Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Bioanalysis ; 13(10): 761-769, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33769087

RESUMO

We have evaluated the utility of epitope binning on biolayer interferometry (BLI) as a strategy to funnel the selection of candidate pairs suitable for pharmacokinetic assay development. Totally, 8 anti-Idiotypic monoclonal antibodies in 64 possible combinations were tested by BLI, ELISA and Gyrolab®. Two epitope binning approaches were utilized, in-tandem and classic sandwich. Both formats identified four mutually exclusive bins providing 31 and 25 possible antibody pair combinations, respectively. In contrast, the ELISA and Gyrolab yielded 18 and 9 positive pairs, respectively, with only a partial correlation to the BLI results. Several positive pairs by ELISA and Gyrolab, screened negative by BLI. Just over half of the pairs predicted by BLI were positive on ELISA and less than a quarter were positive on Gyrolab. This evaluation showed, in our case, that BLI was limited in its ability to predict candidate pairs that would be successful in pharmacokinetic method development.


Assuntos
Proteínas de Transporte/farmacocinética , Indicadores e Reagentes/química , Ligantes , Humanos
2.
Toxicol Sci ; 170(2): 330-344, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087103

RESUMO

Acute intoxication with organophosphates (OPs) can trigger status epilepticus followed by persistent cognitive impairment and/or electroencephalographic abnormalities. Neuroinflammation is widely posited to influence these persistent neurological consequences. However, testing this hypothesis has been challenging, in part because traditional biometrics preclude longitudinal measures of neuroinflammation within the same animal. Therefore, we evaluated the performance of noninvasive positron emission tomography (PET), using the translocator protein (TSPO) radioligand [18F]PBR111 against classic histopathologic measures of neuroinflammation in a preclinical model of acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered pyridostigmine bromide (0.1 mg/kg, im) 30 min prior to administration of DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im) and 2-pralidoxime (25 mg/kg, im) exhibited moderate-to-severe seizure behavior. TSPO PET performed prior to DFP exposure and at 3, 7, 14, 21, and 28 days postexposure revealed distinct lesions, as defined by increased standardized uptake values (SUV). Increased SUV showed high spatial correspondence to immunohistochemical evidence of neuroinflammation, which was corroborated by cytokine gene and protein expression. Regional SUV metrics varied spatiotemporally with days postexposure and correlated with the degree of neuroinflammation detected immunohistochemically. Furthermore, SUV metrics were highly correlated with seizure severity, suggesting that early termination of OP-induced seizures may be critical for attenuating subsequent neuroinflammatory responses. Normalization of SUV values to a cerebellar reference region improved correlations to all outcome measures and seizure severity. Collectively, these results establish TSPO PET using [18F]PBR111 as a robust, noninvasive tool for longitudinal monitoring of neuroinflammation following acute OP intoxication.


Assuntos
Proteínas de Transporte/farmacocinética , Inflamação/diagnóstico por imagem , Isoflurofato/toxicidade , Síndromes Neurotóxicas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Quimiocinas/análise , Citocinas/genética , Radioisótopos de Flúor , Inflamação/induzido quimicamente , Inflamação/imunologia , Masculino , Síndromes Neurotóxicas/imunologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A
3.
Mol Pharm ; 15(12): 5781-5792, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30392378

RESUMO

Polyglutamine diseases are a set of progressive neurodegenerative disorders caused by misfolding and aggregation of mutant CAG RNA and polyglutamin protein. To date, there is a lack of effective therapeutics that can counteract the polyglutamine neurotoxicity. Two peptidylic inhibitors, QBP1 and P3, targeting the protein and RNA toxicities, respectively, have been previously demonstrated by us with combinational therapeutic effects on the Drosophila polyglutamine disease model. However, their therapeutic efficacy has never been investigated in vivo in mammals. The current study aims to (a) develop a brain-targeting delivery system for both QBP1 and L1P3V8 (a lipidated variant of P3 with improved stability) and (b) evaluate their therapeutic effects on the R6/2 transgenic mouse model of polyglutamine disease. Compared with intravenous administration, intranasal administration of QBP1 significantly increased its brain-to-plasma ratio. In addition, employment of a chitosan-containing in situ gel for the intranasal administration of QBP1 notably improved its brain concentration for up to 10-fold. Further study on intranasal cotreatment with the optimized formulation of QBP1 and L1P3V8 in mice found no interference on the brain uptake of each other. Subsequent efficacy evaluation of 4-week daily QBP1 (16 µmol/kg) and L1P3V8 (6 µmol/kg) intranasal cotreatment in the R6/2 mice demonstrated a significant improvement on the motor coordination and explorative behavior of the disease mice, together with a full suppression on the RNA- and protein-toxicity markers in their brains. In summary, the current study developed an efficient intranasal cotreatment of the two peptidylic inhibitors, QBP1 and L1P3V8, for their brain-targeting, and such a novel therapeutic strategy was found to be effective on a transgenic polyglutamine disease mouse model.


Assuntos
Proteínas de Transporte/administração & dosagem , Transtornos Heredodegenerativos do Sistema Nervoso/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/metabolismo , RNA Mensageiro/antagonistas & inibidores , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/farmacocinética , Modelos Animais de Doenças , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada/métodos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligopeptídeos/farmacocinética , Peptídeos/farmacocinética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Expansão das Repetições de Trinucleotídeos/genética
4.
Biol Pharm Bull ; 41(4): 546-554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607927

RESUMO

To overcome the difficulty in delivery of biopharmaceuticals such as peptides and proteins to the brain, several approaches combining the ligands and antibodies targeting the blood-brain barrier (BBB) have been tried. However, these are inefficient in terms of their permeability through the BBB and structural modification of bioactive drugs. In the present study, we therefore examined the usefulness of a noncovalent method using the cell-penetrating peptides (CPPs) such as octaarginine (R8) as a suitable brain delivery strategy for biopharmaceuticals. A safety examination using microvascular endothelial model bEnd.3 cells clarified that R8 was the safest among the CPPs tested in this study. The cellular uptake study demonstrated that coincubation with R8 enhanced the uptake of model peptide drug insulin by bEnd.3 cells in a concentration-dependent and a temperature-independent manner. Furthermore, an in vivo study with rats showed that the accumulation of insulin in the deeper region of the brain, i.e., hippocampus, significantly increased after the intravenous coadministration of insulin with D-R8 without altering the insulin disposition in plasma. Thus, the present study provided the first evidence suggesting that the noncovalent method with CPPs is one of the strategic options for brain delivery of biopharmaceuticals via intravenous injection.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/administração & dosagem , Peptídeos Penetradores de Células/administração & dosagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Oligopeptídeos/administração & dosagem , Animais , Transporte Biológico , Proteínas de Transporte/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacocinética , Produtos do Gene tat/química , Hipoglicemiantes/sangue , Hipoglicemiantes/farmacocinética , Insulina/sangue , Insulina/farmacocinética , Masculino , Camundongos , Oligopeptídeos/farmacocinética , Ratos Sprague-Dawley , Distribuição Tecidual
5.
Biochim Biophys Acta Biomembr ; 1860(6): 1342-1349, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550289

RESUMO

Drug delivery into tumors and metastases is a major challenge in the eradication of cancers such as epithelial ovarian carcinoma. Cationic cell-penetrating peptides (CPPs) are a promising group of delivery vehicles to mediate cellular entry of molecules that otherwise poorly enter cells. However, little is known about their penetration behavior in tissues. Here, we investigated penetration of cationic CPPs in 3D ovarian cancer spheroids and patient-derived 3D tumor explants. Penetration kinetics and distribution after long-term incubation were imaged by confocal microscopy. In addition, spheroids and tumor explants were dissociated and cell-associated fluorescence determined by flow cytometry. CPPs with high uptake activity showed enhanced sequestration in the periphery of the spheroid, whereas less active CPPs were able to penetrate deeper into the tissue. CPPs consisting of d-amino acids were advantageous over l-amino acid CPPs as they showed less but long lasting cellular uptake activity, which benefitted penetration and retention over time. In primary tumor cultures, in contrast to nonaarginine, the amphipathic CPP penetratin was strongly sequestered by cell debris and matrix components pointing towards arginine-rich CPPs as a preferred choice. Overall, the data show that testing in 3D models leads to a different choice of the preferred peptide in comparison to a standard 2D cell culture.


Assuntos
Peptídeos Penetradores de Células/farmacocinética , Veículos Farmacêuticos/farmacocinética , Esferoides Celulares/efeitos dos fármacos , Proteínas de Transporte/farmacocinética , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Cistadenocarcinoma Seroso/secundário , Feminino , Humanos , Microscopia Confocal , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Veículos Farmacêuticos/química , Relação Estrutura-Atividade
6.
Biol Pharm Bull ; 41(2): 239-246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29386483

RESUMO

This present study aimed to determine the optimal oral insulin delivery conditions that would maximize the utility of cell-penetrating peptides (CPPs) by using a noncovalent strategy. We first compared the effectiveness of two potential CPPs, penetratin and its analog PenetraMax, as absorption enhancers for insulin. The combined effect was evaluated under in vivo oral administration conditions. Both D-forms of CPPs were highly effective for increasing the oral absorption of insulin, and D-PenetraMax showed a more rapid onset of absorption enhancement effects compared with those of D-penetratin. However, synergistic absorption enhancement effects after combination treatment were not observed. Next, we tried a theoretical approach to establish optimized oral insulin delivery conditions. A surface plasmon resonance (SPR)-based analysis demonstrated that binding between insulin and penetratin (2 mM) might be saturated at 100-500 µM penetratin, while the bound concentration of penetratin could increase in accordance with an increased concentration of mixed insulin. To test this hypothesis, we investigated the effectiveness of different insulin doses in the gastric pH-neutralized mice. The results showed that the dissociation of noncovalent complexes of insulin and CPPs at the low gastric pH was prevented in these mice. Our findings clearly suggested that a noncovalent strategy with CPPs represents an effective approach for the L-form of CPP to increase the concentration of CPP-bound insulin to attain greater absorption of insulin, although this approach may not be appropriate for the D-form of CPP. Our findings will contribute to the development of oral dosage forms of insulin for noncovalent strategies involving CPP.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Sistemas de Liberação de Medicamentos , Hipoglicemiantes/administração & dosagem , Insulina Regular Humana/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Administração Oral , Animais , Animais não Endogâmicos , Disponibilidade Biológica , Proteínas de Transporte/administração & dosagem , Proteínas de Transporte/química , Proteínas de Transporte/farmacocinética , Proteínas de Transporte/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Famotidina/farmacologia , Ácido Gástrico/química , Ácido Gástrico/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Antagonistas dos Receptores H2 da Histamina/farmacologia , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Insulina Regular Humana/genética , Insulina Regular Humana/farmacocinética , Insulina Regular Humana/farmacologia , Ligantes , Masculino , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Estereoisomerismo , Ressonância de Plasmônio de Superfície
7.
Bioconjug Chem ; 29(2): 371-381, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29155563

RESUMO

The cell-penetrating peptide (CPP) penetratin has demonstrated potential as a carrier for transepithelial delivery of cargo peptides, such as the therapeutically relevant part of parathyroid hormone, i.e., PTH(1-34). The purpose of the present study was to elucidate the relevance of pH for PTH(1-34)-penetratin conjugates and coadministered penetratin with PTH(1-34) regarding transepithelial permeation of PTH(1-34) and cellular effects. Transepithelial permeation was assessed using monolayers of the Caco-2 cell culture model, and effects on Caco-2 cellular viability kinetics were evaluated by using the Real-Time-GLO assay as well as by microscopy following Tryphan blue staining. Morphological Caco-2 cell changes were studied exploiting the impedance-based xCELLigence system as well as optically using the oCelloscope setup. Finally, the effect of pH on the folding propensity of the PTH(1-34)-penetratin conjugate and its ability to disrupt lipid membranes were assessed by circular dichroism (CD) spectroscopy and the calcein release assay, respectively. The transepithelial PTH(1-34) permeation was not pH-dependent when applying the coadministration approach. However, by applying the conjugation approach, the PTH(1-34) permeation was significantly enhanced by lowering the pH from 7.4 to 5 but also associated with a compromised barrier and a lowering of the cellular viability. The negative effects on the cellular viability following cellular incubation with the PTH(1-34)-penetratin conjugate were moreover confirmed during real-time monitoring of the Caco-2 cell viability as well as by enhanced Tryphan blue uptake. In addition, morphological changes were primarily observed for cells incubated with the PTH(1-34)-penetratin conjugate at pH 5, which was moreover demonstrated to have an enhanced membrane permeating effect following lowering of the pH from 7.4 to 5. The latter observation was, however, not a result of better secondary folding propensity at pH 5 when compared to pH 7.4.


Assuntos
Proteínas de Transporte/química , Nanoconjugados/química , Hormônio Paratireóideo/química , Hormônio Paratireóideo/farmacocinética , Sequência de Aminoácidos , Células CACO-2 , Proteínas de Transporte/farmacocinética , Permeabilidade da Membrana Celular , Sobrevivência Celular , Peptídeos Penetradores de Células , Epitélio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade
8.
Proc Natl Acad Sci U S A ; 114(46): E9855-E9862, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087351

RESUMO

The conversion of immature noninfectious HIV-1 particles to infectious virions is dependent upon the sequential cleavage of the precursor group-specific antigen (Gag) polyprotein by HIV-1 protease. The precise mechanism whereby protease recognizes distinct Gag cleavage sites, located in the intrinsically disordered linkers connecting the globular domains of Gag, remains unclear. Here, we probe the dynamics of the interaction of large fragments of Gag and various variants of protease (including a drug resistant construct) using Carr-Purcell-Meiboom-Gill relaxation dispersion and chemical exchange saturation transfer NMR experiments. We show that the conformational dynamics within the flaps of HIV-1 protease that form the lid over the catalytic cleft play a significant role in substrate specificity and ordered Gag processing. Rapid interconversion between closed and open protease flap conformations facilitates the formation of a transient, sparsely populated productive complex between protease and Gag substrates. Flap closure traps the Gag cleavage sites within the catalytic cleft of protease. Modulation of flap opening through protease-Gag interactions fine-tunes the lifetime of the productive complex and hence the likelihood of Gag proteolysis. A productive complex can also be formed in the presence of a noncognate substrate but is short-lived owing to lack of optimal complementarity between the active site cleft of protease and the substrate, resulting in rapid flap opening and substrate release, thereby allowing protease to differentiate between cognate and noncognate substrates.


Assuntos
Proteínas de Transporte/farmacocinética , Protease de HIV/química , Protease de HIV/farmacocinética , HIV-1/enzimologia , Espectroscopia de Ressonância Magnética/métodos , Domínios e Motivos de Interação entre Proteínas , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/farmacocinética , Sequência de Aminoácidos , Fenômenos Biofísicos , Proteínas de Transporte/química , Domínio Catalítico , Farmacorresistência Viral/genética , Protease de HIV/genética , HIV-1/genética , Cinética , Imageamento por Ressonância Magnética , Modelos Moleculares , Mutagênese , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteólise , Proteínas Recombinantes , Especificidade por Substrato , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
9.
Sci Rep ; 6: 35072, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731358

RESUMO

Acromegaly is a human disease of growth hormone (GH) excess with considerable morbidity and increased mortality. Somatostatin analogues are first line medical treatment but the disease remains uncontrolled in up to 40% of patients. GH receptor (GHR) antagonist therapy is more effective but requires frequent high-dose injections. We have developed an alternative technology for generating a long acting potent GHR antagonist through translational fusion of a mutated GH linked to GH binding protein and tested three candidate molecules. All molecules had the amino acid change (G120R), creating a competitive GHR antagonist and we tested the hypothesis that an amino acid change in the GH binding domain (W104A) would increase biological activity. All were antagonists in bioassays. In rats all antagonists had terminal half-lives >20 hours. After subcutaneous administration in rabbits one variant displayed a terminal half-life of 40.5 hours. A single subcutaneous injection of the same variant in rabbits resulted in a 14% fall in IGF-I over 7 days. IN CONCLUSION: we provide proof of concept that a fusion of GHR antagonist to its binding protein generates a long acting GHR antagonist and we confirmed that introducing the W104A amino acid change in the GH binding domain enhances antagonist activity.


Assuntos
Hormônio do Crescimento Humano/metabolismo , Receptores da Somatotropina/antagonistas & inibidores , Acromegalia/tratamento farmacológico , Substituição de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Transporte/genética , Proteínas de Transporte/farmacocinética , Proteínas de Transporte/farmacologia , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/farmacocinética , Proteínas Mutantes/farmacologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Coelhos , Ratos , Ratos Sprague-Dawley , Receptores da Somatotropina/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia
10.
J Nucl Med ; 57(12): 1858-1864, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27516450

RESUMO

We conducted a phase I dose-escalation study with 89Zr-desferrioxamine-IAB2M (89Zr-IAB2M), an anti-prostate-specific membrane antigen minibody, in patients with metastatic prostate cancer. METHODS: Patients received 185 MBq (5 mCi) of 89Zr-IAB2M and Df-IAB2M at total mass doses of 10 (n = 6), 20 (n = 6), and 50 mg (n = 6). Whole-body and serum clearance, normal-organ and lesion uptake, and radiation absorbed dose were estimated, and the effect of mass escalation was analyzed. RESULTS: Eighteen patients were injected and scanned without side effects. Whole-body clearance was monoexponential, with a median biologic half-life of 215 h, whereas serum clearance showed biexponential kinetics, with a median biologic half-life of 3.7 (12.3%/L) and 33.8 h (17.9%/L). The radiation absorbed dose estimates were 1.67, 1.36, and 0.32 mGy/MBq to liver, kidney, and marrow, respectively, with an effective dose of 0.41 mSv/MBq (1.5 rem/mCi). Both skeletal and nodal lesions were detected with 89Zr-IAB2M, most visualized by 48-h imaging. CONCLUSION: 89Zr-IAB2M is safe and demonstrates favorable biodistribution and kinetics for targeting metastatic prostate cancer. Imaging with 10 mg of minibody mass provides optimal biodistribution, and imaging at 48 h after injection provides good lesion visualization. Assessment of lesion targeting is being studied in detail in an expansion cohort.


Assuntos
Antígenos de Superfície/imunologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/farmacocinética , Glutamato Carboxipeptidase II/imunologia , Fragmentos de Imunoglobulinas/imunologia , Imunoglobulinas/imunologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Anticorpos Monoclonais , Transporte Biológico , Proteínas de Transporte/metabolismo , Meia-Vida , Humanos , Fragmentos de Imunoglobulinas/metabolismo , Imunoglobulinas/metabolismo , Masculino , Metástase Neoplásica , Neoplasias da Próstata/metabolismo , Doses de Radiação , Radiometria , Distribuição Tecidual
11.
Int J Pharm ; 512(1): 87-95, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27553779

RESUMO

The existence of the blood-brain barrier (BBB) complicates the treatment of many central nervous system (CNS) disorders, including the copper storage disease, Wilson's disease. Its CNS symptoms represent a serious problem, since therapeutics for Wilson's disease do not cross the BBB. One strategy to overcome this obstacle is the transfer of drugs across the BBB with colloidal carrier systems like liposomes. The aim of the present study was to encapsulate triethylenetetramine (TETA), a copper chelating agent, into surface modified liposomes and to investigate their permeation across the BBB. Liposomes were modified with cationized bovine serum albumin or penetratin, a cell penetrating peptide. Liposomes were characterized regarding size, PDI, zeta potential and encapsulation efficiency. Size was between 139.4±1.9nm to 171.1±3.5nm with PDI's below 0.2. Zeta potentials of vectorized liposomes were at least 6.9mV higher than those of standard liposomes. Cryo-TEM micrographs displayed liposomal structure, integrity and the similarity of structure and size between loaded, unloaded, vectorized and non- vectorized liposomes. In vivo experiments in rats showed an up to 16-fold higher brain uptake of TETA in vectorized liposomes compared to free TETA or TETA in non-vectorized liposomes, proving successful brain delivery using target seeking surface modifications. Tissue analysis indicated TETA concentrations in the brain being high enough to treat Wilson's disease.


Assuntos
Encéfalo/metabolismo , Quelantes/administração & dosagem , Quelantes/farmacocinética , Lipossomos/administração & dosagem , Lipossomos/química , Trientina/administração & dosagem , Trientina/farmacocinética , Animais , Disponibilidade Biológica , Proteínas de Transporte/química , Proteínas de Transporte/farmacocinética , Peptídeos Penetradores de Células , Lipossomos/farmacocinética , Lipossomos/ultraestrutura , Masculino , Tamanho da Partícula , Ratos , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Distribuição Tecidual
12.
Sci Rep ; 6: 22731, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26955887

RESUMO

Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-ß, which was able to form inter-molecular ß-sheet structures. Results showed that K-ß peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.


Assuntos
Produtos Biológicos/farmacocinética , Proteínas de Transporte/química , Proteínas de Transporte/farmacocinética , Pulmão/metabolismo , RNA Interferente Pequeno/farmacocinética , Animais , Produtos Biológicos/toxicidade , Proteínas de Transporte/genética , Proteínas de Transporte/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Conformação Proteica , Conformação Proteica em Folha beta , Multimerização Proteica , RNA Interferente Pequeno/toxicidade
13.
Cancer Lett ; 366(1): 52-60, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26118773

RESUMO

Ubiquinol-cytochrome c reductase binding protein (UQCRB), a component of the mitochondrial complex III, has been recently implicated in angiogenesis. Targeting mitochondria to balance vascular homeostasis has been widely recognized. However, the effect of UQCRB replenishment by direct delivery remains unknown. To explore the biological function of UQCRB in angiogenesis, a novel protein transduction domain (PTD)-conjugated UQCRB fusion protein was generated. PTD-UQCRB localized to mitochondria as does endogenous UQCRB. Treatment with PTD-UQCRB generated mitochondrial reactive oxygen species (mROS) without cytotoxicity, following hypoxia inducible factor-1α (HIF-1α) stabilization and downstream vascular endothelial growth factor (VEGF) expression. Accordingly, PTD-UQCRB induced angiogenesis in vitro and PTD-UQCRB pro-angiogenic activity was further validated in matrigel plug assay and in cutaneous wound-healing mouse models in vivo. Together, these results demonstrate that UQCRB plays a role in angiogenesis and the developed cell-permeable PTD-UQCRB can be utilized as a pro-angiogenic agent.


Assuntos
Proteínas de Transporte/farmacologia , Mitocôndrias/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Proteínas de Transporte/farmacocinética , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/farmacologia , Cicatrização/efeitos dos fármacos
14.
Pharm Res ; 32(5): 1546-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25777610

RESUMO

PURPOSE: To investigate the suitability of three antimicrobial peptides (AMPs) as cell-penetrating antimicrobial peptides. METHODS: Cellular uptake of three AMPs (PK-12-KKP, SA-3 and TPk) and a cell-penetrating peptide (penetratin), all 5(6)-carboxytetramethylrhodamine-labeled, were tested in HeLa WT cells and analyzed by flow cytometry and confocal microscopy. Furthermore, the effects of the peptides on eukaryotic cell viability as well as their antimicrobial effect were tested. In addition, the disrupting ability of the peptides in the presence of bilayer membranes of different composition were analyzed. RESULTS: AMP uptake relative to penetratin was ~13% (PK-12-KKP), ~66% (SA-3) and ~50% (TPk). All four peptides displayed a punctate uptake pattern in HeLa WT cells with co-localization to lysosomes and no indication that clathrin-mediated endocytosis was the predominant uptake mechanism. TPk showed the highest antibacterial activity. SA-3 exhibited selective disruption of liposomes mimicking Gram-positive and Gram-negative membranes. CONCLUSION: PK-12-KKP is an unlikely candidate for targeting intracellular bacteria, as the eukaryotic cell-penetrating ability is poor. SA-3, affected the cellular viability to an unacceptable degree. TPk showed acceptable uptake efficiency, high antimicrobial activity and relatively low toxicity, and it is the best potential lead peptide for further development.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Peptídeos Penetradores de Células/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Infecções Bacterianas/tratamento farmacológico , Proteínas de Transporte/química , Proteínas de Transporte/farmacocinética , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Endocitose , Células HeLa , Humanos , Dados de Sequência Molecular
15.
J Control Release ; 197: 105-10, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25445695

RESUMO

Intranasal administration is considered as an alternative route to enable effective drug delivery to the central nervous system (CNS) by bypassing the blood-brain barrier. Several reports have proved that macromolecules can be transferred directly from the nasal cavity to the brain. However, strategies to enhance the delivery of macromolecules from the nasal cavity to CNS are needed because of their low delivery efficiencies via this route in general. We hypothesized that the delivery of biopharmaceuticals to the brain parenchyma can be facilitated by increasing the uptake of drugs by the nasal epithelium including supporting and neuronal cells to maximize the potentiality of the intranasal pathway. To test this hypothesis, the CNS-related model peptide insulin was intranasally coadministered with the cell-penetrating peptide (CPP) penetratin to mice. As a result, insulin coadministered with l- or d-penetratin reached the distal regions of the brain from the nasal cavity, including the cerebral cortex, cerebellum, and brain stem. In particular, d-penetratin could intranasally deliver insulin to the brain with a reduced risk of systemic insulin exposure. Thus, the results obtained in this study suggested that CPPs are potential tools for the brain delivery of peptide- and protein-based pharmaceuticals via intranasal administration.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/administração & dosagem , Peptídeos Penetradores de Células/administração & dosagem , Sistemas de Liberação de Medicamentos , Insulina/administração & dosagem , Administração Intranasal , Animais , Proteínas de Transporte/farmacocinética , Peptídeos Penetradores de Células/farmacocinética , Insulina/farmacocinética , Masculino , Camundongos
16.
J Mol Cell Cardiol ; 80: 10-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533937

RESUMO

Ischemic heart disease is a leading cause of death in human population and protection of myocardial infarction (MI) associated with ischemia-reperfusion (I/R) remains a challenge. MG53 is an essential component of the cell membrane repair machinery that protects injury to the myocardium. We investigated the therapeutic value of using the recombinant human MG53 (rhMG53) protein for treatment of MI. Using Langendorff perfusion of isolated mouse heart, we found that I/R caused injury to cardiomyocytes and release of endogenous MG53 into the extracellular solution. rhMG53 protein was applied to the perfusion solution concentrated at injury sites on cardiomyocytes to facilitate cardioprotection. With rodent models of I/R-induced MI, we established the in vivo dosing range for rhMG53 in cardioprotection. Using a porcine model of angioplasty-induced MI, the cardioprotective effect of rhMG53 was evaluated. Intravenous administration of rhMG53, either prior to or post-ischemia, reduced infarct size and troponin I release in the porcine model when examined at 24h post-reperfusion. Echocardiogram and histological analyses revealed that the protective effects of rhMG53 observed following acute MI led to long-term improvement in cardiac structure and function in the porcine model when examined at 4weeks post-operation. Our study supports the concept that rhMG53 could have potential therapeutic value for treatment of MI in human patients with ischemic heart diseases.


Assuntos
Cardiotônicos/farmacologia , Proteínas de Transporte/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas Recombinantes/farmacologia , Animais , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacocinética , Proteínas de Transporte/administração & dosagem , Proteínas de Transporte/farmacocinética , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Técnicas In Vitro , Masculino , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/mortalidade , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Suínos , Proteínas com Motivo Tripartido
17.
Biol Res ; 47: 39, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25299962

RESUMO

BACKGROUND: Novel, in silico-designed anticancer compounds were synthesized in our laboratory namely, 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16). These compounds were designed to have improved bioavailability when compared to their source compound, 2-methoxyestradiol. This theoretically would be due to their increased binding affinity to carbonic anhydrase II, present in erythrocytes. Since the novel compounds under investigation are proposed to be transported within erythrocytes bound to carbonic anhydrase II, the morphological effect which they may exert on whole blood and erythrocytes is of great significance. A secondary outcome included revision of previously reported procedures for the handling of the whole blood sample. The purpose of this study was twofold. Firstly, the ultrastructural morphology of a healthy female's erythrocytes was examined via scanning electron microscopy (SEM) after exposure to the newly in silico-designed compounds. Morphology of erythrocytes following exposure to ESE-15-ol and ESE-16 for 3 minutes and 24 hours at 22°C were described with the use of SEM. The haemolytic activity of the compounds after 24 hours exposure were also determined with the ex vivo haemolysis assay. Secondly, storage conditions of the whole blood sample were investigated by determining morphological changes after a 24 hour storage period at 22°C and 37°C. RESULTS: No significant morphological changes were observed in the erythrocyte morphology after exposure to the novel anticancer compounds. Storage of the whole blood samples at 37°C for 24 hours resulted in visible morphological stress in the erythrocytes. Erythrocytes incubated at 22°C for 24 hours showed no structural deformity or distress. CONCLUSIONS: From this research the optimal temperature for ex vivo exposure of whole blood samples to ESE-15-ol and ESE-16 for 24 hours was determined to be 22°C. Data from this study revealed the potential of these compounds to be applied to ex vivo study techniques, since no damage occurred to erythrocytes ultrastructure under these conditions. As no structural changes were observed in erythrocytes exposed to ESE-15-ol and ESE-16, further ex vivo experiments will be conducted into the potential effects of these compounds on whole blood. Optimal incubation conditions up to 24 hours for whole blood were established as a secondary outcome.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Simulação por Computador , Eritrócitos/efeitos dos fármacos , Estradiol/análogos & derivados , Estrenos/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Anidrase Carbônica II/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacocinética , Proteínas de Transporte/farmacocinética , Proteínas de Transporte/farmacologia , Descoberta de Drogas , Eritrócitos/ultraestrutura , Estradiol/farmacocinética , Estradiol/farmacologia , Estradiol/toxicidade , Estrenos/farmacocinética , Feminino , Hemólise/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Pesquisa Qualitativa , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidade , Temperatura
18.
Circ Cardiovasc Imaging ; 7(4): 697-705, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777937

RESUMO

BACKGROUND: Fibrin is a major component of arterial and venous thrombi and represents an ideal candidate for molecular imaging of thrombosis. Here, we describe imaging properties and target uptake of a new fibrin-specific positron emission tomographic probe for thrombus detection and therapy monitoring in 2 rat thrombosis models. METHODS AND RESULTS: The fibrin-binding probe FBP7 was synthesized by conjugation of a known short cyclic peptide to a cross-bridged chelator (CB-TE2A), followed by labeling with copper-64. Adult male Wistar rats (n=26) underwent either carotid crush injury (mural thrombosis model) or embolic stroke (occlusive thrombosis model) followed by recombinant tissue-type plasminogen activator treatment (10 mg/kg, IV). FBP7 detected thrombus location in both animal models with a high positron emission tomographic target-to-background ratio that increased over time (>5-fold at 30-90 minutes, >15-fold at 240-285 minutes). In the carotid crush injury animals, biodistribution analysis confirmed high probe uptake in the thrombotic artery (≈0.5%ID/g; >5-fold greater than blood and other tissues of the head and thorax). Similar results were obtained from ex vivo autoradiography of the ipsilateral versus contralateral carotid arteries. In embolic stroke animals, positron emission tomographic-computed tomographic imaging localized the clot in the internal carotid/middle cerebral artery segment of all rats. Time-dependent reduction of activity at the level of the thrombus was detected in recombinant tissue-type plasminogen activator-treated rats but not in vehicle-injected animals. Brain autoradiography confirmed clot dissolution in recombinant tissue-type plasminogen activator-treated animals, but enduring high thrombus activity in control rats. CONCLUSIONS: We demonstrated that FBP7 is suitable for molecular imaging of thrombosis and thrombolysis in vivo and represents a promising candidate for bench-to-bedside translation.


Assuntos
Trombose das Artérias Carótidas/diagnóstico , Fibrina , Trombose Intracraniana/diagnóstico , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Trombose das Artérias Carótidas/metabolismo , Proteínas de Transporte/farmacocinética , Modelos Animais de Doenças , Fibrina/farmacocinética , Trombose Intracraniana/metabolismo , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Distribuição Tecidual , Tomografia Computadorizada por Raios X
19.
Mol Pharm ; 11(4): 1218-27, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24521351

RESUMO

Intraocular drug delivery is extraordinarily hampered by the impermeability of defensive barriers of the eye. In this study, the ocular permeability of fluorophore-labeled cell-penetrating peptides (CPPs), including penetratin, TAT, low molecular weight protamine, and poly(arginine)8, was investigated based on multilevel evaluations. The human conjunctival epithelial cell (NHC) was exposed to various CPPs to determine the cytotoxicity and cellular uptake. Ex vivo studies with rabbit cornea were performed using side-by-side diffusion chambers to evaluate the apparent permeability coefficients and acute tissue tolerance of the CPP candidates. Among all examined CPPs, penetratin shows an outstanding cellular uptake, by increasing more than 16 and 25 times at low and high concentrations, compared to the control peptide poly(serine)8 respectively. Additionally, the permeability of penetratin across excised cornea is 87.5 times higher in comparison with poly(serine)8. More importantly, after instilled in the conjunctival sac of rat eyes, fluorophore-labeled penetratin displayed a rapid and wide distribution in both anterior and posterior segment of the eye, and could be observed in the corneal epithelium and retina lasting for at least 6 h. Interestingly, penetratin showed the lowest ocular cell and tissue toxicities among all examined CPPs. The high ocular permeability of penetratin could be attributed to its amphipathicity and spatial conformation determined by circular dichroism. Taken together, these data demonstrate that penetratin is potentially useful as an absorption enhancer for intraocular drug delivery.


Assuntos
Proteínas de Transporte/administração & dosagem , Sistemas de Liberação de Medicamentos , Absorção Ocular/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/farmacocinética , Proteínas de Transporte/farmacologia , Peptídeos Penetradores de Células , Células Cultivadas , Dicroísmo Circular , Córnea/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Permeabilidade , Coelhos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
20.
Dev Comp Immunol ; 42(2): 244-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24099967

RESUMO

Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of innate immunity. In this study, a long-form PGRP, designated as gcPGRP6, was identified from grass carp Ctenopharyngodon idella. The deduced amino acid sequence of gcPGRP6 is composed of 464 residues with a conserved PGRP domain at the C-terminus. The gcPGRP6 gene consists of four exons and three introns, spacing approximately 2.7 kb of genomic sequence. Phylogenetic analysis demonstrated that gcPGRP6 is clustered closely with zebrafish PGLYRP6, and formed a long-type PGRP subfamily together with PGLYRP2 members identified in teleosts and mammals. Real-time PCR and Western blotting analyses revealed that gcPGRP6 is constitutively expressed in organs/tissues examined, and its expression was significantly induced in liver and intestine of grass carp in response to PGN stimulation and in CIK cells treated with lipoteichoic acid (LTA), polyinosinic polycytidylic acid (Poly I:C) and peptidoglycan (PGN). Immunofluorescence microscopy and Western blotting analyses revealed that gcPGRP6 is effectively secreted to the exterior of CIK cells. The over-expression of gcPGRP6 in CIK cells leads to the activation of NF-κB and the inhibition of intracellular bacterial growth. Moreover, cell lysates from CIK cells transfected with pTurbo-gcPGRP6-GFP plasmid display the binding activity towards Lys-type PGN from Staphylococcus aureus and DAP-type PGN from Bacillus subtilis. Furthermore, proinflammatory cytokine IL-2 and intracellular PGN receptor NOD2 had a significantly increased expression in CIK cells overexpressed with gcPGRP6. It is demonstrated that the PGRP6 in grass carp has a role in binding PGN, in inhibiting the growth of intracellular bacteria, and in activating NF-κB, as well as in regulating innate immune genes.


Assuntos
Carpas/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Infecções por Enterobacteriaceae/imunologia , NF-kappa B/imunologia , Sequência de Aminoácidos , Animais , Bacillus subtilis/imunologia , Sequência de Bases , Carpas/genética , Proteínas de Transporte/farmacocinética , Linhagem Celular , Clonagem Molecular , Edwardsiella tarda/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Intestinos/imunologia , Lipopolissacarídeos/imunologia , Fígado/imunologia , Dados de Sequência Molecular , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/imunologia , Peptidoglicano/imunologia , Filogenia , Poli I-C/imunologia , Ligação Proteica , Staphylococcus aureus/imunologia , Ácidos Teicoicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA