Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Respir Res ; 21(1): 208, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32771007

RESUMO

BACKGROUND: The carotid body (CB) plays a critical role in cyclic intermittent hypoxia (CIH)-induced chemosensitivity; however, the underlying mechanism remains uncertain. We have demonstrated the presence of multiple inotropic glutamate receptors (iGluRs) in CB, and that CIH exposure alters the level of some iGluRs in CB. This result implicates glutamatergic signaling in the CB response to hypoxia. The glutamatergic neurotransmission is not only dependent on glutamate and glutamate receptors, but is also dependent on glutamate transporters, including vesicular glutamate transporters (VGluTs) and excitatory amino acid transporters (EAATs). Here, we have further assessed the expression and distribution of VGluTs and EAATs in human and rat CB and the effect of CIH exposure on glutamate transporters expression. METHODS: The mRNA of VGluTs and EAATs in the human CB were detected by RT-PCR. The protein expression of VGluTs and EAATs in the human and rat CB were detected by Western blot. The distribution of VGluT3, EAAT2 and EAAT3 were observed by immunohistochemistry staining and immunofluorescence staining. Male Sprague-Dawley (SD) rats were exposed to CIH (FIO2 10-21%, 3 min/3 min for 8 h per day) for 2 weeks. The unpaired Student's t-test was performed. RESULTS: Here, we report on the presence of mRNAs for VGluT1-3 and EAAT1-3 in human CB, which is consistent with our previous results in rat CB. The proteins of VGluT1 and 3, EAAT2 and 3, but not VGluT2 and EAAT1, were detected with diverse levels in human and rat CB. Immunostaining showed that VGluT3, the major type of VGluTs in CB, was co-localized with tyrosine hydroxylase (TH) in type I cells. EAAT2 and EAAT3 were distributed not only in type I cells, but also in glial fibrillary acidic protein (GFAP) positive type II cells. Moreover, we found that exposure of SD rats to CIH enhanced the protein level of EAAT3 as well as TH, but attenuated the levels of VGluT3 and EAAT2 in CB. CONCLUSIONS: Our study suggests that glutamate transporters are expressed in the CB, and that glutamate transporters may contribute to glutamatergic signaling-dependent carotid chemoreflex to CIH.


Assuntos
Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/biossíntese , Proteínas Vesiculares de Transporte de Glutamato/biossíntese , Sistema X-AG de Transporte de Aminoácidos/análise , Sistema X-AG de Transporte de Aminoácidos/biossíntese , Sistema X-AG de Transporte de Aminoácidos/genética , Animais , Corpo Carotídeo/química , Células Quimiorreceptoras/química , Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Glutamato/genética
2.
Sci Rep ; 8(1): 1712, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374250

RESUMO

Although the cognitive impairment in Alzheimer's disease (AD) is believed to be caused by amyloid-ß (Aß) plaques and neurofibrillary tangles (NFTs), several postmortem studies have reported cognitive normal subjects with AD brain pathology. As the mechanism underlying these discrepancies has not been clarified, we focused the neuroprotective role of astrocytes. After examining 47 donated brains, we classified brains into 3 groups, no AD pathology with no dementia (N-N), AD pathology with no dementia (AD-N), and AD pathology with dementia (AD-D), which represented 41%, 21%, and 38% of brains, respectively. No differences were found in the accumulation of Aß plaques or NFTs in the entorhinal cortex (EC) between AD-N and AD-D. Number of neurons and synaptic density were increased in AD-N compared to those in AD-D. The astrocytes in AD-N possessed longer or thicker processes, while those in AD-D possessed shorter or thinner processes in layer I/II of the EC. Astrocytes in all layers of the EC in AD-N showed enhanced GLT-1 expression in comparison to those in AD-D. Therefore these activated forms of astrocytes with increased GLT-1 expression may exert beneficial roles in preserving cognitive function, even in the presence of Aß and NFTs.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/enzimologia , Astrócitos/patologia , Encéfalo/patologia , Transtornos Cognitivos/patologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/análise , Transportador 2 de Aminoácido Excitatório , Feminino , Humanos , Masculino , Emaranhados Neurofibrilares/patologia
3.
Physiol Rev ; 93(4): 1621-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24137018

RESUMO

L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/fisiologia , Glutamatos/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/fisiologia , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Sistema Nervoso Central/fisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Humanos , Dados de Sequência Molecular , Transdução de Sinais/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Glutamato/química
4.
Am J Hum Genet ; 87(5): 593-603, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21035104

RESUMO

Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.


Assuntos
Encefalinas/genética , Mutação de Sentido Incorreto , Precursores de Proteínas/genética , Degenerações Espinocerebelares/genética , Cerebelo/química , Cerebelo/citologia , Dinorfinas/análise , Encefalinas/análise , Feminino , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Humanos , Masculino , Linhagem , Precursores de Proteínas/análise , Células de Purkinje/química
5.
J Neuropathol Exp Neurol ; 68(2): 199-209, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19151621

RESUMO

To determine the relationship between the human immunodeficiency virus type 1 (HIV-1) encephalitis (HIVE) and diffuse poliodystrophy in the acquired immunodeficiency syndrome dementia complex, we examined the neuropathologic features in brain autopsy tissue specimens of HIV-1-infected patients with (n = 11) or without HIVE (n = 9). The brains were free of opportunistic diseases and major cerebrovascular lesions. In both groups, there was diffuse microglial activation, astrocytic gliosis, and decreased excitatory amino acid transporter 2 (EAAT-2) immunoreactivity. These changes did not correlate either with the severity of encephalitis or local HIV-1 infection as detected by p24 immunostaining. Some activated microglia expressed EAAT-2; interleukin-1beta and tumor necrosis factor were detected only in microglial nodules of HIVE cases but not in areas with diffusely activated microglia. There was a significant negative correlation between the areas of EAAT-2 expression and numbers of activated microglia (p < 0.01) in cases with decreased EAAT-2. These data indicate that diffuse cortical changes may occur independently of HIVE in acquired immunodeficiency syndrome patients. The expression of EAAT-2 by activated microglia suggests that they might exert a compensatory effect that protects neurons from glutamate neurotoxicity.


Assuntos
Complexo AIDS Demência/patologia , Córtex Cerebral/patologia , Gliose/patologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Microglia/patologia , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/fisiopatologia , Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/análise , Biomarcadores/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Citoproteção/imunologia , Regulação para Baixo/fisiologia , Transportador 2 de Aminoácido Excitatório , Gliose/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Ácido Glutâmico/metabolismo , Proteína do Núcleo p24 do HIV/análise , Proteína do Núcleo p24 do HIV/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-1beta/análise , Interleucina-1beta/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA