Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nucleic Acids Res ; 49(4): 1914-1934, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33511417

RESUMO

During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Recombinação Homóloga , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Centrômero , Código das Histonas , Nucleossomos/metabolismo , Proteínas Repressoras/fisiologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores
2.
Mol Genet Genomics ; 295(3): 695-703, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124033

RESUMO

Fission yeast Cds1 is responsible for the replication checkpoint activation and helps to protect replication fork collapse in response to hydroxyurea (HU). Here, we investigated the role of histone deacetylase in response to replication fork arrest and observed that in the presence of HU, the survival of cds1Δ cells was improved when the cells were simultaneously treated with histone deacetylase inhibitors. Furthermore, a mutation in the histone deacetylase gene, clr6, also suppresses the growth defect of cds1Δ cells in response to HU indicating a suppressive role of clr6-1 mutation in cds1 deletion background upon HU treatment. Interestingly, in response to HU, phosphorylation of Chk1 kinase and the number of Rad52YFP foci was reduced in cds1Δ clr6-1 double mutant as compared to cds1Δ single mutant indicating a decrease in the level of DNA damage in response to HU. Accordingly, the single-cell gel electrophoresis assay revealed a drastic reduction in the tail length of cds1Δ clr6-1 double mutant as compared to cds1Δ cells in the presence of HU suggesting the suppression of chromosomal defects in the double mutant. Taken together, we proposed that there could be transient suppression of fork collapse in cds1Δ clr6-1 double mutant upon HU treatment due to the delay in mitotic progression that leads to the facilitation of cell growth.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Hidroxiureia/farmacologia , Mutação , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Fosforilação , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores
3.
Mol Cell Biol ; 40(7)2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31932483

RESUMO

Oxidation of a highly conserved cysteine (Cys) residue located in the kinase activation loop of mitogen-activated protein kinase kinases (MAPKK) inactivates mammalian MKK6. This residue is conserved in the fission yeast Schizosaccharomyces pombe MAPKK Wis1, which belongs to the H2O2-responsive MAPK Sty1 pathway. Here, we show that H2O2 reversibly inactivates Wis1 through this residue (C458) in vitro We found that C458 is oxidized in vivo and that serine replacement of this residue significantly enhances Wis1 activation upon addition of H2O2 The allosteric MAPKK inhibitor INR119, which binds in a pocket next to the activation loop and C458, prevented the inhibition of Wis1 by H2O2in vitro and significantly increased Wis1 activation by low levels of H2O2in vivo We propose that oxidation of C458 inhibits Wis1 and that INR119 cancels out this inhibitory effect by binding close to this residue. Kinase inhibition through the oxidation of a conserved Cys residue in MKK6 (C196) is thus conserved in the S. pombe MAPKK Wis1.


Assuntos
Peróxido de Hidrogênio/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cisteína/química , Regulação Fúngica da Expressão Gênica/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Oxirredução , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência
4.
RNA Biol ; 16(6): 742-753, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30794054

RESUMO

In the fission yeast Schizosaccharomyces pombe (S.pombe), heterochromatin domains are established and maintained by protein complexes that contain numerous RNA binding domains among their components. The fission yeast HP1 protein Swi6 is one such component and contains an unstructured RNA-binding hinge, which is important for the integrity and silencing of heterochromatin. In this study, we have used an RNA aptamer that likely binds to the Swi6 hinge with high affinity, as a tool to perturb the natural interactions mediated by this domain. When the hinge is blocked by the aptamer RNA, Swi6 appears to become less restricted to the pericentromeres and is enriched at specific euchromatic loci. This suggests a role for the Swi6 hinge, along with the chromoshadow domain (previously shown) in controlling the spread of heterochromatin in S.pombe. The study also highlights the potential of using a synthetic aptamer RNA as a tool to perturb nucleic acid - protein interaction in vivo with the objective of understanding the functional relevance of such an interaction.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Heterocromatina , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Aptâmeros de Nucleotídeos/química , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Motivos de Nucleotídeos , Domínios Proteicos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Sci Rep ; 8(1): 6880, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720710

RESUMO

Checkpoint kinases are important in cellular surveillance pathways that help cells to cope with DNA damage and protect their genomes. In cycling cells, DNA replication is one of the most sensitive processes and therefore all organisms carefully regulate replication initiation and progression. The checkpoint kinase ATR plays important roles both in response to DNA damage and replication stress, and ATR inhibitors are currently in clinical trials for cancer treatment. Therefore, it is important to understand the roles of ATR in detail. Here we show that the fission yeast homologue Rad3 and the human ATR regulate events also in G1 phase in an unperturbed cell cycle. Rad3Δ mutants or human cells exposed to ATR inhibitor in G1 enter S phase prematurely, which results in increased DNA damage. Furthermore, ATR inhibition in a single G1 reduces clonogenic survival, demonstrating that long-term effects of ATR inhibition during G1 are deleterious for the cell. Interestingly, ATR inhibition through G1 and S phase reduces survival in an additive manner, strongly arguing that different functions of ATR are targeted in the different cell-cycle phases. We propose that potential effects of ATR inhibitors in G1 should be considered when designing future treatment protocols with such inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Fase G1 , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase do Ponto de Checagem 2/antagonistas & inibidores , Quinase do Ponto de Checagem 2/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia , Fase S , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética
6.
J Biol Chem ; 292(37): 15240-15253, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28765280

RESUMO

Exocytosis involves fusion of secretory vesicles with the plasma membrane, thereby delivering membrane proteins to the cell surface and releasing material into the extracellular space. The tethering of the secretory vesicles before membrane fusion is mediated by the exocyst, an essential phylogenetically conserved octameric protein complex. Exocyst biogenesis is regulated by several processes, but the mechanisms by which the exocyst is degraded are unknown. Here, to unravel the components of the exocyst degradation pathway, we screened for extragenic suppressors of a temperature-sensitive fission yeast strain mutated in the exocyst subunit Sec3 (sec3-913). One of the suppressing DNAs encoded a truncated dominant-negative variant of the 26S proteasome subunit, Rpt2, indicating that exocyst degradation is controlled by the ubiquitin-proteasome system. The temperature-dependent growth defect of the sec3-913 strain was gene dosage-dependent and suppressed by blocking the proteasome, Hsp70-type molecular chaperones, the Pib1 E3 ubiquitin-protein ligase, and the deubiquitylating enzyme Ubp3. Moreover, defects in cell septation, exocytosis, and endocytosis in sec3 mutant strains were similarly alleviated by mutation of components in this pathway. We also found that, particularly under stress conditions, wild-type Sec3 degradation is regulated by Pib1 and the 26S proteasome. In conclusion, our results suggest that a cytosolic protein quality control pathway monitors folding and proteasome-dependent turnover of an exocyst subunit and, thereby, controls exocytosis in fission yeast.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Modelos Biológicos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Vesículas Secretórias/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/genética , Endocitose/efeitos dos fármacos , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Deleção de Genes , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Microscopia Eletrônica de Transmissão , Mutação , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/ultraestrutura , Estresse Fisiológico/efeitos dos fármacos , Temperatura , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/genética
7.
J Biol Chem ; 292(29): 12089-12099, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28572513

RESUMO

E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl small ubiquitin-like modifier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics.


Assuntos
Modelos Moleculares , Processamento de Proteína Pós-Traducional , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Cisteína/metabolismo , Bases de Dados de Proteínas , Dissulfetos/química , Dissulfetos/metabolismo , Dissulfetos/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ligantes , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Redobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homologia Estrutural de Proteína , Ubiquitina/química , Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética
8.
Cell ; 167(2): 512-524.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667686

RESUMO

All cellular proteins are synthesized by ribosomes, whose biogenesis in eukaryotes is a complex multi-step process completed within minutes. Several chemical inhibitors of ribosome function are available and used as tools or drugs. By contrast, we lack potent validated chemical probes to analyze the dynamics of eukaryotic ribosome assembly. Here, we combine chemical and genetic approaches to discover ribozinoindoles (or Rbins), potent and reversible triazinoindole-based inhibitors of eukaryotic ribosome biogenesis. Analyses of Rbin sensitivity and resistance conferring mutations in fission yeast, along with biochemical assays with recombinant proteins, provide evidence that Rbins' physiological target is Midasin, an essential ∼540-kDa AAA+ (ATPases associated with diverse cellular activities) protein. Using Rbins to acutely inhibit or activate Midasin function, in parallel experiments with inhibitor-sensitive or inhibitor-resistant cells, we uncover Midasin's role in assembling Nsa1 particles, nucleolar precursors of the 60S subunit. Together, our findings demonstrate that Rbins are powerful probes for eukaryotic ribosome assembly.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Subunidades Ribossômicas Maiores de Eucariotos/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Triazinas/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Indóis/química , Indóis/isolamento & purificação , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Relação Estrutura-Atividade , Triazinas/química , Triazinas/isolamento & purificação
9.
PLoS One ; 11(5): e0156239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227887

RESUMO

In mammalian cells, mTORC1 activity is regulated by Rag GTPases. It is thought that the Ragulator complex and the GATOR (GAP activity towards Rags) complex regulate RagA/B as its GDP/GTP exchange factor (GEF) and GTPase-activating protein (GAP), respectively. However, the functions of components in these complexes remain elusive. Using fission yeast as a model organism, here we found that the loss of Lam2 (SPBC1778.05c), a homolog of a Ragulator component LAMTOR2, as well as the loss of Gtr1 or Gtr2 phenocopies the loss of Npr2 or Npr3, homologs of GATOR components Nprl2 or Nprl3, respectively. These phenotypes were rescued by TORC1 inhibition using pharmacological or genetic means, and the loss of Lam2, Gtr1, Gtr2, Npr2 or Npr3 disinhibited TORC1 activity under nitrogen depletion, as measured by Rps6 phosphorylation. Consistently, overexpression of GDP-locked Gtr1S20L or GTP-locked Gtr2Q60L, which suppress TORC1 activity in budding yeast, rescued the growth defect of Δgtr1 cells or Δgtr2 cells, respectively, and the loss of Lam2, Npr2 or Npr3 similarly diminished the vacuolar localization and the protein levels of Gtr1 and Gtr2. Furthermore, Lam2 physically interacted with Npr2 and Gtr1. These findings suggest that Lam2 and Npr2-Npr3 function together as a tether for GDP-bound Gtr1 to the vacuolar membrane, thereby suppressing TORC1 activity for multiple cellular functions.


Assuntos
Endossomos/metabolismo , Regulação Fúngica da Expressão Gênica , Membranas Intracelulares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Vacúolos/metabolismo , Ligação Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
10.
RNA ; 22(4): 518-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826132

RESUMO

Dcp1/2 is the major eukaryotic RNA decapping complex, comprised of the enzyme Dcp2 and activator Dcp1, which removes the 5' m(7)G cap from mRNA, committing the transcript to degradation. Dcp1/2 activity is crucial for RNA quality control and turnover, and deregulation of these processes may lead to disease development. The molecular details of Dcp1/2 catalysis remain elusive, in part because both cap substrate (m(7)GpppN) and m(7)GDP product are bound by Dcp1/2 with weak (mM) affinity. In order to find inhibitors to use in elucidating the catalytic mechanism of Dcp2, we screened a small library of synthetic m(7)G nucleotides (cap analogs) bearing modifications in the oligophosphate chain. One of the most potent cap analogs, m(7)GpSpppSm(7)G, inhibited Dcp1/2 20 times more efficiently than m(7)GpppN or m(7)GDP. NMR experiments revealed that the compound interacts with specific surfaces of both regulatory and catalytic domains of Dcp2 with submillimolar affinities. Kinetics analysis revealed that m(7)GpSpppSm(7)G is a mixed inhibitor that competes for the Dcp2 active site with micromolar affinity. m(7)GpSpppSm(7)G-capped RNA undergoes rapid decapping, suggesting that the compound may act as a tightly bound cap mimic. Our identification of the first small molecule inhibitor of Dcp2 should be instrumental in future studies aimed at understanding the structural basis of RNA decapping and may provide insight toward the development of novel therapeutically relevant decapping inhibitors.


Assuntos
Análogos de Capuz de RNA/química , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Clivagem do RNA , RNA Mensageiro/química , Schizosaccharomyces/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA