Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 38(19): e101468, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506973

RESUMO

Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na+ and 1 H+ , in exchange with 1 K+ . The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAATs harness K+ gradients, unlike their K+ -independent prokaryotic homologues. Glutamate transport is achieved via elevator-like translocation of the transport domain. In EAATs, glutamate-free re-translocation is prevented by an external gate remaining open until K+  binding closes and locks the gate. Prokaryotic GltPh contains the same K+ -binding site, but the gate can close without K+ . Our study provides a comprehensive description of K+ -dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Potássio/metabolismo , Regulação Alostérica , Transporte Biológico , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Transmissão Sináptica
2.
Brain Res Bull ; 136: 3-16, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040508

RESUMO

Glutamate is the major excitatory transmitter in the vertebrate brain. After its release from presynaptic nerve terminals, it is rapidly taken up by high-affinity sodium-dependent plasma membrane transporters. While both neurons and glial cells express these excitatory amino acid transporters (EAATs), the majority of glutamate uptake is accomplished by astrocytes, which convert synaptically-released glutamate to glutamine or feed it into their own metabolism. Glutamate uptake by astrocytes not only shapes synaptic transmission by regulating the availability of glutamate to postsynaptic neuronal receptors, but also protects neurons from hyper-excitability and subsequent excitotoxic damage. In the present review, we provide an overview of the molecular and cellular characteristics of sodium-dependent glutamate transporters and their associated anion permeation pathways, with a focus on astrocytic glutamate transport. We summarize their functional properties and roles within tripartite synapses under physiological and pathophysiological conditions, exemplifying the intricate interactions and interrelationships between neurons and glial cells in the brain.


Assuntos
Astrócitos/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Ácido Glutâmico/metabolismo , Humanos
3.
Sci Rep ; 6: 34522, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698371

RESUMO

Excitatory amino acid transporter 2 (EAAT2), also known as glial glutamate transporter type 1 (GLT-1), plays an important role in maintaining the extracellular glutamate concentrations below neurotoxic levels. The highly conserved TM2 transmembrane domain of GLT-1 maintains a stable position during the transport cycle; however, the effect of the transport cycle on the topology of TM4 in not well established. To further reveal the function of TM4, two cysteine pairs between TM2 and TM4 were introduced using site-directed mutagenesis. A significant decrease of transport activity was observed in the I93C/V241C and I97C/V241C mutants upon application of the oxidative cross-linking reagent, copper (II) (1,10-phenanthroline)3 (CuPh), which suggests that a conformational shift is essential for transporter activity. Furthermore, the decrease in activity by CuPh crosslinking was enhanced in external media with glutamate or potassium, which suggests that TM2 and TM4 assume closer proximity in the inward-facing conformation of the transporter. Our results suggest that the TM4 domain of GLT-1, and potentially other glutamate transporters, undergoes a complex conformational shift during substrate translocation, which involves an increase in the proximity of the TM2 and TM4 domains in the inward-facing conformation.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Substituição de Aminoácidos , Transporte Biológico Ativo/fisiologia , Transportador 2 de Aminoácido Excitatório , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Células HeLa , Humanos , Mutação de Sentido Incorreto , Domínios Proteicos
4.
Pflugers Arch ; 468(3): 491-502, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26687113

RESUMO

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Animais , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Simulação de Dinâmica Molecular
5.
Biomolecules ; 5(4): 3067-86, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26569328

RESUMO

Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Dados de Sequência Molecular
6.
J Biol Chem ; 290(48): 28988-96, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26475859

RESUMO

Crystal structures of the archaeal homologue GltPh have provided important insights into the molecular mechanism of transport of the excitatory neurotransmitter glutamate. Whereas mammalian glutamate transporters can translocate both glutamate and aspartate, GltPh is only one capable of aspartate transport. Most of the amino acid residues that surround the aspartate substrate in the binding pocket of GltPh are highly conserved. However, in the brain transporters, Thr-352 and Met-362 of the reentrant hairpin loop 2 are replaced by the smaller Ala and Thr, respectively. Therefore, we have studied the effects of T352A and M362T on binding and transport of aspartate and glutamate by GltPh. Substrate-dependent intrinsic fluorescence changes were monitored in transporter constructs containing the L130W mutation. GltPh-L130W/T352A exhibited an ~15-fold higher apparent affinity for l-glutamate than the wild type transporter, and the M362T mutation resulted in an increased affinity of ~40-fold. An even larger increase of the apparent affinity for l-glutamate, around 130-fold higher than that of wild type, was observed with the T352A/M362T double mutant. Radioactive uptake experiments show that GltPh-T352A not only transports aspartate but also l-glutamate. Remarkably, GltPh-M362T exhibited l-aspartate but not l-glutamate transport. The double mutant retained the ability to transport l-glutamate, but its kinetic parameters were very similar to those of GltPh-T352A alone. The differential impact of mutation on binding and transport of glutamate suggests that hairpin loop 2 not only plays a role in the selection of the substrate but also in its translocation.


Assuntos
Ácido Aspártico/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Ácido Glutâmico/química , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Substituição de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Transporte de Íons/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Secundária de Proteína , Especificidade por Substrato/genética
7.
Cell ; 160(3): 542-53, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635461

RESUMO

Excitatory amino acid transporters (EAATs) are essential for terminating glutamatergic synaptic transmission. They are not only coupled glutamate/Na(+)/H(+)/K(+) transporters but also function as anion-selective channels. EAAT anion channels regulate neuronal excitability, and gain-of-function mutations in these proteins result in ataxia and epilepsy. We have combined molecular dynamics simulations with fluorescence spectroscopy of the prokaryotic homolog GltPh and patch-clamp recordings of mammalian EAATs to determine how these transporters conduct anions. Whereas outward- and inward-facing GltPh conformations are nonconductive, lateral movement of the glutamate transport domain from intermediate transporter conformations results in formation of an anion-selective conduction pathway. Fluorescence quenching of inserted tryptophan residues indicated the entry of anions into this pathway, and mutations of homologous pore-forming residues had analogous effects on GltPh simulations and EAAT2/EAAT4 measurements of single-channel currents and anion/cation selectivities. These findings provide a mechanistic framework of how neurotransmitter transporters can operate as anion-selective and ligand-gated ion channels.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Ânions/metabolismo , Proteínas Arqueais/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Simulação de Dinâmica Molecular , Pyrococcus horikoshii/química , Sequência de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Proteínas Arqueais/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Ratos , Alinhamento de Sequência
8.
J Biol Chem ; 288(49): 35266-76, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24155238

RESUMO

Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na(+)-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, Glt(Ph), suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3-4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, Glt(Ph) is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved Glt(Ph) retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Substituição de Aminoácidos , Proteínas Arqueais/genética , Ácido Aspártico/metabolismo , Transporte Biológico Ativo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Cinética , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
9.
Nature ; 502(7469): 119-23, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24091978

RESUMO

Excitatory amino acid transporters (EAATs) are secondary transport proteins that mediate the uptake of glutamate and other amino acids. EAATs fulfil an important role in neuronal signal transmission by clearing the excitatory neurotransmitters from the synaptic cleft after depolarization of the postsynaptic neuron. An intensively studied model system for understanding the transport mechanism of EAATs is the archaeal aspartate transporter GltPh. Each subunit in the homotrimeric GltPh supports the coupled translocation of one aspartate molecule and three Na(+) ions as well as an uncoupled flux of Cl(-) ions. Recent crystal structures of GltPh revealed three possible conformations for the subunits, but it is unclear whether the motions of individual subunits are coordinated to support transport. Here, we report the direct observation of conformational dynamics in individual GltPh trimers embedded in the membrane by applying single-molecule fluorescence resonance energy transfer (FRET). By analysing the transporters in a lipid bilayer instead of commonly used detergent micelles, we achieve conditions that approximate the physiologically relevant ones. From the kinetics of FRET level transitions we conclude that the three GltPh subunits undergo conformational changes stochastically and independently of each other.


Assuntos
Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Modelos Moleculares , Sódio/química , Transferência Ressonante de Energia de Fluorescência , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Bicamadas Lipídicas/metabolismo , Estrutura Terciária de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo
10.
Physiol Rev ; 93(4): 1621-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24137018

RESUMO

L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/fisiologia , Glutamatos/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/fisiologia , Sequência de Aminoácidos , Animais , Transporte Biológico/fisiologia , Sistema Nervoso Central/fisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/análise , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Humanos , Dados de Sequência Molecular , Transdução de Sinais/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/análise , Proteínas Vesiculares de Transporte de Glutamato/química
11.
Nat Struct Mol Biol ; 20(5): 634-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563139

RESUMO

Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homolog from Pyrococcus horikoshii in key conformational states with the substrate-binding site facing either the extracellular or the intracellular side of the membrane to study binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, not to substrate translocation. Despite the transporter's structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Neurotransmissores/química , Neurotransmissores/metabolismo , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo , Termodinâmica , Sítios de Ligação , Íons/química , Íons/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Sódio/química , Sódio/metabolismo
12.
Mol Aspects Med ; 34(2-3): 108-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23506861

RESUMO

Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-ß-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.


Assuntos
Aminoácidos Neutros/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/fisiologia , Modelos Moleculares , Família Multigênica/genética , Conformação Proteica , Sinapses/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/antagonistas & inibidores , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Modelos Biológicos , Estrutura Molecular , Filogenia
13.
Proc Natl Acad Sci U S A ; 108(36): 14980-5, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21873219

RESUMO

A prominent aqueous cavity is formed by the junction of three identical subunits in the excitatory amino acid transporter (EAAT) family. To investigate the effect of this structure on the interaction of ligands with the transporter, we recorded currents in voltage-clamped Xenopus oocytes expressing EAATs and used concentration jumps to measure binding and unbinding rates of a high-affinity aspartate analog that competitively blocks transport (ß-2-fluorenyl-aspartylamide; 2-FAA). The binding rates of the blocker were approximately one order of magnitude slower than l-Glu and were not significantly different for EAAT1, EAAT2, or EAAT3, but 2-FAA exhibited higher affinity for the neuronal transporter EAAT3 as a result of a slower dissociation rate. Unexpectedly, the rate of recovery from block was increased by l-Glu in a saturable and concentration-dependent manner, ruling out a first-order mechanism and suggesting that following unbinding, there is a significant probability of ligand rebinding to the same or neighboring subunits within a trimer. Consistent with such a mechanism, coexpression of wild-type subunits with mutant (R447C) subunits that do not bind glutamate or 2-FAA also increased the unblocking rate. The data suggest that electrostatic and steric factors result in an effective dissociation rate that is approximately sevenfold slower than the microscopic subunit unbinding rate. The quaternary structure, which has been conserved through evolution, is expected to increase the transporters' capture efficiency by increasing the probability that following unbinding, a ligand will rebind as opposed to being lost to diffusion.


Assuntos
Ácido Aspártico/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Sítios de Ligação/fisiologia , Transporte Biológico/fisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/antagonistas & inibidores , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Ligantes , Xenopus laevis
14.
Biochemistry ; 48(31): 7448-56, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19594131

RESUMO

The 2HCT and ESS families are two families of secondary transporters. Members of the two families are unrelated in amino acid sequence but share similar hydropathy profiles, which suggest a similar folding of the proteins in membranes. Structural models show two homologous domains containing five transmembrane segments (TMSs) each, with a reentrant or pore loop between the fourth and fifth TMSs in each domain. Here we show that GGXG sequence motifs present in the putative reentrant loops are important for the activity of the transporters. Mutation of the conserved Gly residues to Cys in the motifs of the Na(+)-citrate transporter CitS in the 2HCT family and the Na(+)-glutamate transporter GltS in the ESS family resulted in strongly reduced transport activity. Similarly, mutation of the variable residue "X" to Cys in the N-terminal half of GltS essentially inactivated the transporter. The corresponding mutations in the N- and C-terminal halves of CitS reduced transport activity to 60 and 25% of that of the wild type, respectively. Residual activity of any of the mutants could be further reduced by treatment with the membrane permeable thiol reagent N-ethylmaleimide (NEM). The X to Cys mutation (S405C) in the cytoplasmic loop in the C-terminal half of CitS rendered the protein sensitive to the bulky, membrane impermeable thiol reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AmdiS) added at the periplasmic side of the membrane, providing further evidence that this part of the loop is positioned between the transmembrane segments. The putative reentrant loop in the C-terminal half of the ESS family does not contain the GGXG motif, but a conserved stretch rich in Gly residues. Cysteine-scanning mutagenesis of a stretch of 18 residues in the GltS protein revealed two residues important for function. Mutant N356C was completely inactivated by treatment with NEM, and mutant P351C appeared to be the counterpart of mutant S405C of CitS; the mutant was inactivated by AmdiS added at the periplasmic side of the membrane. The data support, in general, the structural and mechanistic similarity between the ESS and 2HCT transporters and, more particularly, the two-domain structure of the transporters and the presence and functional importance of the reentrant loops present in each domain. It is proposed that the GGXG motifs are at the vertex of the reentrant loops.


Assuntos
Ácidos Carboxílicos/química , Glicina/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Motivos de Aminoácidos/genética , Substituição de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/fisiologia , Glicina/genética , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Estrutura Terciária de Proteína/genética , Simportadores/química , Simportadores/genética
15.
Expert Opin Ther Targets ; 13(6): 719-31, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19456273

RESUMO

BACKGROUND: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual roles or functions in the CNS are yet to be fully understood due to the shortage of subtype-selective ligands. OBJECTIVE/METHODS: We examine the latest developments in this field by addressing EAAT expression pattern, localization and pharmacology. We present highlights of published work on inhibitors as well as enhancers which display subtype preference or selectivity and discuss which pathological conditions in the CNS such ligands may be beneficial to. RESULTS/CONCLUSIONS: Not until subtype-selective enhancers, inhibitors and substrates for all five EAAT subtypes have been discovered can a full and detailed understanding of EAATs be obtained. Thus we encourage collaboration between organic chemists and molecular pharmacologists, who, together, may pave the way for new EAAT ligands of importance.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Humanos , Ligantes , Modelos Moleculares , Relação Estrutura-Atividade , Sinapses/metabolismo
16.
Biophys J ; 95(5): 2292-300, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18515371

RESUMO

Glutamate transporters (GluTs) are the primary regulators of extracellular concentration of the neurotransmitter glutamate in the central nervous system. In this study, we have investigated the dynamics and coupling of the substrate and Na(+) binding sites, and the mechanism of cotransport of Na(+) ions, using molecular dynamics simulations of a membrane-embedded model of GluT in its apo (empty form) and various Na(+)- and/or substrate-bound states. The results shed light on the mechanism of the extracellular gate and on the sequence of binding of the substrate and Na(+) ions to GluT during the transport cycle. The results suggest that the helical hairpin HP2 plays the key role of the extracellular gate for the substrate binding site, and that the opening and closure of the gate is controlled by substrate binding. GluT adopts an open conformation in the absence of the substrate exposing the binding sites of the substrate and Na(+) ions to the extracellular solution. Based on the calculated trajectories, we propose that Na1 is the first element to bind GluT, as it is found to be important for the completion of the substrate binding site. The subsequent binding of the substrate, in turn, is shown to result in an almost complete closure of the extracellular gate and the formation of the Na2 binding site. Finally, binding of Na2 locks the extracellular gate and completes the formation of the occluded state of GluT.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ativação do Canal Iônico , Sódio/química , Sítios de Ligação , Simulação por Computador , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Modelos Moleculares , Conformação Proteica , Sódio/metabolismo , Especificidade por Substrato
17.
Am J Physiol Gastrointest Liver Physiol ; 295(1): G7-G15, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18436625

RESUMO

Glutamine, the primary metabolic fuel for the mammalian small intestinal enterocytes, is primarily assimilated by Na-amino acid cotransporters. Although Na-solute cotransport has been shown to exist in the brush border membrane (BBM) of the absorptive villus cells, the identity of Na-glutamine cotransport in rabbit small intestinal villus cells was unknown. Na-dependent glutamine uptake is present in villus BBM vesicles. An intravesicular proton gradient did not stimulate this Na-dependent glutamine uptake, whereas Li+ did not significantly suppress this uptake. These observations in concert with amino acid substitution studies suggested that Na-glutamine cotransporter in the villus cell BBM was the newly identified cotransporter B0AT1 (SLC6A19). Quantitative real-time PCR identified the message for this cotransporter in villus cells. Thus a full-length cDNA of B0AT1 was cloned and expressed in MDA-MB-231 cells. This expressed cotransporter exhibited characteristics similar to those observed in villus cells from the rabbit small intestine. Antibody was generated for B0AT1 that demonstrated the presence of this cotransporter protein in the villus cell BBM. Kinetic studies defined the kinetic parameters of this cotransporter. Thus this study describes the identification, cloning, and characterization of the Na-amino acid cotransporter responsible for the assimilation of a critical amino acid by the absorptive villus cells in the mammalian small intestine.


Assuntos
Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Intestino Delgado/fisiologia , Intestino Delgado/ultraestrutura , Microvilosidades/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Lítio/farmacologia , Masculino , Dados de Sequência Molecular , Coelhos , Organismos Livres de Patógenos Específicos , Especificidade por Substrato
18.
Handb Exp Pharmacol ; (175): 113-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16722233

RESUMO

Glutamate transporters are a family of transporters that regulate extracellular glutamate concentrations so as to maintain a dynamic and high-fidelity cell signalling process in the brain. Site-directed mutagenesis has been used to investigate various aspects of the structural and functional properties of these transporters to gain insights into how they work. This field of research has recently undergone a major development with the determination of the crystal structure of a bacterial glutamate transporter, and this chapter relates the results from mutagenesis experiments with what we now know about glutamate transporter structure.


Assuntos
Proteínas de Bactérias/metabolismo , Canais de Cloreto/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Canais de Cloreto/química , Canais de Cloreto/genética , Cloretos/metabolismo , Cristalização , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Ácido Glutâmico/metabolismo , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Alinhamento de Sequência , Relação Estrutura-Atividade
19.
Curr Top Med Chem ; 6(8): 823-47, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16719820

RESUMO

A major neurotransmitter, L-Glutamate must be stored, transported and received, and these processes are mediated by proteins that bind this simple yet essential amino acid. Detailed evidence continues to emerge on the structure of Glu binding proteins, which includes both receptors and transporters. It appears that receptors and transporters bind to Glu in different conformations, which may present a pharmacological opportunity. This review will compare and contrast information available on Glu Receptors (AMPA, NMDA, KA and mGlu), excitatory amino acid transporters (EAATs), the system Xc- transporter (XCT) and the vesicular Glutamate transporter (GVT). The cross-reactivity of ligands which have been previously used to characterize the glutamate binding proteins with system Xc- raises some fundamental interpretational issues regarding the mechanisms through which these analogues produce CNS damage. Although at one time it was thought that unraveling selectivity among glutamate binding proteins was an intractable problem, recently the NMDA antagonist (memantine) has been approved for general medical practice for treatment of Alzheimer's disease. Two other agents are in advanced clinical trials: an Ampakine for potential improvement of cognitive disorders, and a selective mGlu agonist for treatment of anxiety. The prospects for unraveling cross-reactivity will be weighed in light of a critical comparison of the glutamate binding protein targets.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Receptores de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Sistema y+ de Transporte de Aminoácidos/química , Animais , Desenho de Fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Ácido Glutâmico/metabolismo , Humanos , Isoxazóis/metabolismo , Ligantes , Modelos Químicos , Receptores de Glutamato/química , Proteínas Vesiculares de Transporte de Glutamato/química
20.
Proc Natl Acad Sci U S A ; 102(52): 19214-8, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16365297

RESUMO

Excitatory amino acid transporters (EAATs) terminate glutamatergic synaptic transmission and maintain extracellular glutamate concentrations in the central nervous system below excitotoxic levels. In addition to sustaining a secondary-active glutamate transport, EAAT glutamate transporters also function as anion-selective channels. Here, we report a gating process that makes anion channels associated with a neuronal glutamate transporter, EAAT4, permeable to cations and causes a selective increase of the open probability at voltages negative to the actual current reversal potential. The activation process depends on both membrane potential and extracellular glutamate concentration and causes an accumulation of EAAT4 anion channels in a state favoring cation influx and anion efflux. Gating of EAAT4 anion channels thus allows a switch between inhibitory currents in resting cells and excitatory currents in electrically active cells. This transporter-mediated conductance could modify the excitability of Purkinje neurons, providing them with an unprecedented mechanism for adaptation.


Assuntos
Sistemas de Transporte de Aminoácidos/fisiologia , Glutamatos/fisiologia , Sistemas de Transporte de Aminoácidos/metabolismo , Ânions , Transporte Biológico , Canais de Cálcio/química , Cátions , Linhagem Celular , Dendritos/metabolismo , Eletrofisiologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Ácido Glutâmico/química , Humanos , Canais Iônicos/química , Íons , Modelos Químicos , Modelos Estatísticos , Transdução de Sinais , Simportadores/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA