Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 674
Filtrar
1.
Epigenetics Chromatin ; 17(1): 18, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783373

RESUMO

The three-dimensional organization of the genome plays a central role in the regulation of cellular functions, particularly in the human brain. This review explores the intricacies of chromatin organization, highlighting the distinct structural patterns observed between neuronal and non-neuronal brain cells. We integrate findings from recent studies to elucidate the characteristics of various levels of chromatin organization, from differential compartmentalization and topologically associating domains (TADs) to chromatin loop formation. By defining the unique chromatin landscapes of neuronal and non-neuronal brain cells, these distinct structures contribute to the regulation of gene expression specific to each cell type. In particular, we discuss potential functional implications of unique neuronal chromatin organization characteristics, such as weaker compartmentalization, neuron-specific TAD boundaries enriched with active histone marks, and an increased number of chromatin loops. Additionally, we explore the role of Polycomb group (PcG) proteins in shaping cell-type-specific chromatin patterns. This review further emphasizes the impact of variations in chromatin architecture between neuronal and non-neuronal cells on brain development and the onset of neurological disorders. It highlights the need for further research to elucidate the details of chromatin organization in the human brain in order to unravel the complexities of brain function and the genetic mechanisms underlying neurological disorders. This research will help bridge a significant gap in our comprehension of the interplay between chromatin structure and cell functions.


Assuntos
Encéfalo , Cromatina , Neurônios , Humanos , Neurônios/metabolismo , Neurônios/citologia , Cromatina/metabolismo , Animais , Encéfalo/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Montagem e Desmontagem da Cromatina
2.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718120

RESUMO

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Assuntos
Inativação Gênica , Histonas , Proteínas do Grupo Polycomb , Ubiquitinação , Humanos , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Genoma Humano , Epigênese Genética , Mutação
3.
Sci Adv ; 10(17): eadn1837, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657072

RESUMO

Polycomb group (PcG) proteins mediate epigenetic silencing of important developmental genes by modifying histones and compacting chromatin through two major protein complexes, PRC1 and PRC2. These complexes are recruited to DNA by CpG islands (CGIs) in mammals and Polycomb response elements (PREs) in Drosophila. When PcG target genes are turned OFF, PcG proteins bind to PREs or CGIs, and PREs serve as anchors that loop together and stabilize gene silencing. Here, we address which PcG proteins bind to PREs and whether PREs mediate looping when their targets are in the ON transcriptional state. While the binding of most PcG proteins decreases at PREs in the ON state, one PRC1 component, Ph, remains bound. Further, PREs can loop to each other and with presumptive enhancers in the ON state and, like CGIs, may act as tethering elements between promoters and enhancers. Overall, our data suggest that PREs are important looping elements for developmental loci in both the ON and OFF states.


Assuntos
Proteínas de Drosophila , Proteínas do Grupo Polycomb , Ligação Proteica , Elementos de Resposta , Transcrição Gênica , Animais , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ilhas de CpG , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromatina/metabolismo , Cromatina/genética , Regiões Promotoras Genéticas
4.
Nature ; 629(8012): 688-696, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658752

RESUMO

Although cancer initiation and progression are generally associated with the accumulation of somatic mutations1,2, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility3-6, suggesting that genetic mechanisms might not be the only drivers of malignant transformation7. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila. This is linked to the irreversible derepression of genes that can drive tumorigenesis, including members of the JAK-STAT signalling pathway and zfh1, the fly homologue of the ZEB1 oncogene, whose aberrant activation is required for Polycomb perturbation-induced tumorigenesis. These data show that a reversible depletion of Polycomb proteins can induce cancer in the absence of driver mutations, suggesting that tumours can emerge through epigenetic dysregulation leading to inheritance of altered cell fates.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Epigênese Genética , Janus Quinases , Neoplasias , Proteínas do Grupo Polycomb , Fatores de Transcrição STAT , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Neoplasias/genética , Neoplasias/patologia , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Janus Quinases/metabolismo , Janus Quinases/genética , Feminino , Carcinogênese/genética , Masculino , Transdução de Sinais/genética , Inativação Gênica , Transformação Celular Neoplásica/genética , Linhagem da Célula/genética , Regulação Neoplásica da Expressão Gênica
5.
Cell Rep ; 43(4): 114090, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607915

RESUMO

Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.


Assuntos
Ciclo Celular , Histonas , Complexo Repressor Polycomb 2 , Animais , Camundongos , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Metilação , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Domínios Proteicos , Nucleossomos/metabolismo
6.
Curr Opin Struct Biol ; 86: 102806, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537534

RESUMO

The chromatin compaction activity of Polycomb group proteins has traditionally been considered essential for transcriptional repression. However, there is very little information on how Polycomb group proteins compact chromatin at the molecular level and no causal link between the compactness of chromatin and transcriptional repression. Recently, a more complete picture of Polycomb-dependent chromatin architecture has started to emerge, owing to advanced methods for imaging and chromosome conformation capture. Discoveries into Polycomb-driven phase separation add another layer of complexity. Recent observations generally imply that Polycomb group proteins modulate chromatin structure at multiple scales to reduce its dynamics and segregate it from active domains. Hence, it is reasonable to hypothesise that Polycomb group proteins maintain the energetically favourable state of compacted chromatin, rather than actively compact it.


Assuntos
Cromatina , Proteínas do Grupo Polycomb , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Cromatina/metabolismo , Cromatina/química , Humanos , Animais
7.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38506728

RESUMO

The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.


Assuntos
Repressão Epigenética , Genes Controladores do Desenvolvimento , Proteínas do Grupo Polycomb , Diferenciação Celular , Proteínas de Drosophila , Epigênese Genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Humanos , Animais
8.
Front Biosci (Landmark Ed) ; 29(3): 120, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38538251

RESUMO

BACKGROUND: Osteosarcoma cells are prone to metastasis, and the mechanism of N6-methyladenosine (m6A) methylation modification in this process is still unclear. Methylation modification of m6A plays an important role in the development of osteosarcoma, which is mainly due to abnormal expression of enzymes related to methylation modification of m6A, which in turn leads to changes in the methylation level of downstream target genes messenger RNA (mRNA) leading to tumor development. METHODS: We analyzed the expression levels of m6A methylation modification-related enzyme genes in GSE12865 whole-genome sequencing data. And we used shRNA (short hairpin RNA) lentiviral interference to interfere with METTL3 (Methyltransferase 3) expression in osteosarcoma cells. We studied the cytological function of METTL3 by Cell Counting Kit-8 (CCK8), flow cytometry, migration and other experiments, and the molecular mechanism of METTL3 by RIP (RNA binding protein immunoprecipitation), Western blot and other experiments. RESULTS: We found that METTL3 is abnormally highly expressed in osteosarcoma and interferes with METTL3 expression in osteosarcoma cells to inhibit metastasis, proliferation, and apoptosis of osteosarcoma cells. We subsequently found that METTL3 binds to the mRNA of CBX4 (chromobox homolog 4), a very important regulatory protein in osteosarcoma metastasis, and METTL3 regulates the mRNA and protein expression of CBX4. Further studies revealed that METTL3 inhibited metastasis of osteosarcoma cells by regulating CBX4. METTL3 has been found to be involved in osteosarcoma cells metastasis by CBX4 affecting the protein expression of matrix metalloproteinase 2 (MMP2), MMP9, E-Cadherin and N-Cadherin associated with osteosarcoma cells metastasis. CONCLUSIONS: These results suggest that the combined action of METTL3 and CBX4 plays an important role in the regulation of metastasis of osteosarcoma, and therefore, the METTL3-CBX4 axis pathway may be a new potential therapeutic target for osteosarcoma.


Assuntos
Adenina , Neoplasias Ósseas , Metaloproteinase 2 da Matriz , Osteossarcoma , Humanos , Adenina/análogos & derivados , Epigênese Genética , Ligases/genética , Metaloproteinase 2 da Matriz/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Osteossarcoma/genética , Osteossarcoma/secundário , Proteínas do Grupo Polycomb/genética , RNA Mensageiro/genética , RNA Interferente Pequeno , Neoplasias Ósseas/patologia
9.
Nat Genet ; 56(3): 493-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361032

RESUMO

Polycomb group proteins have a critical role in silencing transcription during development. It is commonly proposed that Polycomb-dependent changes in genome folding, which compact chromatin, contribute directly to repression by blocking the binding of activating complexes. Recently, it has also been argued that liquid-liquid demixing of Polycomb proteins facilitates this compaction and repression by phase-separating target genes into a membraneless compartment. To test these models, we used Optical Reconstruction of Chromatin Architecture to trace the Hoxa gene cluster, a canonical Polycomb target, in thousands of single cells. Across multiple cell types, we find that Polycomb-bound chromatin frequently explores decompact states and partial mixing with neighboring chromatin, while remaining uniformly repressed, challenging the repression-by-compaction or phase-separation models. Using polymer simulations, we show that these observed flexible ensembles can be explained by 'spatial feedback'-transient contacts that contribute to the propagation of the epigenetic state (epigenetic memory), without inducing a globular organization.


Assuntos
Proteínas de Drosophila , Genes Homeobox , Genes Homeobox/genética , Retroalimentação , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Proteínas de Drosophila/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
10.
Proc Natl Acad Sci U S A ; 121(10): e2316175121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408247

RESUMO

The microtubule-associated protein tau aggregates into amyloid fibrils in Alzheimer's disease and other neurodegenerative diseases. In these tauopathies, tau is hyperphosphorylated, suggesting that this posttranslational modification (PTM) may induce tau aggregation. Tau is also phosphorylated in normal developing brains. To investigate how tau phosphorylation induces amyloid fibrils, here we report the atomic structures of two phosphomimetic full-length tau fibrils assembled without anionic cofactors. We mutated key Ser and Thr residues to Glu in two regions of the protein. One construct contains three Glu mutations at the epitope of the anti-phospho-tau antibody AT8 (AT8-3E tau), whereas the other construct contains four Glu mutations at the epitope of the antibody PHF1 (PHF1-4E tau). Solid-state NMR data show that both phosphomimetic tau mutants form homogeneous fibrils with a single set of chemical shifts. The AT8-3E tau rigid core extends from the R3 repeat to the C terminus, whereas the PHF1-4E tau rigid core spans R2, R3, and R4 repeats. Cryoelectron microscopy data show that AT8-3E tau forms a triangular multi-layered core, whereas PHF1-4E tau forms a triple-stranded core. Interestingly, a construct combining all seven Glu mutations exhibits the same conformation as PHF1-4E tau. Scalar-coupled NMR data additionally reveal the dynamics and shape of the fuzzy coat surrounding the rigid cores. These results demonstrate that specific PTMs induce structurally specific tau aggregates, and the phosphorylation code of tau contains redundancy.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Microscopia Crioeletrônica , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Anticorpos/genética , Epitopos , Processamento de Proteína Pós-Traducional , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Proteínas do Grupo Polycomb/genética
11.
Curr Opin Genet Dev ; 84: 102137, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091876

RESUMO

Epigenetic reprogramming during development is key to cell identity and the activities of the Polycomb repressive complexes are vital for this process. We focus on polycomb repressive complex 2 (PRC2), which catalyzes H3K27me1/2/3 and safeguards cellular integrity by ensuring proper gene repression. Notably, various accessory factors associate with PRC2, strongly influencing cell fate decisions, and their deregulation contributes to various illnesses. Yet, the exact role of these factors during development and carcinogenesis is not fully understood. Here, we present recent progress toward addressing these points and an analysis of the expression levels of PRC2 accessory factors in various tissues and developmental stages to highlight their abundance and roles. Last, we evaluate their contribution to cancer-specific phenotypes, providing insight into novel anticancer therapies.


Assuntos
Complexo Repressor Polycomb 2 , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Diferenciação Celular/genética
12.
J Cell Physiol ; 239(1): 152-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991435

RESUMO

Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6 A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.


Assuntos
Proteínas de Ciclo Celular , Células-Tronco Embrionárias Humanas , Proteínas de Ligação a RNA , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina , Células-Tronco Embrionárias Humanas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Histonas/genética , Histonas/metabolismo
13.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914396

RESUMO

Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Animais , Drosophila/metabolismo , Epigênese Genética , Neuropeptídeos/metabolismo , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Neurônios/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
14.
Dev Biol ; 505: 130-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981061

RESUMO

The Trithorax group (trxG) proteins counteract the repressive effect of Polycomb group (PcG) complexes and maintain transcriptional memory of active states of key developmental genes. Although chromatin structure and modifications appear to play a fundamental role in this process, it is not clear how trxG prevents PcG-silencing and heritably maintains an active gene expression state. Here, we report a hitherto unknown role of Drosophila Multiple ankyrin repeats single KH domain (Mask), which emerged as one of the candidate trxG genes in our reverse genetic screen. The genome-wide binding profile of Mask correlates with known trxG binding sites across the Drosophila genome. In particular, the association of Mask at chromatin overlaps with CBP and H3K27ac, which are known hallmarks of actively transcribed genes by trxG. Importantly, Mask predominantly associates with actively transcribed genes in Drosophila. Depletion of Mask not only results in the downregulation of trxG targets but also correlates with diminished levels of H3K27ac. The fact that Mask positively regulates H3K27ac levels in flies was also found to be conserved in human cells. Strong suppression of Pc mutant phenotype by mutation in mask provides physiological relevance that Mask contributes to the anti-silencing effect of trxG, maintaining expression of key developmental genes. Since Mask is a downstream effector of multiple cell signaling pathways, we propose that Mask may connect cell signaling with chromatin mediated epigenetic cell memory governed by trxG.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Humanos , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Repressor Polycomb 1/genética , Cromossomos , Drosophila/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ligação a DNA/metabolismo
15.
Nat Commun ; 14(1): 8160, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071364

RESUMO

Polycomb Repressive Complexes 1 and 2 (PRC1, PRC2) are conserved epigenetic regulators that promote transcriptional gene silencing. PRC1 and PRC2 converge on shared targets, catalyzing repressive histone modifications. Additionally, a subset of PRC1/PRC2 targets engage in long-range interactions whose functions in gene silencing are poorly understood. Using a CRISPR screen in mouse embryonic stem cells, we found that the cohesin regulator PDS5A links transcriptional silencing by Polycomb and 3D genome organization. PDS5A deletion impairs cohesin unloading and results in derepression of a subset of endogenous PRC1/PRC2 target genes. Importantly, derepression is not linked to loss of Polycomb chromatin domains. Instead, PDS5A removal causes aberrant cohesin activity leading to ectopic insulation sites, which disrupt the formation of ultra-long Polycomb loops. We show that these loops are important for robust silencing at a subset of PRC1/PRC2 target genes and that maintenance of cohesin-dependent genome architecture is critical for Polycomb regulation.


Assuntos
Coesinas , Proteínas Nucleares , Proteínas do Grupo Polycomb , Animais , Camundongos , Cromatina/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Proteínas Nucleares/genética
16.
Sci Adv ; 9(51): eadj8198, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134278

RESUMO

Animals use the Polycomb system to epigenetically repress developmental genes. The repression requires trimethylation of lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2), but the dynamics of this process is poorly understood. To bridge the gap, we developed a computational model that forecasts H3K27 methylation in Drosophila with high temporal resolution and spatial accuracy of contemporary experimental techniques. Using this model, we show that pools of methylated H3K27 in dividing cells are defined by the effective concentration of PRC2 and the replication frequency. We find that the allosteric stimulation by preexisting H3K27me3 makes PRC2 better in methylating developmental genes as opposed to indiscriminate methylation throughout the genome. Applied to Drosophila development, our model argues that, in this organism, the intergenerationally inherited H3K27me3 does not "survive" rapid cycles of embryonic chromatin replication and is unlikely to transmit the memory of epigenetic repression to the offspring. Our model is adaptable to other organisms, including mice and humans.


Assuntos
Proteínas de Drosophila , Histonas , Humanos , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Drosophila/genética , Metilação
17.
Commun Biol ; 6(1): 1144, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949928

RESUMO

Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA). Strikingly, ~42% of organisms contain only PRC1 or PRC2, showing that their evolution since LECA is largely uncoupled. The identification of ncPRC1-defining subunits in unicellular relatives of animals and fungi suggests ncPRC1 originated before cPRC1, and we propose a scenario for the evolution of cPRC1 from ncPRC1. Together, our results suggest that crosstalk between these complexes is a secondary development in evolution.


Assuntos
Histonas , Complexo Repressor Polycomb 1 , Animais , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Ubiquitinação
18.
Biomed Pharmacother ; 169: 115897, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37981459

RESUMO

The Polycomb Repressor Complex (PRC) plays a pivotal role in gene regulation during development and disease, with dysregulation contributing significantly to various human cancers. The intricate interplay between PRC and cellular signaling pathways sheds light on cancer complexity. PRC presents promising therapeutic opportunities, with inhibitors undergoing rigorous evaluation in preclinical and clinical studies. In this review, we emphasize the critical role of PRC complex in gene regulation, particularly PcG proteins mediated chromatin compaction through phase separation. We also highlight the pathological implications of PRC complex dysregulation in various tumors, elucidating underlying mechanisms driving cancer progression. The burgeoning field of therapeutic strategies targeting PRC complexes, notably EZH2 inhibitors, has advanced significantly. However, we explore the need for combination therapies to enhance PRC targeted treatments efficacy, providing a glimpse into the future of cancer therapeutics.


Assuntos
Neoplasias , Complexo Repressor Polycomb 2 , Humanos , Complexo Repressor Polycomb 2/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias/metabolismo , Proteínas do Grupo Polycomb/genética , Cromatina , Complexo Repressor Polycomb 1/genética
19.
Nucleic Acids Res ; 51(21): 11613-11633, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37855680

RESUMO

Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.


Assuntos
DNA , Complexo Repressor Polycomb 1 , Animais , Humanos , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , DNA/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Cromatina , Drosophila/genética
20.
Genes (Basel) ; 14(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37895228

RESUMO

The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.


Assuntos
Proteínas de Drosophila , Histonas , Animais , Humanos , Cromatina , Proteínas de Drosophila/genética , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA