Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 880
Filtrar
1.
FASEB J ; 36(1): e22129, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958689

RESUMO

Visually induced changes in the expression of early growth response-1 (EGR1), FBJ osteosarcoma oncogene (FOS), and NGFI-A binding protein-2 (NAB2) appear to form a part of a retinal network fundamental to ocular growth regulation, and thus, the development of myopia (short-sightedness). However, it is unclear how environmental (visual) cues are translated into these molecular changes. One possibility is through epigenetic modifications such as DNA methylation, a known regulator of such processes. By sequencing bisulfite-converted DNA amplicons, this study examined whether changes in DNA methylation occur within specific regulatory and promoter regions of EGR1, FOS, and NAB2 during the periods of increased and decreased ocular growth in chicks. Visually induced changes in ocular growth rates were associated with single-point, but not large-scale, shifts in methylation levels within the investigated regions. Analysis of methylation pattern variability (entropy) demonstrated that the observed methylation changes are occurring within small subpopulations of retinal cells. This concurs with previous observations that EGR1 and FOS are differentially regulated at the peptide level within specific retinal cell types. Together, the findings of this study support a potential role for DNA methylation in the translation of external visual cues into molecular changes critical for ocular growth regulation and myopia development.


Assuntos
Proteínas Aviárias/biossíntese , Metilação de DNA , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Miopia/metabolismo , Animais , Proteínas Aviárias/genética , Galinhas , Proteínas do Olho/genética , Humanos , Masculino , Miopia/genética
2.
Front Immunol ; 12: 757607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795670

RESUMO

Background: Retinal neovascularization (RNV) membranes can lead to a tractional retinal detachment, the primary reason for severe vision loss in end-stage disease proliferative diabetic retinopathy (PDR). The aim of this study was to characterize the molecular, cellular and immunological features of RNV in order to unravel potential novel drug treatments for PDR. Methods: A total of 43 patients undergoing vitrectomy for PDR, macular pucker or macular hole (control patients) were included in this study. The surgically removed RNV and epiretinal membranes were analyzed by RNA sequencing, single-cell based Imaging Mass Cytometry and conventional immunohistochemistry. Immune cells of the vitreous body, also known as hyalocytes, were isolated from patients with PDR by flow cytometry, cultivated and characterized by immunohistochemistry. A bioinformatical drug repurposing approach was applied in order to identify novel potential drug options for end-stage diabetic retinopathy disease. Results: The in-depth transcriptional and single-cell protein analysis of diabetic RNV tissue samples revealed an accumulation of endothelial cells, macrophages and myofibroblasts as well as an abundance of secreted ECM proteins such as SPARC, FN1 and several types of collagen in RNV tissue. The immunohistochemical staining of cultivated vitreal hyalocytes from patients with PDR showed that hyalocytes express α-SMA (alpha-smooth muscle actin), a classic myofibroblast marker. According to our drug repurposing analysis, imatinib emerged as a potential immunomodulatory drug option for future treatment of PDR. Conclusion: This study delivers the first in-depth transcriptional and single-cell proteomic characterization of RNV tissue samples. Our data suggest an important role of hyalocyte-to-myofibroblast transdifferentiation in the pathogenesis of diabetic vitreoretinal disease and their modulation as a novel possible clinical approach.


Assuntos
Transdiferenciação Celular , Retinopatia Diabética/patologia , Membrana Epirretiniana/patologia , Miofibroblastos/patologia , Neovascularização Retiniana/patologia , Corpo Vítreo/imunologia , Adulto , Idoso , Células Cultivadas , Biologia Computacional , Retinopatia Diabética/complicações , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Reposicionamento de Medicamentos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Membrana Epirretiniana/metabolismo , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Feminino , Ontologia Genética , Humanos , Mesilato de Imatinib/uso terapêutico , Fatores Imunológicos/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Perfurações Retinianas/patologia , Análise de Célula Única , Transcriptoma , Corpo Vítreo/patologia , Adulto Jovem
3.
Invest Ophthalmol Vis Sci ; 62(10): 22, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34415987

RESUMO

Purpose: Endogenous and exogenous stressors, including nutritional challenges, may alter circadian rhythms in the cornea. This study aimed to determine the effects of high fructose intake (HFI) on circadian homeostasis in murine cornea. Methods: Corneas of male C57BL/6J mice subjected to 10 days of HFI (15% fructose in drinking water) were collected at 3-hour intervals over a 24-hour circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing. Rhythmic transcriptional data were analyzed to determine the phase, rhythmicity, unique signature, metabolic pathways, and cell signaling pathways of transcripts with temporally coordinated expression. Corneas of HFI mice were collected for whole-mounted techniques after immunofluorescent staining to quantify mitotic cell number in the epithelium and trafficking of neutrophils and γδ-T cells to the limbal region over a circadian cycle. Results: HFI significantly reprogrammed the circadian transcriptomic profiles of the normal cornea and reorganized unique temporal and clustering enrichment pathways, but did not affect core-clock machinery. HFI altered the distribution pattern and number of corneal epithelial mitotic cells and enhanced recruitment of neutrophils and γδ-T cell immune cells to the limbus across a circadian cycle. Cell cycle, immune function, metabolic processes, and neuronal-related transcription and associated pathways were altered in the corneas of HFI mice. Conclusions: HFI significantly reprograms diurnal oscillations in the cornea based on temporal and spatial distributions of epithelial mitosis, immune cell trafficking, and cell signaling pathways. Our findings reveal novel molecular targets for treating pathologic alterations in the cornea after HFI.


Assuntos
Ritmo Circadiano/genética , Epitélio Corneano/efeitos dos fármacos , Proteínas do Olho/genética , Frutose/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , RNA/genética , Administração Oral , Animais , Divisão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Epitélio Corneano/citologia , Proteínas do Olho/biossíntese , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , RNA/metabolismo , Edulcorantes/administração & dosagem , Transcriptoma
4.
Exp Eye Res ; 209: 108698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34228964

RESUMO

Vision requires the transport and recycling of the pigment 11-cis retinaldehyde (retinal) between the retinal pigment epithelium (RPE) and photoreceptors. 11-cis retinal is also required for light-mediated photoreceptor death in dark-adapted mouse eye, probably through overstimulation of rod cells adapted for low light. Retbindin is a photoreceptor-specific protein, of unclear function, that is localized between the RPE and the tips of the photoreceptors. Unexpectedly, young Rtbdn-KO mice, with targeted deletion (KO) of retbindin, showed delayed regeneration of retinal function after bleaching and were strongly resistant to light-induced photoreceptor death. Furthermore, bio-layer interferometry binding studies showed recombinant retbindin had significant affinity for retinoids, most notably 11-cis retinal. This suggests that retbindin mediates light damage, probably through a role in transport of 11-cis retinal. In Rtbdn-KO mice, retinal development was normal, as were amplitudes of rod and cone electroretinograms (ERG) up to 4 months, although implicit times and c-waves were affected. However, with aging, both light- and dark-adapted ERG amplitudes declined significantly and photoreceptor outer segments became disordered, However, in contrast to other reports, there was little retinal degeneration or drop in flavin levels. The RPE developed vacuoles and lipid, protein and calcium deposits reminiscent of age-related macular degeneration. Other signs of premature aging included loss of OPN4+ retinal ganglion cells and activation of microglia. Thus, retbindin plays an unexpected role in the mammalian visual cycle, probably as an adaptation for vision in dim light. It mediates light damage in the dark-adapted eye, but also plays a role in light-adapted responses and in long term retinal homeostasis.


Assuntos
Senilidade Prematura/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica , RNA/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Epitélio Pigmentado da Retina/metabolismo , Senilidade Prematura/metabolismo , Animais , Adaptação à Escuridão/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/biossíntese , Camundongos , Microscopia Eletrônica de Transmissão , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/ultraestrutura
5.
Sci Rep ; 11(1): 15313, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321516

RESUMO

Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.


Assuntos
Inibidores da Angiogênese/farmacologia , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Retina/efeitos dos fármacos , Vasos Retinianos , Inibidores da Angiogênese/uso terapêutico , Animais , Quimiotaxia de Leucócito/genética , Retinopatia Diabética , Modelos Animais de Doenças , Metabolismo Energético/genética , Proteínas do Olho/genética , Ontologia Genética , Redes Reguladoras de Genes , Isquemia/genética , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Oxigênio/metabolismo , Oxigênio/toxicidade , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Retina/metabolismo , Retinopatia da Prematuridade , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/fisiologia
6.
Exp Eye Res ; 209: 108645, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087204

RESUMO

Lens-specific beaded filament (BF) proteins CP49 and filensin interact with the C-terminus of the water channel protein Aquaporin 0 (AQP0). Previously we have reported that a C-terminally end-deleted AQP0-expressing transgenic mouse model AQP0ΔC/ΔC developed abnormal optical aberrations in the lens. This investigation was undertaken to find out whether the total loss of the BF structural proteins alter the optical properties of the lens and cause optical aberrations similar to those in AQP0ΔC/ΔC lenses; also, to map the changes in the optical quality as a function of age in the single or double BF protein knockouts as well as to assess whether there is any significant change in the water channel function of AQP0 in these knockouts. A double knockout mouse (2xKO) model for CP49 and filensin was developed by crossing CP49-KO and filensin-KO mice. Wild type, CP49-KO, filensin-KO, and 2xKO lenses at different ages, and AQP0ΔC/ΔC lenses at postnatal day-17 were imaged through the optical axis and compared for optical quality and focusing property. All three knockout models showed loss of transparency, and development of abnormal optical distortion aberration similar to that in AQP0ΔC/ΔC. Copper grid focusing by the lenses at 6, 9 and 12 months of age showed an increase in aberrations as age advanced. With progression in age, the grid images produced by the lenses of all KO models showed a transition from a positive barrel distortion aberration to a pincushion distortion aberration with the formation of three distinct aberration zones similar to those produced by AQP0ΔC/ΔC lenses. Water permeability of fiber cell membrane vesicles prepared from CP49-KO, filensin-KO and 2xKO models, measured using the osmotic shrinking method, remained similar to that of the wild type without any statistically significant alteration (P > 0.05). Western blotting and quantification revealed the expression of comparable quantities of AQP0 in all three BF protein KOs. Our study reveals that loss of single or both beaded filament proteins significantly affect lens refractive index gradient, transparency and focusing ability in an age-dependent manner and the interaction of BF proteins with AQP0 is critical for the proper functioning of the lens. The presence of BF proteins is necessary to prevent abnormal optical aberrations and maintain homeostasis in the aging lens.


Assuntos
Aquaporinas/genética , Catarata/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica , Proteínas de Filamentos Intermediários/genética , Cristalino/metabolismo , RNA/genética , Animais , Aquaporinas/biossíntese , Western Blotting , Catarata/metabolismo , Catarata/fisiopatologia , Modelos Animais de Doenças , Proteínas do Olho/biossíntese , Proteínas de Filamentos Intermediários/biossíntese , Cristalino/patologia , Cristalino/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946922

RESUMO

Most of the previous myopic animal studies employed a single-candidate approach and lower resolution proteomics approaches that were difficult to detect minor changes, and generated limited systems-wide biological information. Hence, a complete picture of molecular events in the retina involving myopic development is lacking. Here, to investigate comprehensive retinal protein alternations and underlying molecular events in the early myopic stage, we performed a data-independent Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH) based proteomic analysis coupled with different bioinformatics tools in pigmented guinea pigs after 4-day lens-induced myopia (LIM). Myopic eyes compared to untreated contralateral control eyes caused significant changes in refractive error and choroid thickness (p < 0.05, n = 5). Relative elongation of axial length and the vitreous chamber depth were also observed. Using pooled samples from all individuals (n = 10) to build a species-specific retinal ion library for SWATH analysis, 3202 non-redundant proteins (with 24,616 peptides) were identified at 1% global FDR. For quantitative analysis, the 10 individual retinal samples (5 pairs) were analyzed using a high resolution Triple-TOF 6600 mass spectrometry (MS) with technical replicates. In total, 37 up-regulated and 21 down-regulated proteins were found significantly changed after LIM treatment (log2 ratio (T/C) > 0.26 or < -0.26; p ≤ 0.05). Data are accepted via ProteomeXchange with identifier PXD025003. Through Ingenuity Pathways Analysis (IPA), "lipid metabolism" was found as the top function associated with the differentially expressed proteins. Based on the protein abundance and peptide sequences, expression patterns of two regulated proteins (SLC6A6 and PTGES2) identified in this pathway were further successfully validated with high confidence (p < 0.05) using a novel Multiple Reaction Monitoring (MRM) assay on a QTRAP 6500+ MS. In summary, through an integrated discovery and targeted proteomic approach, this study serves as the first report to detect and confirm novel retinal protein changes and significant biological functions in the early LIM mammalian guinea pigs. The study provides new workflow and insights for further research to myopia control.


Assuntos
Proteínas do Olho/biossíntese , Miopia/metabolismo , Proteômica/métodos , Retina/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Biologia Computacional , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Proteínas do Olho/genética , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Cobaias , Metabolismo dos Lipídeos , Redes e Vias Metabólicas/genética , Software
8.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998598

RESUMO

Genome-wide association studies (GWAS) for kidney function identified hundreds of risk regions; however, the causal variants, target genes, cell types, and disease mechanisms remain poorly understood. Here, we performed transcriptome-wide association studies (TWAS), summary Mendelian randomization, and MetaXcan to identify genes whose expression mediates the genotype effect on the phenotype. Our analyses identified Dachshund homolog 1 (DACH1), a cell-fate determination factor. GWAS risk variant was associated with lower DACH1 expression in human kidney tubules. Human and mouse kidney single-cell open chromatin data (snATAC-Seq) prioritized estimated glomerular filtration rate (eGFR) GWAS variants located on an intronic regulatory region in distal convoluted tubule cells. CRISPR-Cas9-mediated gene editing confirmed the role of risk variants in regulating DACH1 expression. Mice with tubule-specific Dach1 deletion developed more severe renal fibrosis both in folic acid and diabetic kidney injury models. Mice with tubule-specific Dach1 overexpression were protected from folic acid nephropathy. Single-cell RNA sequencing, chromatin immunoprecipitation, and functional analysis indicated that DACH1 controls the expression of cell cycle and myeloid chemotactic factors, contributing to macrophage infiltration and fibrosis development. In summary, integration of GWAS, TWAS, single-cell epigenome, expression analyses, gene editing, and functional validation in different mouse kidney disease models identified DACH1 as a kidney disease risk gene.


Assuntos
Bases de Dados de Ácidos Nucleicos , Proteínas do Olho , Nefropatias , Túbulos Renais/metabolismo , Fatores de Transcrição , Transcriptoma , Animais , Modelos Animais de Doenças , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Estudo de Associação Genômica Ampla , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Risco , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
9.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998601

RESUMO

Dachshund homolog 1 (DACH1), a key cell-fate determinant, regulates transcription by DNA sequence-specific binding. We identified diminished Dach1 expression in a large-scale screen for mutations that convert injury-resistant podocytes into injury-susceptible podocytes. In diabetic kidney disease (DKD) patients, podocyte DACH1 expression levels are diminished, a condition that strongly correlates with poor clinical outcomes. Global Dach1 KO mice manifest renal hypoplasia and die perinatally. Podocyte-specific Dach1 KO mice, however, maintain normal glomerular architecture at baseline, but rapidly exhibit podocyte injury after diabetes onset. Furthermore, podocyte-specific augmentation of DACH1 expression in mice protects from DKD. Combined RNA sequencing and in silico promoter analysis reveal conversely overlapping glomerular transcriptomic signatures between podocyte-specific Dach1 and Pax transactivation-domain interacting protein (Ptip) KO mice, with upregulated genes possessing higher-than-expected numbers of promoter Dach1-binding sites. PTIP, an essential component of the activating histone H3 lysine 4 trimethylation (H3K4Me3) complex, interacts with DACH1 and is recruited by DACH1 to its promoter-binding sites. DACH1-PTIP recruitment represses transcription and reduces promoter H3K4Me3 levels. DACH1 knockdown in podocytes combined with hyperglycemia triggers target gene upregulation and increases promoter H3K4Me3. These findings reveal that in DKD, diminished DACH1 expression enhances podocyte injury vulnerability via epigenetic derepression of its target genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/prevenção & controle , Proteínas do Olho/biossíntese , Histonas/metabolismo , Podócitos/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteínas do Olho/genética , Histonas/genética , Camundongos , Camundongos Knockout , Podócitos/patologia
10.
Sci Rep ; 11(1): 5495, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750851

RESUMO

Myopia, or short-sightedness, is a highly prevalent refractive disorder in which the eye's focal length is too short for its axial dimension in its relaxed state. High myopia is associated with increased risks of blinding ocular complications and abnormal eye shape. In addition to consistent findings on posterior segment anomalies in high myopia (e.g., scleral remodeling), more recent biometric and biomechanical data in myopic humans and animal models also indicate anterior segment anomalies (e.g., corneal biomechanical properties). Because the cornea is the anterior-most ocular tissue, providing essential refractive power and physiological stability, it is important to understand the biochemical signaling pathway during myopia development. This study first aimed to establish the entire chicken corneal proteome. Then, using the classical form deprivation paradigm to induce high myopia in chicks, state-of-the-art bioinformatics technologies were applied to identify eight differentially expressed proteins in the highly myopic cornea. These results provide strong foundation for future corneal research, especially those using chicken as an animal model for myopia development.


Assuntos
Proteínas Aviárias/biossíntese , Galinhas/metabolismo , Córnea/metabolismo , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Miopia/metabolismo , Doenças das Aves Domésticas/metabolismo , Proteoma/biossíntese , Animais , Miopia/veterinária
11.
Exp Eye Res ; 206: 108524, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662354

RESUMO

Although diurnal variations have been observed in tear film parameters in various species, the molecular mechanisms that control circadian tear secretion remain unclear. The aim of our study was to evaluate the role of clock genes in the lacrimal gland (LG) in regulation of tear secretion. Tear volume was measured by cotton thread test in core clock genes deficient (Cry1-/-Cry2-/--) mice which are behaviorally arrhythmic. Real-time quantitative RT-PCR was used to examine expression profiles of core clock genes in the LG including Per1, Per2, Per3, Clock, Bmal1. All experiments were performed under a 12 h of light and 12 h of darkness (LD) and constant dark (DD) conditions. Under both LD and DD conditions, diurnal and circadian rhythms were observed in tear secretion of wild-type mice with tear volume increased in the objective and subjective night while disruption in diurnal and circadian variations of tear secretion were found in Cry1-/-Cry2-/--mice. In wild-type mice, the expression level of major clock genes in the LG showed oscillatory patterns under both LD and DD conditions. In contrast, expression clock genes in the lacrimal gland of Cry1-/-Cry2-/-- mice showed complete loss of oscillation regardless of environmental light conditions. These findings confirmed the presence of diurnal and circadian rhythms of tear secretion and provided evidences supporting a critical role for the clock in the control of tear secretion.


Assuntos
Relógios Circadianos/fisiologia , Síndromes do Olho Seco/genética , Proteínas do Olho/genética , Aparelho Lacrimal/metabolismo , Lágrimas/metabolismo , Animais , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Proteínas do Olho/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
12.
Am J Ophthalmol ; 223: 308-321, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393484

RESUMO

PURPOSE: To evaluate the effect of mindfulness meditation (MM) on intraocular pressure (IOP) and trabecular meshwork (TM) gene expression in patients with medically uncontrolled primary open angle glaucoma (POAG). DESIGN: Parallel arm, single-masked, randomized controlled trial. METHODS: Sixty POAG patients with IOP ≥21 mm Hg taking maximal topical medication and scheduled for trabeculectomy were included in this study at a tertiary eye care center in India. Thirty patients (Group 1) underwent 3 weeks of 45-minute daily MM sessions in addition to medical therapy while Group 2 continued medical therapy only. Primary outcome was change in IOP (ΔIOP) after 3 weeks of MM. Secondary outcomes were probability of success, percentage of reduction in IOP, effect on diurnal variations of IOP, changes in quality of life (QoL), and changes in gene expression patterns in TM. RESULTS: At 3 weeks, a significant decrease in IOP was seen in Group 1 (20.16 ± 3.3 to 15.05 ± 2.4mm Hg; P = .001), compared to Group 2 (21.2 ± 5.6 to 20.0 ± 5.8mm Hg; P = .38). ΔIOP was significantly higher in Group 1 than in Group 2 (5.0 ± 1.80 vs. 0.20 ± 3.03mm Hg; P = .001). Analysis of gene expression revealed significant upregulation of nitric oxide synthetase (NOS1 and NOS3) and neuroprotective genes with downregulation of proinflammatory genes in Group 1 in comparison to Group 2 (P = .001). CONCLUSIONS: MM was associated with significant decrease in IOP and changes in TM gene expression, indicating its direct impact on ocular tissues.


Assuntos
Proteínas do Olho/genética , Expressão Gênica , Glaucoma de Ângulo Aberto/terapia , Pressão Intraocular/fisiologia , Meditação/métodos , Atenção Plena/métodos , Malha Trabecular/metabolismo , Proteínas do Olho/biossíntese , Feminino , Seguimentos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Estudos Retrospectivos , Método Simples-Cego
13.
Acta Ophthalmol ; 99(7): e1090-e1097, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33421356

RESUMO

PURPOSE: To assess the clinical relevance of myocilin (MYOC) gene variants as risk factors for glaucoma in literature and to estimate their prevalence in different populations. METHODS: We reviewed the literature for published MYOC variants in glaucoma patients and estimated their prevalence in general population using gnomAD and BRAVO databases. We used several bioinformatics tools and the criteria of the American College of Medical Genetics and Genomics (ACMG) to assess the pathogenicity of the variants. We evaluated the carrier frequency of the variants in gnomAD, including its subpopulations. RESULTS: We found 13 missense and 5 loss-of-function (LOF) reported variants in MYOC that were both probable pathogenic or risk variants and listed in gnomAD. Six likely pathogenic missense variants were p.(Cys25Arg), p.(Gln48His), p.(Gly326Ser), p.(Thr353Ile), p.(Thr377Met) and p.(Gly399Val). They were most prevalent in East and South Asia (frequency, 0.92% and 0.81%, respectively). The most common missense variants were p.(Thr353Ile) (0.91% in East Asia) and p.(Gln48His) (0.79% in South Asia). Five LOF variants were p.(Arg46Ter), p.(Arg91Ter), p.(Arg272Ter), p.(Gln368Ter) and p.(Tyr453MetfsTer11). We considered these glaucoma risk variants. They were most prevalent in the East Asian and the Finnish population (0.93% and 0.33%, respectively). CONCLUSION: Pathogenic MYOC variants appear to be population-associated. Our results highlight allelic heterogeneity of MYOC variants in open-angle glaucoma. Many of the probable pathogenic variants are over-represented in some of the populations causing doubt of their status as monogenic disease-causing variants.


Assuntos
Proteínas do Citoesqueleto/genética , DNA/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica , Glaucoma/genética , Glicoproteínas/genética , Vigilância da População , Proteínas do Citoesqueleto/biossíntese , Proteínas do Olho/biossíntese , Glaucoma/epidemiologia , Saúde Global , Glicoproteínas/biossíntese , Humanos , Prevalência
14.
J Mol Med (Berl) ; 99(3): 383-402, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33409554

RESUMO

Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas Priônicas/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Pirazinas/farmacologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Eletrorretinografia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Jejum , Feminino , Glucose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas Priônicas/química , Agregação Patológica de Proteínas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/fisiopatologia , Método Simples-Cego , Solubilidade , Organismos Livres de Patógenos Específicos , Transcrição Gênica/efeitos dos fármacos
15.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165998, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127476

RESUMO

The molecular and cellular basis for cataract development in mice lacking dystrophin, a scaffolding protein that links the cytoskeleton to the extracellular matrix, is poorly understood. In this study, we characterized lenses derived from the dystrophin-deficient mdx3cv mouse model. Expression of Dp71, a predominant isoform of dystrophin in the lens, was induced during lens fiber cell differentiation. Dp71 was found to co-distribute with dystroglycan, connexin-50 and 46, aquaporin-0, and NrCAM as a large cluster at the center of long arms of the hexagonal fibers. Although mdx3cv mouse lenses exhibited dramatically reduced levels of Dp71, only older lenses revealed punctate nuclear opacities compared to littermate wild type (WT) lenses. The levels of dystroglycan, syntrophin, and dystrobrevin which comprise the dystrophin-associated protein complex (DAPC), and NrCAM, connexin-50, and aquaporin-0, were significantly lower in the lens membrane fraction of adult mdx3cv mice compared to WT mice. Additionally, decreases were observed in myosin light chain phosphorylation and lens stiffness together with a significant elevation in the levels of utrophin, a functional homolog of dystrophin in mdx3cv mouse lenses compared to WT lenses. The levels of perlecan and laminin (ligands of α-dystroglycan) remained normal in dystrophin-deficient lens fibers. Taken together, although mdx3cv mouse lenses exhibit only minor defects in lens clarity possibly due to a compensatory increase in utrophin, the noted disruptions of DAPC, stability, and organization of membrane integral proteins of fibers, and stiffness of mdx3cv lenses reveal the importance of dystrophin and DAPC in maintaining lens clarity and function.


Assuntos
Distrofina/deficiência , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Cristalino/metabolismo , Animais , Distrofina/metabolismo , Proteínas do Olho/genética , Camundongos , Camundongos Endogâmicos mdx
16.
J Comp Neurol ; 529(1): 141-158, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32427349

RESUMO

Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western-blotting, and also by enzyme-linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age-dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.


Assuntos
Química Encefálica/fisiologia , Encéfalo/metabolismo , Proteínas do Olho/análise , Proteínas do Olho/biossíntese , Fatores de Crescimento Neural/análise , Fatores de Crescimento Neural/biossíntese , Receptores de Neuropeptídeos/análise , Receptores de Neuropeptídeos/biossíntese , Serpinas/análise , Serpinas/biossíntese , Adolescente , Adulto , Fatores Etários , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Adulto Jovem
17.
Mol Med Rep ; 23(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33313942

RESUMO

Immunoglobulin A nephropathy (IgAN) is a kidney disease and one of the commonest forms of glomerulonephritis worldwide. The present study investigated the role of dachshund family transcription factor 1 (DACH1) in IgAN and identified one of its binding microRNAs (miRNAs). The expression of DACH1 in human mesangial cells (HMCs) incubated with polymeric IgA (pIgA) isolated and purified from the serum of patients with IgAN or healthy individuals was evaluated by reverse transcription­quantitative (RT­q) PCR and western blotting. Cell proliferation and cell cycle assays were performed in DACH1­overexpressing HMCs to identify the role of DACH1 in IgAN and enzyme­linked immunosorbent assay was carried out to verify the release of inflammatory factors from HMCs. The target miRNAs of DACH1 were predicted using bioinformatics software and miR­140­3p was identified as a target of DACH1 by luciferase report assay, RT­qPCR and western blotting. The results demonstrated that DACH1 was downregulated in HMCs cultured with pIgA­IgAN at both mRNA and protein levels. Overexpression of DACH1 suppressed HMC growth and inhibited inflammatory cytokine release from HMCs cultured with pIgA­IgAN. The expression of DACH1 was negatively regulated by miR­140­3p in IgAN and miR­140­3p inhibition suppressed HMC growth and inhibited inflammatory cytokine release from HMCs cultured with pIgA­IgAN. The findings of the present study demonstrated that DACH1 decreased HMC growth and the release of inflammatory cytokines from HMCs may be targeted by miR­140­3p. The results suggested that DACH1 could be associated with the progression of IgAN and provide a potential target for further studies related to the mechanism of IgAN.


Assuntos
Ciclo Celular/genética , Proteínas do Olho/biossíntese , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/biossíntese , Regiões 3' não Traduzidas , Adulto , Proliferação de Células/genética , Células Cultivadas , Biologia Computacional , Citocinas/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Feminino , Glomerulonefrite por IGA/sangue , Humanos , Imunoglobulina A/isolamento & purificação , Imunoglobulina A/farmacologia , Masculino , Células Mesangiais/metabolismo , MicroRNAs/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Regulação para Cima , Adulto Jovem
18.
Biochem Pharmacol ; 183: 114339, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189676

RESUMO

Lung cancer is one of the leading causes of death in cancer patients. Epithelial-mesenchymal transition (EMT) plays an important role in lung cancer progression. Therefore, for lung cancer treatment, it is crucial to find substances that inhibit EMT. Ethacrynic acid (ECA) is a diuretic that inhibits cellular ion flux and exerts anticancer effects. However, the effects of ECA on EMT in lung cancer remain unclear. We examined the effects of ECA on sphingosylphosphorylcholine (SPC) or TGF-ß1-induced EMT process in A549 and H1299 cells via reverse transcription polymerase chain reaction and Western blotting. We found that ECA inhibited SPC-induced EMT and SPC-induced WNT signalling in EMT. We observed that SPC induces the expression of NDP [Norrie disease protein] and WNT-2, whereas ECA suppressed their expression. SPC-induced WNT activation, EMT, migration, and invasion were suppressed by NDP small-interfering RNA (siNDP), but NDP overexpression (pNDP) enhanced these events in A549 and H1299 cells. Accordingly, NDP expression may influence lung cancer prognosis. In summary, our results revealed that ECA inhibited SPC or TGF-ß1-induced EMT in A549 and H1299 lung cancer cells by downregulating NDP expression and inhibiting WNT activation. Therefore, ECA might be a new drug candidate for lung cancer treatment.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácido Etacrínico/farmacologia , Proteínas do Olho/farmacologia , Neoplasias Pulmonares/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Células A549 , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/fisiologia , Ácido Etacrínico/uso terapêutico , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/biossíntese , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , RNA Interferente Pequeno/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Via de Sinalização Wnt/fisiologia
19.
Neuromolecular Med ; 23(3): 371-382, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33185833

RESUMO

Traumatic optic neuropathy (TON) is characterized by visual dysfunction after indirect or direct injury to the optic nerve following blunt head trauma. TON is associated with increased oxidative stress and inflammation resulting in retinal ganglion cell (RGC) death. Remote ischemic post-conditioning (RIC) has been shown to enhance endogenous protective mechanisms in diverse disease models including stroke, vascular cognitive impairment (VCI), retinal injury and optic nerve injury. However, the protective mechanisms underlying the improvement of retinal function and RGC survival after RIC treatment remain unclear. Here, we hypothesized that RIC therapy may be protective following TON by preventing RGC death, oxidative insult and inflammation in the mouse retina. To carry out the study, mice were divided in three different groups (Control, TON and TON + RIC). We harvested retinal tissue 5 days after TON induction for western blotting and histochemical analysis. We observed increased TON-induced retinal cell death compared with controls by cleaved caspase-3 immunohistochemistry. Furthermore, the TON cohort demonstrated increased TUNEL positive cells which were significantly attenuated by RIC. Immunofluorescence data showed that oxidative stress markers dihydroethidium (DHE), NOX-2 and nitrotyrosine expression were elevated in the TON group relative to controls and RIC therapy significantly reduced the expression level of these markers. Next, we found that the proinflammatory cytokine TNF-α was increased and anti-inflammatory IL-10 was decreased in plasma of TON animals, and RIC therapy reversed this expression level. Interestingly, western blotting of retinal tissue showed that RGC marker Brn3a and tight junction proteins (ZO-1 and Occludin), and AMPKα1 expression were downregulated in the TON group compared to controls. However, RIC significantly increased the expression levels of these proteins. Together these data suggest that RIC therapy activates endogenous protective mechanisms which may attenuate TON-induced oxidative stress and inflammation, and improves BRB integrity.


Assuntos
Pós-Condicionamento Isquêmico , Traumatismos do Nervo Óptico/terapia , Adenilato Quinase/biossíntese , Adenilato Quinase/genética , Animais , Barreira Hematorretiniana , Caspase 3/biossíntese , Caspase 3/genética , Morte Celular , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Membro Posterior/irrigação sanguínea , Interleucina-10/sangue , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Modelos Animais , NADPH Oxidase 2/análise , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/prevenção & controle , Estresse Oxidativo , Células Ganglionares da Retina/patologia , Superóxidos/análise , Fator de Transcrição Brn-3A/biossíntese , Fator de Transcrição Brn-3A/genética , Fator de Necrose Tumoral alfa/sangue , Tirosina/análogos & derivados , Tirosina/análise
20.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182541

RESUMO

X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases.


Assuntos
Códon sem Sentido/efeitos dos fármacos , Proteínas do Olho/genética , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Proteínas Mutantes/genética , Oxidiazóis/uso terapêutico , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Estudos de Casos e Controles , Células Cultivadas , Cílios/metabolismo , Proteínas do Olho/biossíntese , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HEK293 , Hemizigoto , Humanos , Proteínas Mutantes/biossíntese , Estudo de Prova de Conceito , Biossíntese de Proteínas/efeitos dos fármacos , Estabilidade de RNA , Retinose Pigmentar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA