious thymic egress caused by augmented S1pr1 upregulation in positively selected thymocytes, accompanied by lower induction of Ccr7, Tnfsf11, and Cd40lg. Altered thymocyte trafficking and functionality affected the differentiation of mTECs and, in turn, tTreg differentiation. Thus, SATB1 is required to establish immune tolerance, at least in part, by ensuring timely thymic egress and mTEC differentiation.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz , Timócitos , Animais , Camundongos , Diferenciação Celular , Células Epiteliais , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos Knockout , Timo , Fatores de Transcrição
17.
Am J Med Genet A ; 191(7): 1984-1989, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141439

RESUMO

Craniofacial defects are one of the most frequent phenotypes in syndromic diseases. More than 30% of syndromic diseases are associated with craniofacial defects, which are important for the precise diagnosis of systemic diseases. Special AT-rich sequence-binding protein 2 (SATB2)-associated syndrome (SAS) is a rare syndromic disease associated with a wide variety of phenotypes, including intellectual disability and craniofacial defects. Among them, dental anomalies are the most frequently observed phenotype and thus becomes an important diagnostic criterion for SAS. In this report, we demonstrate three Japanese cases of genetically diagnosed SAS with detailed craniofacial phenotypes. The cases showed multiple dental problems, which have been previously reported to be linked to SAS, including abnormal crown morphologies and pulp stones. One case showed a characteristic enamel pearl at the root furcation. These phenotypes add new insights for differentiating SAS from other disorders.


Assuntos
Deficiência Intelectual , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , População do Leste Asiático , Síndrome , Fenótipo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fatores de Transcrição/genética
18.
Genes (Basel) ; 14(4)2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37107640

RESUMO

SATB2-associated syndrome (SAS) is a rare condition, and it is characterized by severe developmental delay/intellectual disability, especially severe speech delay/or absence, craniofacial abnormalities, and behavioral problems. Most of the published reports are limited to children, with little information about the natural history of the disease and the possible novel signs and symptoms or behavioral changes in adulthood. We describe the management and follow-up of a 25-year-old male with SAS due to a de novo heterozygous nonsense variant SATB2:c.715C>T:p.(Arg239*) identified by whole-exome sequencing and review the literature. The case herein described contributes to a better characterization of the natural history of this genetic condition and in addition to the genotype-phenotype correlation of the SATB2:c.715C>T:p.(Arg239*) variant in SAS, highlights some particularities of its management.


Assuntos
Deficiência Intelectual , Proteínas de Ligação à Região de Interação com a Matriz , Masculino , Humanos , Fenótipo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Síndrome , Estudos de Associação Genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética
19.
Genes (Basel) ; 14(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37107669

RESUMO

Increasing evidence suggests that microRNAs' (miRNAs) abnormal expression is one of the main factors of chemotherapy resistance in various cancers. However, the role of miRNAs in lung adenocarcinoma (LUAD) resistance to cisplatin is still unclear. In this study, we analyzed a microarray dataset to investigate miRNAs related to cisplatin resistance in LUAD. The expression of miRNAs in LUAD tissues and cell lines was detected using real-time quantitative polymerase chain reaction (RT-qPCR). Special AT-Rich Sequence-Binding Protein 2 (SATB2) in LUAD cell lines was detected using RT-qPCR and Western blot. Cell proliferation was measured by CCK8 and colony formation assays, while cell cycle and apoptosis were measured by flow cytometry. A dual-luciferase reporter assay was performed to confirm that SATB2 is a target gene of microRNA-660 (miR-660). We showed that the expression of miR-660 was not only decreased in LUAD cells and tissues but also further decreased in the cisplatin-resistant A549 cell line. The overexpression of miR-660 increased cisplatin sensitivity in LUAD cells. In addition, we identified SATB2 as a direct target gene of miR-660. We also revealed that miR-660 increased cisplatin sensitivity in LUAD cells via targeting SATB2. In conclusion, miR-660/SATB2 axis is a key regulator of cisplatin resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Proteínas de Ligação à Região de Interação com a Matriz , MicroRNAs , Humanos , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , MicroRNAs/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Fatores de Transcrição/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética
20.
Stem Cells ; 41(6): 560-569, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987811

RESUMO

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.


Assuntos
Anemia de Diamond-Blackfan , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Megacariócitos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Cromatina/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA