Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
J Immunol Res ; 2024: 9313267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939745

RESUMO

Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Humanos , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Imunogenicidade da Vacina , Animais , Fosfoproteínas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Epitopos de Linfócito T/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo/imunologia
2.
ACS Sens ; 9(6): 3150-3157, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717584

RESUMO

Tracking trace protein analytes in precision diagnostics is an ongoing challenge. Here, we developed an ultrasensitive detection method for the detection of SARS-CoV-2 nucleocapsid (N) protein by combining enzyme-linked immunosorbent assay (ELISA) with the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) system. First, the SARS-CoV-2 N protein bound by the capture antibody adsorbed on the well plate was sequentially coupled with the primary antibody, biotinylated secondary antibody, and streptavidin (SA), followed by biotin primer binding to SA. Subsequently, rolling circle amplification was initiated to generate ssDNA strands, which were targeted by CRISPR/Cas12a to cleave the FAM-ssDNA-BHQ1 probe in trans to generate fluorescence signals. We observed a linear relationship between fluorescence intensity and the logarithm of N protein concentration ranging from 3 fg/mL to 3 × 107 fg/mL. The limit of detection (LOD) was 1 fg/mL, with approximately nine molecules in 1 µL of the sample. This detection sensitivity was 4 orders magnitude higher than that of commercially available ELISA kits (LOD: 5.7 × 104 fg/mL). This method was highly specific and sensitive and could accurately detect SARS-CoV-2 pseudovirus and clinical samples, providing a new approach for ultrasensitive immunoassay of protein biomarkers.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Limite de Detecção , SARS-CoV-2 , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , COVID-19/diagnóstico , COVID-19/virologia , Sistemas CRISPR-Cas/genética , Fosfoproteínas/imunologia , Fosfoproteínas/química , Proteínas Associadas a CRISPR/química , Endodesoxirribonucleases/química , Proteínas do Nucleocapsídeo/imunologia , Proteínas de Bactérias
3.
Virology ; 596: 110102, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749084

RESUMO

The escalating epidemic of PRRSV-1 in China has prompted widespread concern regarding the evolution of strains, disparities in pathogenicity to herds, and immunological detection of emerging strains. The nucleocapsid (N) protein, as a highly conserved protein with immunogenic properties in PRRSV, is a subject of intensive study. In this research, the recombinant His-N protein was expressed based on the N gene of PRRSV-1 using a prokaryotic expression system and then administered to BALB/c mice. A cell fusion protocol was implemented between SP2/0 cells and splenocytes, resulting in the successful screening of a monoclonal antibody against the N protein, designated as mAb 2D7, by indirect ELISA. Western Blot analysis and Indirect Immunofluorescence Assay (IFA) confirmed that mAb 2D7 positively responded to PRRSV-1. By constructing and expressing a series of truncated His-fused N proteins, a B-cell epitope of N protein, 59-AAEDDIR-65, was identified. A sequence alignment of two genotypes of PRRSV revealed that this epitope is relatively conserved in PRRSV, yet more so in genotype 1. Cross-reactivity analysis by Western blot analysis demonstrated that the B-cell epitope containing D62Y mutation could not be recognized by mAb 2D7. The inability of mAb 2D7 to recognize the epitope carrying the D62Y mutation was further determined using an infectious clone of PRRSV. This research may shed light on the biological significance of the N protein of PRRSV, paving the way for the advancement of immunological detection and development of future recombinant marker vaccine.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Epitopos de Linfócito B , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Monoclonais/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/genética , Camundongos , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Mapeamento de Epitopos , Feminino , Reações Cruzadas
4.
Biologicals ; 86: 101769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38759304

RESUMO

This study focuses on the development and initial assessment of an indirect IgG enzyme-linked immunosorbent assay (ELISA) specifically designed to detect of anti-SARS-CoV-2 antibodies. The unique aspect of this ELISA method lies in its utilization of a recombinant nucleocapsid (N) antigen, produced through baculovirus expression in insect cells. Our analysis involved 292 RT-qPCR confirmed positive serum samples and 54 pre-pandemic healthy controls. The process encompassed cloning, expression, and purification of the SARS-CoV-2 N gene in insect cells, with the resulted purified protein employed in our ELISA tests. Statistical analysis yielded an Area Under the Curve of 0.979, and the optimized cut-off exhibited 92 % sensitivity and 94 % specificity. These results highlight the ELISA's potential for robust and reliable serological detection of SARS-CoV-2 antibodies. Further assessments, including a larger panel size, reproducibility tests, and application in diverse populations, could enhance its utility as a valuable biotechnological solution for diseases surveillance.


Assuntos
Anticorpos Antivirais , Baculoviridae , COVID-19 , Ensaio de Imunoadsorção Enzimática , Proteínas Recombinantes , SARS-CoV-2 , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Baculoviridae/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , COVID-19/diagnóstico , COVID-19/sangue , COVID-19/imunologia , Animais , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Teste Sorológico para COVID-19/métodos , Células Sf9 , Antígenos Virais/imunologia , Antígenos Virais/genética , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/genética , Sensibilidade e Especificidade , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Fosfoproteínas/imunologia , Fosfoproteínas/genética
5.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1548-1558, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783815

RESUMO

In order to generate monoclonal antibodies against the akabane virus (AKAV) N protein, this study employed a prokaryotic expression system to express the AKAV N protein. Following purification, BALB/c mice were immunized, and their splenocytes were fused with mouse myeloma cells (SP2/0) to produce hybridoma cells. The indirect ELISA method was used to screen for positive hybridoma cells. Two specific hybridoma cell lines targeting AKAV N protein, designated as 2C9 and 5E9, were isolated after three rounds of subcloning. Further characterization was conducted through ELISA, Western blotting, and indirect immunofluorescence assay (IFA). The results confirmed that the monoclonal antibodies specifically target AKAV N protein, exhibiting strong reactivity in IFA. Subtype analysis identified the heavy chain of the 2C9 mAb's as IgG2b and its light chain as κ-type; the 5E9 mAb's heavy chain was determined to be IgG1, with a κ-type light chain. Their ELISA titers reached 1:4 096 000. This study successfully developed two monoclonal antibodies targeting AKAV N protein, which lays a crucial foundation for advancing diagnostic methods for akabane disease prevention and control, as well as for studying the function of the AKAV N protein.


Assuntos
Anticorpos Monoclonais , Animais , Feminino , Camundongos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Hibridomas/imunologia , Hibridomas/metabolismo , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/imunologia , Proteínas do Nucleocapsídeo/genética , Orthobunyavirus/imunologia , Orthobunyavirus/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
6.
Vet Microbiol ; 293: 110098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677126

RESUMO

The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.


Assuntos
Anticorpos Monoclonais , Coronavirus Canino , Mapeamento de Epitopos , Epitopos de Linfócito B , Proteínas do Nucleocapsídeo , Animais , Anticorpos Monoclonais/imunologia , Epitopos de Linfócito B/imunologia , Cães , Camundongos , Proteínas do Nucleocapsídeo/imunologia , Coronavirus Canino/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Doenças do Cão/virologia , Doenças do Cão/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/diagnóstico , Sequência de Aminoácidos
7.
Int J Biol Macromol ; 269(Pt 2): 131842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679249

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread illnesses in the world's swine business. To detect the antibodies against PRRSV-2, a blocking enzyme-linked immunosorbent assay (B-ELISA) was developed, utilizing a PRRSV-2 N protein monoclonal antibody as the detection antibody. A checkerboard titration test was used to determine the optimal detection antibody dilution, tested pig serum dilution and purified PRRSV coated antigen concentration. After analyzing 174 negative pig sera and 451 positive pig sera, a cutoff value of 40 % was selected to distinguish between positive and negative sera using receiver operating characteristic curve analysis. The specificity and sensitivity of the assay were evaluated to equal 99.8 % and 96 %, respectively. The method had no cross-reaction with PCV2, PRV, PPV, CSFV, PEDV, TGEV, and PRRSV-1 serum antibodies, and the coefficients of variation of intra-batch and inter-batch repeatability experiments were both <10 %. A total of 215 clinical serum samples were tested, and the relative coincidence rate with commercial ELISA kit was 99.06 %, and the kappa value was 0.989, indicating that these two detection results exhibited high consistency. Overall, the B-ELISA should serve as an ideal method for large-scale serological investigation of PRRSV-2 antibodies in domestic pigs.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Suínos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Síndrome Respiratória e Reprodutiva Suína/sangue , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Proteínas do Nucleocapsídeo/imunologia , Curva ROC
8.
J Virol ; 97(11): e0164622, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37916834

RESUMO

IMPORTANCE: Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A , Proteínas do Nucleocapsídeo , Proteínas da Matriz Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Influenza Humana , Proteínas da Matriz Viral/imunologia , Proteínas do Nucleocapsídeo/imunologia
9.
Proc Natl Acad Sci U S A ; 119(30): e2203659119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858456

RESUMO

This study analyzed whole blood samples (n = 56) retrieved from 30 patients at 1 to 21 (median 9) mo after verified COVID-19 to determine the polarity and duration of antigen-specific T cell reactivity against severe acute respiratory syndrome coronavirus 2-derived antigens. Multimeric peptides spanning the entire nucleocapsid protein triggered strikingly synchronous formation of interleukin (IL)-4, IL-12, IL-13, and IL-17 ex vivo until ∼70 d after confirmed infection, whereafter this reactivity was no longer inducible. In contrast, levels of nucleocapsid-induced IL-2 and interferon-γ remained stable and highly correlated at 3 to 21 mo after infection. Similar cytokine dynamics were observed in unvaccinated, convalescent patients using whole-blood samples stimulated with peptides spanning the N-terminal portion of the spike 1 protein. These results unravel two phases of T cell reactivity following natural COVID-19: an early, synchronous response indicating transient presence of multipolar, antigen-specific T helper (TH) cells followed by an equally synchronous and durable TH1-like reactivity reflecting long-lasting T cell memory.


Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Linfócitos T Auxiliares-Indutores , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , COVID-19/sangue , COVID-19/imunologia , Convalescença , Citocinas/sangue , Humanos , Interferon gama/sangue , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
10.
PLoS One ; 17(7): e0271463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35834480

RESUMO

γδ T cells are thought to contribute to immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanisms by which they are activated by the virus are unknown. Using flow cytometry, we investigated if the two most abundant viral structural proteins, spike and nucleocapsid, can activate human γδ T cell subsets, directly or in the presence of dendritic cells (DC). Both proteins failed to induce interferon-γ production by Vδ1 or Vδ2 T cells within fresh mononuclear cells or lines of expanded γδ T cells generated from healthy donors, but the same proteins stimulated CD3+ cells from COVID-19 patients. The nucleocapsid protein stimulated interleukin-12 production by DC and downstream interferon-γ production by co-cultured Vδ1 and Vδ2 T cells, but protease digestion and use of an alternative nucleocapsid preparation indicated that this activity was due to contaminating non-protein material. Thus, SARS-CoV-2 spike and nucleocapsid proteins do not have stimulatory activity for DC or γδ T cells. We propose that γδ T cell activation in COVID-19 patients is mediated by immune recognition of viral RNA or other structural proteins by γδ T cells, or by other immune cells, such as DC, that produce γδ T cell-stimulatory ligands or cytokines.


Assuntos
COVID-19 , Células Dendríticas , Proteínas do Nucleocapsídeo , Receptores de Antígenos de Linfócitos T gama-delta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , COVID-19/imunologia , COVID-19/virologia , Células Dendríticas/imunologia , Humanos , Interferon gama/imunologia , Proteínas do Nucleocapsídeo/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
11.
J Virol ; 96(12): e0032022, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35638848

RESUMO

Vaccination against influenza virus infection can protect the vaccinee and also reduce transmission to contacts. Not all types of vaccines induce sterilizing immunity via neutralizing antibodies; some instead permit low-level, transient infection. There has been concern that infection-permissive influenza vaccines may allow continued spread in the community despite minimizing symptoms in the vaccinee. We have explored that issue for a universal influenza vaccine candidate that protects recipients by inducing T cell responses and nonneutralizing antibodies. Using a mouse model, we have shown previously that an adenoviral vectored vaccine expressing nucleoprotein (NP) and matrix 2 (M2) provides broad protection against diverse strains and subtypes of influenza A viruses and reduces transmission to contacts in an antigen-specific manner. Here, we use this mouse model to further explore the mechanism and features of that reduction in transmission. Passive immunization did not reduce transmission from infected donors to naive contact animals to whom passive serum had been transferred. Vaccination of antibody-deficient mIgTg-JHD-/- mice, which have intact T cell responses and antigen presentation, reduced transmission in an antigen-specific manner, despite the presence of some virus in the lungs and nasal wash, pointing to a role for cellular immunity. Vaccination at ages ranging from 8 to 60 weeks was able to achieve reduction in transmission. Finally, the immune-mediated reduction in transmission persisted for at least a year after a single-dose intranasal vaccination. Thus, this infection-permissive vaccine reduces virus transmission in a long-lasting manner that does not require antibodies. IMPORTANCE Universal influenza virus vaccines targeting antigens conserved among influenza A virus strains can protect from severe disease but do not necessarily prevent infection. Despite allowing low-level infection, intranasal immunization with adenovirus vectors expressing the conserved antigens influenza nucleoprotein (A/NP) and M2 reduces influenza virus transmission from vaccinated to unvaccinated contact mice. Here, we show that antibodies are not required for this transmission reduction, suggesting a role for T cells. We also show that transmission blocking could be achieved in recipients of different ages and remained effective for at least a year following a single-dose vaccination. Such vaccines could have major public health impacts by limiting viral transmission in the community.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Adenoviridae , Animais , Anticorpos Antivirais , Humanos , Imunidade Celular , Vírus da Influenza A/genética , Vacinas contra Influenza/imunologia , Influenza Humana , Proteínas do Nucleocapsídeo/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Linfócitos T/imunologia , Vacinação , Proteínas da Matriz Viral/imunologia , Proteínas Viroporinas/imunologia
12.
J Virol ; 96(9): e0038922, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412347

RESUMO

Increasing cases of SARS-CoV-2 breakthrough infections from immunization with current spike protein-based COVID-19 vaccines highlight the need to develop alternative vaccines using different platforms and/or antigens. In this study, we expressed SARS-CoV-2 spike and nucleocapsid proteins based on a novel vaccinia virus (VACV) ACAM2000 platform (rACAM2000). In this platform, the vaccinia virus host range and immunoregulatory gene E3L was deleted to make the virus attenuated and to enhance innate immune responses, and another host range gene, K3L, was replaced with a poxvirus ortholog gene, taterapox virus 037 (TATV037), to make virus replication competent in both hamster and human cells. Following a single intramuscular immunization, the rACAM2000 coexpressing the spike and nucleocapsid proteins induced significantly improved protection against SARS-CoV-2 challenge in comparison to rACAM2000 expressing the individual proteins in a hamster model, as shown by reduced weight loss and shorter recovery time. The protection was associated with reduced viral loads, increased neutralizing antibody titer, and reduced neutrophil-to-lymphocyte ratio. Thus, our study demonstrates that rACAM2000 expressing a combination of the spike and nucleocapsid antigens is a promising COVID-19 vaccine candidate, and further studies will investigate if the rACAM2000 vaccine candidate can induce a long-lasting immunity against infection by SARS-CoV-2 variants of concern. IMPORTANCE Continuous emergence of SARS-CoV-2 variants which cause breakthrough infection from the immunity induced by current spike protein-based COVID-19 vaccines highlights the need for new generations of vaccines that will induce long-lasting immunity against a wide range of the variants. To this end, we investigated the protective efficacy of the recombinant COVID-19 vaccine candidates based on a novel VACV ACAM2000 platform, in which an immunoregulatory gene, E3L, was deleted and both the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens were expressed. Thus, it is expected that the vaccine candidate we constructed should be more immunogenic and safer. In the initial study described in this work, we demonstrated that the vaccine candidate expressing both the S and N proteins is superior to the constructs expressing an individual protein (S or N) in protecting hamsters against SARS-CoV-2 challenge after a single-dose immunization, and further investigation against different SARS-CoV-2 variants will warrant future clinical evaluations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Proteínas do Nucleocapsídeo de Coronavírus , Cricetinae , Humanos , Imunização , Proteínas do Nucleocapsídeo/imunologia , Fosfoproteínas , SARS-CoV-2 , Vacina Antivariólica , Glicoproteína da Espícula de Coronavírus/imunologia , Vaccinia virus
13.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215848

RESUMO

Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by symptoms such as fever, fatigue, a sore throat, diarrhea, and coughing. Although various new vaccines against COVID-19 have been developed, early diagnostics, isolation, and prevention remain important due to virus mutations resulting in rapid and high disease transmission. Amino acid substitutions in the major diagnostic target antigens of SARS-CoV-2 may lower the sensitivity for the detection of SARS-CoV-2. For this reason, we developed specific monoclonal antibodies that bind to epitope peptides as antigens for the rapid detection of SARS-CoV-2 NP. The binding affinity between antigenic peptides and monoclonal antibodies was investigated, and a sandwich pair for capture and detection was employed to develop a rapid biosensor for SARS-CoV-2 NP. The rapid biosensor, based on a monoclonal antibody pair binding to conserved epitopes of SARS-CoV-2 NP, detected cultured virus samples of SARS-CoV-2 (1.4 × 103 TCID50/reaction) and recombinant NP (1 ng/mL). Laboratory confirmation of the rapid biosensor was performed with clinical specimens (n = 16) from COVID-19 patients and other pathogens. The rapid biosensor consisting of a monoclonal antibody pair (75E12 for capture and the 54G6/54G10 combination for detection) binding to conserved epitopes of SARS-CoV-2 NP could assist in the detection of SARS-CoV-2 NP under the circumstance of spreading SARS-CoV-2 variants.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Técnicas Biossensoriais/métodos , Epitopos/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , SARS-CoV-2/imunologia , Proteínas Virais/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Imunoensaio , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virais/imunologia
14.
Viruses ; 14(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215849

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tickborne disease in East Asia that is causing high mortality. The Gn glycoprotein of the SFTS virus (SFTSV) has been considered to be an essential target for virus neutralization. However, data on anti-Gn glycoprotein antibody kinetics are limited. Therefore, we investigated the kinetics of Gn-specific antibodies compared to those of nucleocapsid protein (NP)-specific antibodies. A multicenter prospective study was performed in South Korea from January 2018 to September 2021. Adult patients with SFTS were enrolled. Anti-Gn-specific IgM and IgG were measured using an enzyme-linked immunosorbent assay. A total of 111 samples from 34 patients with confirmed SFTS were analyzed. Anti-Gn-specific IgM was detected at days 5-9 and peaked at day 15-19 from symptom onset, whereas the anti-NP-specific IgM titers peaked at days 5-9. Median seroconversion times of both anti-Gn- and NP-specific IgG were 7.0 days. High anti-Gn-specific IgG titers were maintained until 35-39 months after symptom onset. Only one patient lost their anti-Gn-specific antibodies at 41 days after symptom onset. Our data suggested that the anti-Gn-specific IgM titer peaked later than anti-NP-specific IgM, and that anti-Gn-specific IgG remain for at least 3 years from symptom onset.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Proteínas Virais/imunologia , Adulto , Citocinas/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Cinética , Masculino , Proteínas do Nucleocapsídeo/imunologia , Phlebovirus/fisiologia , Estudos Prospectivos , Febre Grave com Síndrome de Trombocitopenia/virologia , Carga Viral
15.
PLoS Negl Trop Dis ; 16(1): e0010156, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35073325

RESUMO

Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus, family Peribunyaviridae. It was first isolated from a Culiseta inorata mosquito in Cache Valley, Utah in 1956 and is known to circulate widely in the Americas. While only a handful of human cases have been reported since its discovery, it is the causative agent of fetal death and severe malformations in livestock. CVV has recently emerged as a potential viral pathogen causing severe disease in humans. Currently, the only serological assay available for diagnostic testing is plaque reduction neutralization test which takes several days to perform and requires biocontainment. To expand diagnostic capacity to detect CVV infections by immunoassays, 12 hybridoma clones secreting anti-CVV murine monoclonal antibodies (MAbs) were developed. All MAbs developed were found to be non-neutralizing and specific to the nucleoprotein of CVV. Cross-reactivity experiments with related orthobunyaviruses revealed several of the MAbs reacted with Tensaw, Fort Sherman, Tlacotalpan, Maguari, Playas, and Potosi viruses. Our data shows that MAbs CVV14, CVV15, CVV17, and CVV18 have high specific reactivity as a detector in an IgM antibody capture test with human sera.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus Bunyamwera/imunologia , Infecções por Bunyaviridae/diagnóstico , Proteínas do Nucleocapsídeo/imunologia , Animais , Infecções por Bunyaviridae/virologia , Linhagem Celular , Chlorocebus aethiops , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Gado/virologia , Camundongos , Camundongos Knockout , Sensibilidade e Especificidade , Testes Sorológicos , Doenças Transmitidas por Vetores/virologia , Células Vero
16.
Nat Immunol ; 23(1): 50-61, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853448

RESUMO

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Assuntos
Antígeno HLA-B7/imunologia , Epitopos Imunodominantes/imunologia , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Idoso , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/imunologia , COVID-19/imunologia , COVID-19/patologia , Linhagem Celular Transformada , Feminino , Perfilação da Expressão Gênica , Humanos , Memória Imunológica/imunologia , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/imunologia , Índice de Gravidade de Doença , Vaccinia virus/genética , Vaccinia virus/imunologia , Vaccinia virus/metabolismo
17.
J Biol Chem ; 298(1): 101290, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678315

RESUMO

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Proteínas do Nucleocapsídeo/análise , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Cricetinae , Eletroforese em Gel de Poliacrilamida , Humanos , Limite de Detecção , Proteínas do Nucleocapsídeo/imunologia
18.
PLoS Negl Trop Dis ; 15(12): e0009973, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34851958

RESUMO

In 2019, the World Health Organization declared 3 billion to be at risk of developing Crimean Congo Hemorrhagic Fever (CCHF). The causative agent of this deadly infection is CCHFV. The data related to the biology and immunology of CCHFV are rather scarce. Due to its indispensable roles in the viral life cycle, NP becomes a logical target for detailed viral immunology studies. In this study, humoral immunity to NP was investigated in CCHF survivors, as well as in immunized mice and rabbits. Abundant antibody response against NP was demonstrated both during natural infection in humans and following experimental immunizations in mice and rabbits. Also, cellular immune responses to recombinant NP (rNP) was detected in multispecies. This study represents the most comprehensive investigation on NP as an inducer of both humoral and cellular immunity in multiple hosts and proves that rNP is an excellent candidate warranting further immunological studies specifically on vaccine investigations.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Imunidade Humoral , Imunidade , Proteínas do Nucleocapsídeo/imunologia , Animais , Citocinas/imunologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos
19.
BMC Microbiol ; 21(1): 334, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876012

RESUMO

BACKGROUND: Peste des Petits Ruminants (PPR) is an acute or peracute contagious transboundary viral disease that mainly affects caprine and ovine and causes significant economic impact in developing countries. After two PPR virus outbreaks in 2011 and 2014, an investigation, from August 2015 to September 2016, was carried out in Northern Iraq when an increased morbidity and mortality rates were reported in the domestic and captive wild goats. In the present study, ten domestic goat farms and seven captive wild goat herds located in seven geographical areas of Northern Iraq were clinically, pathologically, serologically and genotypically characterized to determine the prevalence and potential cause of PPR virus outbreak. RESULTS: The outbreak occurred with rate of morbidity (26.1%) and mortality (11.1%) in domestic goat farms as compared to captive wild goat herds where relatively high mortality (42.9%) and low morbidity (10.9%) rates were recorded. Based on the clinical symptoms (mucopurulent nasal discharges, ulceration and erosion of oral mucosa, profuse watery diarrhea) and necropsy (hemorrhage and congestion on mucous membranes of the colon and rectum with zebra stripes lesions) results, overall, the serological test findings revealed a high frequency (47.9%) of positive samples for anti-PPRV nucleoprotein antibodies. Furthermore, the nucleoprotein (N) gene was detected in 63.2 and 89.1% of samples using conventional and reverse transcription real-time quantitative PCR assays. A phylogenetic analysis of N gene amino acid sequences clustered with the reference strain revealed lineage IV similar to the strains isolated in 2011 and 2014, respectively. However, two sub-types of lineage IV (I and II), significantly distinct from the previous strains, were also observed. CONCLUSION: The phylogenetic analysis suggests that movements of goats are possible cause and one of the important factors responsible for the spread of virus across the region. The study results would help in improving farm management practices by establishing a PPR virus eradication program using regular monitoring and vaccination program to control and mitigate the risk of re-emergence of PPR virus infection in domestic and captive wild goats in Iraq.


Assuntos
Doenças das Cabras/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Animais , Animais Domésticos , Animais de Zoológico , Anticorpos Antivirais/sangue , Genótipo , Doenças das Cabras/epidemiologia , Doenças das Cabras/patologia , Cabras , Iraque/epidemiologia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/patologia , Vírus da Peste dos Pequenos Ruminantes/classificação , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Fenótipo , Filogenia
20.
Microbiol Spectr ; 9(3): e0113121, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34787485

RESUMO

Validation and standardization of accurate serological assays are crucial for the surveillance of the coronavirus disease 2019 (COVID-19) pandemic and population immunity. We describe the analytical and clinical performance of an in-house fluorescent multiplex immunoassay (FMIA) for simultaneous quantification of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein and spike glycoprotein. Furthermore, we calibrated IgG-FMIA against World Health Organization (WHO) International Standard and compared FMIA results to an in-house enzyme immunoassay (EIA) and a microneutralization test (MNT). We also compared the MNT results of two laboratories. IgG-FMIA displayed 100% specificity and sensitivity for samples collected 13 to 150 days post-onset of symptoms (DPO). For IgA- and IgM-FMIA, 100% specificity and sensitivity were obtained for a shorter time window (13 to 36 and 13 to 28 DPO for IgA- and IgM-FMIA, respectively). FMIA and EIA results displayed moderate to strong correlation, but FMIA was overall more specific and sensitive. IgG-FMIA identified 100% of samples with neutralizing antibodies (NAbs). Anti-spike IgG concentrations correlated strongly (ρ = 0.77 to 0.84, P < 2.2 × 10-16) with NAb titers, and the two laboratories' NAb titers displayed a very strong correlation (ρ = 0.95, P < 2.2 × 10-16). Our results indicate good correlation and concordance of antibody concentrations measured with different types of in-house SARS-CoV-2 antibody assays. Calibration against the WHO international standard did not, however, improve the comparability of FMIA and EIA results. IMPORTANCE SARS-CoV-2 serological assays with excellent clinical performance are essential for reliable estimation of the persistence of immunity after infection or vaccination. In this paper we present a thoroughly validated SARS-CoV-2 serological assay with excellent clinical performance and good comparability to neutralizing antibody titers. Neutralization tests are still considered the gold standard for SARS-CoV-2 serological assays, but our assay can identify samples with neutralizing antibodies with 100% sensitivity and 96% specificity without the need for laborious and slow biosafety level 3 (BSL-3) facility-requiring analyses.


Assuntos
Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , Imunofluorescência/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Proteínas do Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Nucleoproteínas , Fosfoproteínas/imunologia , SARS-CoV-2 , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA