Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793558

RESUMO

The cucumber mosaic virus (CMV) 2b protein is a suppressor of plant defenses and a pathogenicity determinant. Amongst the 2b protein's host targets is the RNA silencing factor Argonaute 1 (AGO1), which it binds to and inhibits. In Arabidopsis thaliana, if 2b-induced inhibition of AGO1 is too efficient, it induces reinforcement of antiviral silencing by AGO2 and triggers increased resistance against aphids, CMV's insect vectors. These effects would be deleterious to CMV replication and transmission, respectively, but are moderated by the CMV 1a protein, which sequesters sufficient 2b protein molecules into P-bodies to prevent excessive inhibition of AGO1. Mutant 2b protein variants were generated, and red and green fluorescent protein fusions were used to investigate subcellular colocalization with AGO1 and the 1a protein. The effects of mutations on complex formation with the 1a protein and AGO1 were investigated using bimolecular fluorescence complementation and co-immunoprecipitation assays. Although we found that residues 56-60 influenced the 2b protein's interactions with the 1a protein and AGO1, it appears unlikely that any single residue or sequence domain is solely responsible. In silico predictions of intrinsic disorder within the 2b protein secondary structure were supported by circular dichroism (CD) but not by nuclear magnetic resonance (NMR) spectroscopy. Intrinsic disorder provides a plausible model to explain the 2b protein's ability to interact with AGO1, the 1a protein, and other factors. However, the reasons for the conflicting conclusions provided by CD and NMR must first be resolved.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Cucumovirus , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Cucumovirus/metabolismo , Cucumovirus/genética , Cucumovirus/fisiologia , Arabidopsis/metabolismo , Arabidopsis/virologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ligação Proteica , Proteínas Virais/metabolismo , Proteínas Virais/genética , Interações Hospedeiro-Patógeno , Proteínas do Complexo da Replicase Viral/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/química , Metiltransferases
2.
Virus Res ; 339: 199268, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37949376

RESUMO

Hand, foot, and mouth disease (HFMD) caused by a group of enteroviruses is a global public health problem. In recent years, coxsackievirus A6 (CVA6) has emerged as an important HFMD agent. Previous studies have shown that mutations of glycine 64 in RNA-dependent RNA polymerase (3D polymerase), which is central to viral replication, cause phenotypic changes such as ribavirin resistance, increased replication fidelity, and virulence attenuation in poliovirus and enterovirus A71. In this study, we constructed CVA6 mutants with G64R, G64S, and G64T substitutions by site-directed mutagenesis in full-length cDNA of an infectious CVA6 strain cloned in pcDNA3.1. Viral RNA was obtained by in vitro transcription, and the rescued virus strains were propagated in RD cells. Sequencing after six passages revealed that G64S and G64T mutations were stably inherited, whereas G64R was genetically unstable and reversed to the wild type. Comparison of the biological characteristics of the wild-type and mutant CVA6 strains in an in vivo model (one-day-old ICR mice) revealed that the pathogenicity of CVA6-G64S and CVA6-G64T was significantly reduced compared to wild-type CVA6. In vitro experiments indicated the mutant CVA6-G64S and CVA6-G64T strains had increased resistance to 0.8 mM ribavirin and a decreased replication rate in the presence of 0.8 mM guanidine hydrochloride. Our results show that mutation of residue 64 reduces CVA6 susceptibility to ribavirin and increases CVA6 susceptibility to guanidine hydrochloride, together with increased replication fidelity and attenuated viral pathogenicity, thus laying a foundation for the development of safe and effective live attenuated CVA6 vaccine.


Assuntos
Infecções por Enterovirus , Enterovirus , RNA Polimerase Dependente de RNA , Proteínas do Complexo da Replicase Viral , Animais , Camundongos , Anticorpos Antivirais , Enterovirus/genética , Enterovirus/patogenicidade , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Guanidina , Camundongos Endogâmicos ICR , Ribavirina/farmacologia , Ribavirina/uso terapêutico , RNA Polimerase Dependente de RNA/genética , Virulência , Proteínas do Complexo da Replicase Viral/genética
3.
Arch Virol ; 168(11): 273, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845386

RESUMO

The complete genome sequence of a new member of the family Mitoviridae was obtained from walking iris (Trimezia northiana (Schneev.) Ravenna by high-throughput sequencing. This is the first putative mitovirus identified in a monocotyledonous plant. The new mitovirus was tentatively named "walking iris virus 1" (WIV1). The complete genome of WIV1 is 2,858 nt in length with a single ORF encoding a viral replicase (RdRp). The highest level of amino acid sequence identity was 45% to Beta vulgaris mitovirus 1. In the viral replicase, a conserved protein domain for mitovirus RNA-dependent RNA polymerase and six highly conserved motifs were detected, consistent with other members of the family Mitoviridae. Phylogenetic inferences placed WIV1 among members of the genus Duamitovirus (family Mitoviridae) in a monophyletic clade with other plant mitoviruses. Sequence comparison and phylogenetic analysis support the classification of WIV1 as a new member of the genus Duamitovirus (family Mitoviridae).


Assuntos
Micovírus , Iridaceae , Vírus de RNA , Vírus , Filogenia , Proteínas do Complexo da Replicase Viral/genética , Micovírus/genética , Vírus de RNA/genética , Vírus/genética , Genoma Viral , RNA Viral/genética , RNA Viral/química , Fases de Leitura Aberta , Doenças das Plantas
4.
J Virol ; 96(16): e0084122, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35924922

RESUMO

Coronaviruses (CoVs) initiate replication by translation of the positive-sense RNA genome into the replicase polyproteins connecting 16 nonstructural protein domains (nsp1-16), which are subsequently processed by viral proteases to yield mature nsp. For the betacoronavirus murine hepatitis virus (MHV), total inhibition of translation or proteolytic processing of replicase polyproteins results in rapid cessation of RNA synthesis. The nsp5-3CLpro (Mpro) processes nsps7-16, which assemble into functional replication-transcription complexes (RTCs), including the enzymatic nsp12-RdRp and nsp14-exoribonuclease (ExoN)/N7-methyltransferase. The nsp14-ExoN activity mediates RNA-dependent RNA proofreading, high-fidelity RNA synthesis, and replication. To date, the solved partial RTC structures, biochemistry, and models use or assume completely processed, mature nsp. Here, we demonstrate that in MHV, engineered deletion of the cleavage sites between nsp13-14 and nsp14-15 allowed recovery of replication-competent virus. Compared to wild-type (WT) MHV, the nsp13-14 and nsp14-15 cleavage deletion mutants demonstrated delayed replication kinetics, impaired genome production, altered abundance and patterns of recombination, and impaired competitive fitness. Further, the nsp13-14 and nsp14-15 mutant viruses demonstrated mutation frequencies that were significantly higher than with the WT. The results demonstrate that cleavage of nsp13-14 or nsp14-15 is not required for MHV viability and that functions of the RTC/nsp14-ExoN are impaired when assembled with noncleaved intermediates. These data will inform future genetic, structural, biochemical, and modeling studies of coronavirus RTCs and nsp 13, 14, and 15 and may reveal new approaches for inhibition or attenuation of CoV infection. IMPORTANCE Coronavirus replication requires proteolytic maturation of the nonstructural replicase proteins to form the replication-transcription complex. Coronavirus replication-transcription complex models assume mature subunits; however, mechanisms of coronavirus maturation and replicase complex formation have yet to be defined. Here, we show that for the coronavirus murine hepatitis virus, cleavage between the nonstructural replicase proteins nsp13-14 and nsp14-15 is not required for replication but does alter RNA synthesis and recombination. These results shed new light on the requirements for coronavirus maturation and replication-transcription complex assembly, and they may reveal novel therapeutic targets and strategies for attenuation.


Assuntos
Exorribonucleases , Aptidão Genética , Vírus da Hepatite Murina , Proteólise , RNA Viral , Proteínas não Estruturais Virais , Proteínas do Complexo da Replicase Viral , Animais , Exorribonucleases/genética , Exorribonucleases/metabolismo , Camundongos , Vírus da Hepatite Murina/enzimologia , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/crescimento & desenvolvimento , Vírus da Hepatite Murina/fisiologia , Mutação , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Recombinação Genética , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral
5.
Viruses ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458518

RESUMO

To understand the problem of persistent Hepatitis B virus (HBV) viraemia in HIV/HBV co-infected patients on HBV-active antiretroviral therapy (ART), we assessed the rate of HBV virological response in patients on HBV-active ART in KwaZulu-Natal, South Africa, and analysed factors associated with persistent HBV viraemia. One hundred and fifty eligible participants with a chronic HBV diagnosis, with or without HIV coinfection, were enrolled and followed up after 6 months. The HBV pol gene was sequenced by next-generation sequencing and mutations were determined using the Stanford HBVseq database. Logistic regression analysis was used to assess factors associated with HBV viraemia at 6-month follow-up. The mean duration of HBV-active ART was 24 months. Thirty-seven of one hundred and six (35%) participants receiving HBV-active ART for longer than 6 months had virological failure. Advanced immunosuppression with CD4+ cell counts <200 cells/µL was independently associated with persistent HBV viraemia, aOR 5.276 (95% CI 1.575−17.670) p = 0.007. A high proportion of patients on HBV-active ART are unsuppressed, which will ultimately have an impact on global elimination goals. Better monitoring should be implemented, especially in HIV-coinfected patients with low CD4+ cell counts and followed by early HBV drug-resistance testing.


Assuntos
Coinfecção , Infecções por HIV , Vírus da Hepatite B , Hepatite B , Proteínas do Complexo da Replicase Viral , Viremia , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Contagem de Linfócito CD4 , DNA Viral/genética , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Vírus da Hepatite B/genética , Humanos , Mutação , África do Sul/epidemiologia , Carga Viral , Proteínas do Complexo da Replicase Viral/genética , Viremia/genética
6.
Virology ; 567: 1-14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933176

RESUMO

The coronavirus nucleocapsid (N) protein comprises two RNA-binding domains connected by a central spacer, which contains a serine- and arginine-rich (SR) region. The SR region engages the largest subunit of the viral replicase-transcriptase, nonstructural protein 3 (nsp3), in an interaction that is essential for efficient initiation of infection by genomic RNA. We carried out an extensive genetic analysis of the SR region of the N protein of mouse hepatitis virus in order to more precisely define its role in RNA synthesis. We further examined the N-nsp3 interaction through construction of nsp3 mutants and by creation of an interspecies N protein chimera. Our results indicate a role for the central spacer as an interaction hub of the N molecule that is partially regulated by phosphorylation. These findings are discussed in relation to the recent discovery that nsp3 forms a molecular pore in the double-membrane vesicles that sequester the coronavirus replicase-transcriptase.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Membranas Intracelulares/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Camundongos , Vírus da Hepatite Murina , Mutação , Ligação Proteica , Domínios Proteicos , RNA Viral/biossíntese , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Compartimentos de Replicação Viral/metabolismo
7.
J Virol ; 96(4): e0209221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935435

RESUMO

Influenza A viruses are negative-sense RNA viruses that rely on their own viral replication machinery to replicate and transcribe their segmented single-stranded RNA genome. The viral ribonucleoprotein complexes in which viral RNA is replicated consist of a nucleoprotein scaffold around which the RNA genome is wound, and a heterotrimeric RNA-dependent RNA polymerase that catalyzes viral replication. The RNA polymerase copies the viral RNA (vRNA) via a replicative intermediate, called the cRNA, and subsequently uses this cRNA to make more vRNA copies. To ensure that new cRNA and vRNA molecules are associated with ribonucleoproteins in which they can be amplified, the active RNA polymerase recruits a second polymerase to encapsidate the cRNA or vRNA. Host factor ANP32A has been shown to be essential for viral replication and to facilitate the formation of a dimer between viral RNA polymerases. Differences between mammalian and avian ANP32A proteins are sufficient to restrict viral replication. It has been proposed that ANP32A is only required for the synthesis of vRNA molecules from cRNA but not vice versa. However, this view does not match recent molecular evidence. Here we use minigenome assays, virus infections, and viral promoter mutations to demonstrate that ANP32A is essential for both vRNA and cRNA synthesis. Moreover, we show that ANP32A is not only needed for the actively replicating polymerase, but not for the polymerase that is encapsidating nascent viral RNA products. Overall, these results provide new insights into influenza A virus replication and host adaptation. IMPORTANCE Zoonotic avian influenza A viruses pose a constant threat to global health, and they have the potential to cause pandemics. Species variations in host factor ANP32A play a key role in supporting the activity of avian influenza A virus RNA polymerases in mammalian hosts. Here we show that ANP32A acts at two stages in the influenza A virus replication cycle, supporting recent structural experiments, in line with its essential role. Understanding how ANP32A supports viral RNA polymerase activity and how it supports avian polymerase function in mammalian hosts is important for understanding influenza A virus replication and the development of antiviral strategies against influenza A viruses.


Assuntos
Vírus da Influenza A/fisiologia , Proteínas Nucleares/metabolismo , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Animais , Galinhas , Genoma Viral , Humanos , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral
8.
Virology ; 564: 26-32, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601182

RESUMO

Human norovirus (NOV) is a common and serious virus that accounts for sporadic cases and outbreaks of gastroenteritis. This study aimed to develop rapid, reliable and portable detection systems by coupling reverse transcription recombinase polymerase amplification (RT-RPA) with CRISPR-Cas12a (RT-RPA-Cas12a) for NOV genotype GII.4. Here, three primers for RNA-dependent RNA polymerase gene of NOV were designed and screened. Then, RT-RPA products were detected using CRISPR-Cas12a system by combing with fluorescence or lateral flow (LF). RT-RPA-Cas12a-based fluorescence or LF assay can be completed within 40 min, with the detection limit of up to 9.65 × 102copies/mL and no cross-reactivity with metapneumovirus, bocavirus, seoul virus, and respiratory syncytial virus. Furthermore, the detection coincidence rates of RT-RPA-Cas12a-based fluorescence and LF with qRT-PCR were 98.3%. Therefore, the present study suggests that both RT-RPA-Cas12a-based fluorescence and LF are promising sensitive, specific and alternative method for diagnosis of NOV genotype GII.4 without ancillary equipment.


Assuntos
Infecções por Caliciviridae/diagnóstico , Gastroenterite/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Norovirus/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleases/metabolismo , Genótipo , Humanos , Norovirus/genética , Testes Imediatos , RNA Viral/genética , Recombinases/metabolismo , Transcrição Reversa , Sensibilidade e Especificidade , Proteínas do Complexo da Replicase Viral/genética
9.
Vet Res Commun ; 45(4): 353-361, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34357481

RESUMO

Porcine circovirus type 3 (PCV3) is a highly contagious virus belonging to the family Circoviridae that causes the severe dermatitis and nephropathy syndrome. To date, PCV3 has a worldwide distribution and bring huge economic losses to swine industry. Replicase (Rep) and capsid (Cap) are two major coded proteins of PCV3. Considering the large number of new PCV3 isolates were reported in the past few years and the research for the codon usage pattern of Rep and Cap genes was still a gap, phylogenetic and codon usage analysis of these two genes was performed. Phylogenetic analyses showed that Rep genes in PCV3a were dispersed with no clear clusters while corresponding sequences in PCV3b clustered into two groups and Cap genes clustered into distinct clades according to different genotypes. Relative synonymous codon usage (RSCU) analysis revealed that the codon usage bias existed and effective number of codon (ENC) analysis showed that the bias was slight low. ENC-GC3s plot indicated that mutational pressure and other factors both played a role in PCV3 codon usage and neutrality plot analysis showed that natural selection was the main force influencing the codon usage pattern. The results presented here provided the important basic data on codon usage pattern of Rep and Cap genes, and a better understanding of the evolution and potential origin of PCV3.


Assuntos
Proteínas do Capsídeo/genética , Circovirus/genética , Uso do Códon , Genes Virais/genética , Filogenia , Proteínas do Complexo da Replicase Viral/genética , Circovirus/enzimologia
10.
J Virol ; 95(20): e0190620, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346768

RESUMO

Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.


Assuntos
Potexvirus/genética , Potexvirus/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Sequência de Aminoácidos/genética , Proteínas de Membrana/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças das Plantas/virologia , Prolina/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicon/genética , Nicotiana/virologia , Proteínas Virais/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral/genética
11.
J Virol ; 95(20): e0083121, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379502

RESUMO

Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.


Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Potexvirus/metabolismo , Regiões 3' não Traduzidas , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Potexvirus/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA , Nicotiana/genética , Nicotiana/virologia , Proteínas Virais/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral/fisiologia
12.
J Virol ; 95(20): e0035521, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319783

RESUMO

Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the nonstructural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1 to nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential cis-active sequences. Here, we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123, while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s, while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV, or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. IMPORTANCE A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.


Assuntos
Alphavirus/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Alphavirus/metabolismo , Infecções por Alphavirus/genética , Animais , Sequência de Bases , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Poliproteínas/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral/genética , Replicação Viral/fisiologia
13.
mBio ; 12(4): e0076321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311576

RESUMO

Circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses infect members from all three domains of life (Archaea, Prokarya, and Eukarya). The replicase (Rep) from these viruses is responsible for initiating rolling circle replication (RCR) of their genomes. Rep is a multifunctional enzyme responsible for nicking and ligating ssDNA and unwinding double-stranded DNA (dsDNA). We report the structure of porcine circovirus 2 (PCV2) Rep bound to ADP and single-stranded DNA (ssDNA), and Rep bound to ADP and double-stranded DNA (dsDNA). The structures demonstrate Rep to be a member of the superfamily 3 (SF3) of ATPases Associated with diverse cellular Activities (AAA+) superfamily clade 4. At the Rep N terminus is an endonuclease domain (ED) that is responsible for ssDNA nicking and ligation, in the center of Rep is an oligomerization domain (OD) responsible for hexamerization, and at the C terminus is an ATPase domain (AD) responsible for ssDNA/dsDNA interaction and translocation. The Rep AD binds to DNA such that the ED faces the replication fork. The six AD spiral around the DNA to interact with the backbone phosphates from four consecutive nucleotides. Three of the six AD are able to sense the backbone phosphates from the second strand of dsDNA. Heterogeneous classification of the data demonstrates the ED and AD to be mobile. Furthermore, we demonstrate that Rep exhibits basal nucleoside triphosphatase (NTPase) activity. IMPORTANCE CRESS-DNA viruses encompass a significant portion of the biosphere's virome. However, little is known about the structure of Rep responsible for initiating the RCR of CRESS-DNA viruses. We use cryo-electron microscopy (cryo-EM) to determine the structure of PCV2 Rep in complex with ADP and ss/dsDNA. Our structures demonstrate CRESS-DNA Reps to be SF3 members (clade 4) of the AAA+ superfamily. The structures further provide the mechanism by which CRESS-DNA virus Reps recognize DNA and translocate DNA for genome replication. Our structures also demonstrate the ED and AD of PCV2 Rep to be highly mobile. We propose the mobile nature of these domains to be necessary for proper functioning of Reps. We further demonstrate that Reps exhibit basal NTPase activity. Our studies also provide initial insight into the mechanism of RCR.


Assuntos
Circovirus/genética , Translocação Genética , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/genética , Replicação Viral/genética , Difosfato de Adenosina/metabolismo , Circovirus/enzimologia , DNA de Cadeia Simples/metabolismo , Proteínas do Complexo da Replicase Viral/metabolismo
14.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34143202

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the coronavirus disease (COVID-19), is a part of the $\beta $-Coronaviridae family. The virus contains five major protein classes viz., four structural proteins [nucleocapsid (N), membrane (M), envelop (E) and spike glycoprotein (S)] and replicase polyproteins (R), synthesized as two polyproteins (ORF1a and ORF1ab). Due to the severity of the pandemic, most of the SARS-CoV-2-related research are focused on finding therapeutic solutions. However, studies on the sequences and structure space throughout the evolutionary time frame of viral proteins are limited. Besides, the structural malleability of viral proteins can be directly or indirectly associated with the dysfunctionality of the host cell proteins. This dysfunctionality may lead to comorbidities during the infection and may continue at the post-infection stage. In this regard, we conduct the evolutionary sequence-structure analysis of the viral proteins to evaluate their malleability. Subsequently, intrinsic disorder propensities of these viral proteins have been studied to confirm that the short intrinsically disordered regions play an important role in enhancing the likelihood of the host proteins interacting with the viral proteins. These interactions may result in molecular dysfunctionality, finally leading to different diseases. Based on the host cell proteins, the diseases are divided in two distinct classes: (i) proteins, directly associated with the set of diseases while showing similar activities, and (ii) cytokine storm-mediated pro-inflammation (e.g. acute respiratory distress syndrome, malignancies) and neuroinflammation (e.g. neurodegenerative and neuropsychiatric diseases). Finally, the study unveils that males and postmenopausal females can be more vulnerable to SARS-CoV-2 infection due to the androgen-mediated protein transmembrane serine protease 2.


Assuntos
COVID-19/genética , Genoma Viral/genética , Conformação Proteica , SARS-CoV-2/ultraestrutura , COVID-19/virologia , Proteínas do Envelope de Coronavírus/genética , Proteínas do Envelope de Coronavírus/ultraestrutura , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/ultraestrutura , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/ultraestrutura , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/ultraestrutura
15.
J Zhejiang Univ Sci B ; 22(4): 295-304, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33835763

RESUMO

Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV) is an arterivirus newly discovered in Chinese softshell turtles. Little is known about the effect of antibodies against the virus or the distribution of the virus in different organs of infected turtles. In this study, a partial protein of TSHSV-HP4 was produced using a prokaryotic expression system, and its polyclonal antibody was generated. The polyclonal antibody was confirmed by western blot and dot enzyme-linked immunosorbent assay (dot-ELISA). The distribution of TSHSV in different organs of T. sinensis was examined by immunohistochemistry (IHC) and the expression of immune-related genes was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). The results indicated that the recombinant TSHSV-HP4 protein was successfully expressed, and the generated polyclonal antibody showed specific binding to viral particles in the lung tissues of infected turtles. The IHC assay indicated that the virus was highly localized in various cells, including intestinal lymphocytes, enterocytes, kidney epithelial cells, spleen cells, lung macrophages, and cardiomyocytes. The qRT-PCR analysis revealed that TSHSV was detected in all organs tested, including the lungs, liver, kidneys, spleen, and heart. The numbers of viral mRNA copies in lung and heart tissues were significantly higher in the virus-antibody group than in the virus group. The interferon-stimulated genes (ISGs), myxovirus resistance protein 2 (MX2) and radical S-adenosyl methionine domain containing 2 (RSAD2) were highly upregulated in all groups of infected turtles. Antibody-dependent enhancement (ADE) seemed to occur after stimulation by the polyclonal antibody, because significantly greater expression of the two genes was detected in the virus-antibody group than in the virus group. Overall, these results are important in understanding the cell localization of TSHSV and the immune response of infected turtles.


Assuntos
Arterivirus/isolamento & purificação , Tartarugas/virologia , Proteínas do Complexo da Replicase Viral/genética , Animais , Arterivirus/enzimologia , Ensaio de Imunoadsorção Enzimática , Pulmão/patologia , RNA Mensageiro/análise , RNA Viral/análise , Proteínas Recombinantes/análise
16.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328310

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for chikungunya fever. Nonstructural protein 2 (nsP2), a multifunctional protein essential for viral replication, has an N-terminal helicase region (nsP2h), which has both nucleotide triphosphatase and RNA triphosphatase activities, as well as a C-terminal cysteine protease region (nsP2p), which is responsible for nonstructural polyprotein processing. The two functional units are connected through a linker of 14 residues. Although crystal structures of the helicase and protease regions of CHIKV nsP2 have been solved separately, the conformational arrangement of the full-length nsP2 and the biological role of the linker remain elusive. Using the small-angle X-ray scattering (SAXS) method, we demonstrated that the full-length nsP2 is elongated and partially folded in solution. The reconstructed model of the structure of nsP2 contains a flexible interdomain linker, and there is no direct interaction between the two structured regions. To examine the function of the interdomain linker, we constructed and characterized a set of CHIKV mutants. The deletion of three or five amino acid residues in the linker region resulted in a modest defect in viral RNA replication and transcription but completely abolished viral infectivity. In contrast, increasing the flexibility of nsP2 by lengthening the interdomain linker increased both genomic RNA replication and viral infectivity. The enzymatic activities of the corresponding mutant proteins were largely unaffected. This work suggests that increasing the interdomain flexibility of nsP2 could facilitate the assembly of the replication complex (RC) with increased efficiency and promote virus production.IMPORTANCE CHIKV nsP2 plays multiple roles in viral RNA replication and virus-host interactions. The helicase and protease regions of nsP2 are connected through a short linker. Here, we determined that the conformation of full-length CHIKV nsP2 is elongated and that the protein is flexible in solution. We also highlight the importance of the flexibility of the interdomain of nsP2 on viral RNA synthesis and infectivity. CHIKV mutants harboring shortened linkers fail to produce infectious virus particles despite showing only relatively mild defects in genomic and subgenomic RNA synthesis. Mutations increasing the length of the interdomain linker have only mild and generally beneficial impacts on virus replication. Thus, our findings link interdomain flexibility with the regulation of viral RNA replication and infectivity of the viral genome.


Assuntos
Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/química , RNA Helicases/química , Proteínas do Complexo da Replicase Viral/química , Replicação Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Vírus Chikungunya/química , Vírus Chikungunya/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Mutação , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo
17.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33028717

RESUMO

Respiratory syncytial virus (RSV) is a nonsegmented negative-sense (NNS) RNA virus and shares a similar RNA synthesis strategy with other members of NNS RNA viruses, such as measles, rabies virus, and Ebola virus. RSV RNA synthesis is catalyzed by a multifunctional RNA-dependent RNA polymerase (RdRP), which is composed of a large (L) protein that catalyzes three distinct enzymatic functions and an essential coenzyme phosphoprotein (P). Here, we successfully prepared highly pure, full-length, wild-type and mutant RSV polymerase (L-P) complexes. We demonstrated that the RSV polymerase could carry out both de novo and primer-based RNA synthesis. We defined the minimal length of the RNA template for in vitro de novo RNA synthesis using the purified RSV polymerase as 8 nucleotides (nt), shorter than previously reported. We showed that the RSV polymerase catalyzed primer-dependent RNA elongation with different lengths of primers on both short (10-nt) and long (25-nt) RNA templates. We compared the sequence specificity of different viral promoters and identified positions 3, 5, and 8 of the promoter sequence as essential to the in vitro RSV polymerase activity, consistent with the results previously mapped with the in vivo minigenome assay. Overall, these findings agree well with those of previous biochemical studies and extend our understanding of the promoter sequence and the mechanism of RSV RNA synthesis.IMPORTANCE As a major human pathogen, RSV affects 3.4 million children worldwide annually. However, no effective antivirals or vaccines are available. An in-depth mechanistic understanding of the RSV RNA synthesis machinery remains a high priority among the NNS RNA viruses. There is a strong public health need for research on this virus, due to major fundamental gaps in our understanding of NNS RNA virus replication. As the key enzyme executing transcription and replication of the virus, the RSV RdRP is a logical target for novel antiviral drugs. Therefore, exploring the primer-dependent RNA elongation extends our mechanistic understanding of the RSV RNA synthesis. Further fine mapping of the promoter sequence paves the way to better understand the function and structure of the RSV polymerase.


Assuntos
Regiões Promotoras Genéticas/genética , RNA Viral/biossíntese , Vírus Sincicial Respiratório Humano/fisiologia , Sequência de Bases , Mutação , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral
18.
Antiviral Res ; 182: 104877, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755662

RESUMO

Noroviruses are the main causative agents for acute viral gastroenteritis worldwide. RIG-I-like receptors (RLRs) triggered interferon (IFN) activation is essential for host defense against viral infections. In turn, viruses have developed sophisticated strategies to counteract host antiviral response. This study aims to investigate how murine norovirus (MNV) replicase interacts with RLRs-mediated antiviral IFN response. Counterintuitively, we found that the MNV replicase NS7 enhances the activation of poly (I:C)-induced IFN response and the transcription of downstream interferon-stimulated genes (ISGs). Interestingly, NS7 protein augments RIG-I and MDA5-triggered antiviral IFN response, which conceivably involves direct interactions with the caspase activation and recruitment domains (CARDs) of RIG-I and MDA5. Consistently, RIG-I and MDA5 exert anti-MNV activity in human HEK293T cells with ectopic expression of viral receptor CD300lf. This effect requires the activation of JAK/STAT pathway, and is further enhanced by NS7 overexpression. These findings revealed an unconventional role of MNV NS7 as augmenting RLRs-mediated IFN response to inhibit viral replication.


Assuntos
Proteína DEAD-box 58/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Norovirus/enzimologia , Receptores Imunológicos/imunologia , Receptores de Interferon/imunologia , Proteínas do Complexo da Replicase Viral/imunologia , Animais , Proteína DEAD-box 58/genética , Células HEK293 , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , Camundongos , Norovirus/imunologia , Receptores Imunológicos/genética , Receptores de Interferon/genética , Proteínas do Complexo da Replicase Viral/genética , Replicação Viral/imunologia
19.
J Immunol ; 204(10): 2791-2807, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32277054

RESUMO

Pathogen-associated molecular patterns (e.g., dsRNA) activate expression of IFN-stimulated genes (ISGs), which protect hosts from infection. Although transient ISG upregulation is essential for effective innate immunity, constitutive activation typically causes harmful autoimmunity in mice and humans, often including severe developmental abnormalities. We have shown that transgenic mice expressing a picornavirus RNA-dependent RNA polymerase (RdRP) outside the viral context (RdRP mice) exhibit constitutive, MDA5-dependent, and quantitatively dramatic upregulation of many ISGs, which confers broad viral infection resistance. Remarkably, RdRP mice never develop autoinflammation, interferonopathy, or other discernible abnormalities. In this study, we used RNA sequencing and other methods to analyze ISG expression across five time points from fetal development to adulthood in wild-type and RdRP mice. In RdRP mice, the proportion of upregulated ISGs increased during development, with the most dramatic induction occurring 2 wk postnatally. The amplified ISG profile is then maintained lifelong. Molecular pathways and biological functions associated with innate immune and IFN signaling are only activated postnatally, suggesting constrained fetal responsiveness to innate immune stimuli. Biological functions supporting replication of viruses are only inhibited postnatally. We further determined that the RdRP is expressed at low levels and that blocking Ifnar1 reverses the amplified ISG transcriptome in adults. In conclusion, the upregulated ISG profile of RdRP mice is mostly triggered early postnatally, is maintained through adulthood, and requires ongoing type I IFN signaling to maintain it. The model provides opportunities to study the systems biology of innate immunity and to determine how sustained ISG upregulation can be compatible with robust health.


Assuntos
Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Picornaviridae/fisiologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas do Complexo da Replicase Viral/genética , Animais , Resistência à Doença/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Moléculas com Motivos Associados a Patógenos/imunologia , RNA Polimerase Dependente de RNA/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Proteínas do Complexo da Replicase Viral/metabolismo
20.
Trends Microbiol ; 28(5): 349-359, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32298613

RESUMO

Metagenomics is currently the primary means for identifying new viruses. One of the most impactful metagenomic discoveries is that of crAssphage, the most abundant human-associated virus that is found in about 50% of human gut viromes where it can comprise up to 90% of the virus sequences. Although initial genome analysis of crAssphage failed to detect related phages, or functionally annotate most of the genes, subsequent reanalysis with powerful computational methods and larger databases led to the identification of an expansive group of crAss-like phages. The functions of most crAssphage proteins were predicted, including unusual ones such as giant RNA polymerase polyproteins. The host range of the crAss-like phages consists of various members of the bacterial phylum Bacteroidetes as demonstrated by CRISPR spacer analysis and by analysis of genes acquired by phages from the hosts. New metagenomic studies vastly expanded the crAss-like phage group and demonstrated its global spread and ancient association with primates. The first members of the crAss-like group was recently isolated and shown to infect the bacterium Bacteroides intestinales. Characterization of this phage validated the predicted podovirus-like virion structure and the identity of the major capsid protein and other predicted virion proteins, including three RNA polymerase subunits.


Assuntos
Bacteriófagos/genética , Bacteroides/virologia , Proteínas do Complexo da Replicase Viral/genética , Viroma/genética , Bacteriófagos/classificação , Microbioma Gastrointestinal/genética , Genoma Viral/genética , Humanos , Metagenômica , Proteínas do Complexo da Replicase Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA