Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.855
Filtrar
1.
Sci Rep ; 14(1): 11591, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773220

RESUMO

Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.


Assuntos
Diferenciação Celular , Podócitos , Animais , Podócitos/metabolismo , Podócitos/citologia , Camundongos , Proteínas WT1/metabolismo , Proteínas WT1/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Linhagem Celular , Técnicas de Cultura de Células/métodos , Linhagem Celular Transformada , Proliferação de Células
2.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716192

RESUMO

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Nigéria , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Resistência a Medicamentos/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Mutação , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina/uso terapêutico , Masculino , Proteínas dos Microfilamentos/genética , Feminino , Combinação de Medicamentos , Repetições de Microssatélites/genética , Genótipo , Análise de Sequência de DNA , Recidiva , Polimorfismo Genético , Adulto
3.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725858

RESUMO

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Assuntos
Movimento Celular , Neoplasias do Colo , Humanos , Movimento Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Transdução de Sinais
4.
Sci Signal ; 17(835): eadj0032, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713765

RESUMO

Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1. Inactivation of the actin-binding protein CAP1 reduced the amount of actin monomers in the cytoplasm, which promoted nuclear MRTF translocation and MRTF-SRF activation. This function was independent of cofilin1 and actin-depolymerizing factor, and CAP1 loss of function in cortical neurons was not compensated by endogenous CAP2. Transcriptomic and proteomic analyses of cerebral cortex lysates from wild-type and Cap1 knockout mice supported the role of CAP1 in repressing MRTF-SRF-dependent signaling in vivo. Bioinformatic analysis identified likely MRTF-SRF target genes, which aligned with the transcriptomic and proteomic results. Together with our previous studies that implicated CAP1 in axonal growth cone function as well as the morphology and plasticity of excitatory synapses, our findings establish CAP1 as a crucial actin regulator in the brain relevant for formation of neuronal networks.


Assuntos
Actinas , Proteínas de Transporte , Córtex Cerebral , Camundongos Knockout , Fator de Resposta Sérica , Transativadores , Animais , Córtex Cerebral/metabolismo , Transativadores/metabolismo , Transativadores/genética , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/genética , Camundongos , Actinas/metabolismo , Actinas/genética , Neurônios/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Regulação da Expressão Gênica , Transdução de Sinais
5.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38748453

RESUMO

There has long been conflicting evidence as to how bundled actin filaments, found in cellular structures such as filopodia, are disassembled. In this issue, Chikireddy et al. (https://doi.org/10.1083/jcb.202312106) provide a detailed in vitro analysis of the steps involved in fragmentation of fascin-bundled actin filaments and propose a novel mechanism for severing two-filament bundles.


Assuntos
Citoesqueleto de Actina , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Actinas/metabolismo , Pseudópodes/metabolismo , Humanos , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética
6.
Nat Commun ; 15(1): 4095, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750021

RESUMO

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Núcleo Celular , Cromatina , Células-Tronco Mesenquimais , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Citocalasina D/farmacologia , Histonas/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Camundongos , Montagem e Desmontagem da Cromatina
7.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760173

RESUMO

Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis. Orthotopic, ectopic, and short-term tail vein injection mouse breast and lung cancer models revealed a strong positive dependence of lung and bone metastasis on SWAP-70. Breast cancer cell growth, migration, adhesion, and invasion assays revealed SWAP-70's key role in these metastasis-related cell features and the requirement for SWAP-70 to bind F-actin. Biophysical experiments showed that tumor cell stiffness and deformability are negatively modulated by SWAP-70. Together, we present a hitherto undescribed, unique F-actin modulator as an important contributor to tumor metastasis.


Assuntos
Actinas , Neoplasias da Mama , Neoplasias Pulmonares , Proteínas dos Microfilamentos , Metástase Neoplásica , Animais , Actinas/metabolismo , Camundongos , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Movimento Celular/genética , Citoesqueleto de Actina/metabolismo , Proliferação de Células/genética , Adesão Celular/genética , Ligação Proteica
8.
Sci Rep ; 14(1): 11250, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755233

RESUMO

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.


Assuntos
Dictyostelium , Proteínas dos Microfilamentos , Microtúbulos , Mitose , Microtúbulos/metabolismo , Dictyostelium/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Transporte Proteico , Citocinese , Actinas/metabolismo
9.
Nat Commun ; 15(1): 3139, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605007

RESUMO

Several actin-binding proteins (ABPs) phase separate to form condensates capable of curating the actin network shapes. Here, we use computational modeling to understand the principles of actin network organization within VASP condensate droplets. Our simulations reveal that the different actin shapes, namely shells, rings, and mixture states are highly dependent on the kinetics of VASP-actin interactions, suggesting that they arise from kinetic trapping. Specifically, we show that reducing the residence time of VASP on actin filaments reduces degree of bundling, thereby promoting assembly of shells rather than rings. We validate the model predictions experimentally using a VASP-mutant with decreased bundling capability. Finally, we investigate the ring opening within deformed droplets and found that the sphere-to-ellipsoid transition is favored under a wide range of filament lengths while the ellipsoid-to-rod transition is only permitted when filaments have a specific range of lengths. Our findings highlight key mechanisms of actin organization within phase-separated ABPs.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto/metabolismo
10.
Mol Biol Cell ; 35(6): ar85, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656798

RESUMO

In response to pheromone Saccharomyces cerevisiae extend a mating projection. This process depends on the formation of polarized actin cables which direct secretion to the mating tip and translocate the nucleus for karyogamy. Here, we demonstrate that proper mating projection formation requires the formin Bni1, as well as the actin nucleation promoting activities of Bud6, but not the formin Bnr1. Further, Bni1 is required for pheromone gradient tracking. Our work also reveals unexpected new functions for Bil2 in the pheromone response. Previously we identified Bil2 as a direct inhibitor of Bnr1 during vegetative cell growth. Here, we show that Bil2 has Bnr1-independent functions in spatially focusing Bni1-GFP at mating projection tips, and in vitro Bil2 and its binding partner Bud6 organize Bni1 into clusters that nucleate actin assembly. bil2∆ cells also display entangled Bni1-generated actin cable arrays and defects in secretory vesicle transport and nuclear positioning. At low pheromone concentrations, bil2∆ cells are delayed in establishing a polarity axis, and at high concentrations they prematurely form a second and a third mating projection. Together, these results suggest that Bil2 promotes the proper formation and timing of mating projections by organizing Bni1 and maintaining a persistent axis of polarized growth.


Assuntos
Actinas , Feromônios , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Feromônios/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Polaridade Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo
11.
Biochem Biophys Res Commun ; 712-713: 149943, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640733

RESUMO

Moesin is a member of the ezrin-radixin-moesin (ERM) family of proteins that link plasma membrane proteins to the cortical cytoskeleton and thus regulate diverse cellular processes. Mutations in the human moesin gene cause a primary immunodeficiency called X-linked moesin-associated immunodeficiency (X-MAID), which may be complicated by an autoimmune phenotype with kidney involvement. We previously reported that moesin-deficient mice exhibit lymphopenia similar to that of X-MAID and develop a lupus-like autoimmune phenotype with age. However, the mechanism through which moesin defects cause kidney pathology remains obscure. Here, we characterized immune cell infiltration and chemokine expression in the kidney of moesin-deficient mice. We found accumulation of CD4+ T and CD11b+ myeloid cells and high expression of CXCL13, whose upregulation was detected before the onset of overt nephritis. CD4+ T cell population contained IFN-γ-producing effectors and expressed the CXCL13 receptor CXCR5. Among myeloid cells, Ly6Clo patrolling monocytes and MHCIIlo macrophages markedly accumulated in moesin-deficient kidneys and expressed high CXCL13 levels, implicating the CXCL13-CXCR5 axis in nephritis development. Functionally, Ly6Clo monocytes from moesin-deficient mice showed reduced migration toward sphingosine 1-phosphate. These findings suggest that moesin plays a role in regulating patrolling monocyte homeostasis, and that its defects lead to nephritis associated with accumulation of CXCL13-producing monocytes and macrophages.


Assuntos
Quimiocina CXCL13 , Proteínas dos Microfilamentos , Monócitos , Animais , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/patologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/metabolismo , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Lúpica/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/imunologia , Nefrite Lúpica/genética , Camundongos Knockout , Rim/patologia , Rim/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo
12.
Clin Exp Pharmacol Physiol ; 51(6): e13864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679464

RESUMO

Human papillomavirus (HPV) infection has been reported to be associated with N6-methyladenosine (m6A) modification in cancers. However, the underlying mechanism by which m6A methylation participates in HPV-related cervical squamous cell carcinoma (CSCC) remains largely unclear. In this study, we observed that m6A regulators methyltransferase like protein (METTL14) and insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) were upregulated in HPV-positive CSCC tissues and cell lines, and their high expression predicted poor prognosis for HPV-infected CSCC patients. Cellular functional experiments verified that HPV16 oncogenes E6/E7 upregulated the expression of METTL14 and IGF2BP3 to promote cell proliferation and epithelial mesenchymal transition of CSCC cells. Next, we found that E6/E7 stabilized fascin actin-bundling protein 1 (FSCN1) mRNA and elevated FSCN1 expression in CSCC cells through upregulating METTL14/IGF2BP3-mediated m6A modification, and FSCN1 expression was also validated to be positively associated with worse outcomes of HPV-positive CSCC patients. Finally, HPV16-positive CSCC cell lines SiHa and CaSki were transfected with knockdown vector for E6/E7 or METTL14/IGF2BP3 and overexpressing vector for FSCN1, and functional verification experiments were performed through using MTT assay, flow cytometry, wound healing assay and tumour formation assay. Results indicated that knockdown of E6/E7 or METTL14/IGF2BP3 suppressed cell proliferation, migration and tumorigenesis, and accelerated cell apoptosis of HPV-positive CSCC cells. Their tumour-suppressive effects were abolished through overexpressing FSCN1. Overall, HPV E6/E7 advanced CSCC development through upregulating METTL14/IGF2BP3-mediated FSCN1 m6A modification.


Assuntos
Carcinoma de Células Escamosas , Papillomavirus Humano 16 , Metiltransferases , Proteínas dos Microfilamentos , Infecções por Papillomavirus , Proteínas de Ligação a RNA , Neoplasias do Colo do Útero , Feminino , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Proteínas Repressoras , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo
13.
BMC Musculoskelet Disord ; 25(1): 233, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521928

RESUMO

BACKGROUND: Osteosarcoma is one of the most common cancers worldwide. Intense efforts have been made to elucidate the pathogeny, but the mechanisms of osteosarcoma are still not well understood. We aimed to investigate the potential biomarker, allograft inflammatory factor-1 (AIF1), affecting the progression and prognosis of osteosarcoma. METHODS: Three microarray datasets were downloaded from GEO datasets and one was obtained from the TCGA dataset. The differentially expressed genes (DEGs) were identified. GO and KEGG functional enrichment analyses of overlapped DEGs were performed. The PPI network of overlapped DEGs was constructed by STRING and visualized with Cytoscape. Overall survival (OS) and Metastasis free survival (MFS) were analyzed from GSE21257. Finally, the effect of the most relevant core gene affecting the progression of osteosarcoma was examined in vitro. RESULTS: One hundred twenty six DEGs were identified, consisting of 65 upregulated and 61 downregulated genes. Only AIF1 was significantly associated with OS and MFS. It was found that AIF1 could be enriched into the NF-κB signaling pathway. GSEA and ssGSEA analyses showed that AIF1 was associated with the immune invasion of tumors. Cell experiments showed that AIF1 was underexpressed in osteosarcoma cell lines, while the malignant propriety was attenuated after overexpressing the expression of AIF1. Moreover, AIF1 also affects the expression of the NF-κB pathway. CONCLUSION: In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the carcinogenesis and progression of osteosarcoma, and provide candidate targets for diagnosis and treatment of osteosarcoma.


Assuntos
Proteínas de Ligação ao Cálcio , Perfilação da Expressão Gênica , Proteínas dos Microfilamentos , Osteossarcoma , Humanos , Biologia Computacional , Redes Reguladoras de Genes , NF-kappa B , Osteossarcoma/genética , Osteossarcoma/patologia , Prognóstico , Proteínas de Ligação ao Cálcio/genética , Proteínas dos Microfilamentos/genética
14.
Hematology ; 29(1): 2330285, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38511641

RESUMO

We aimed to investigate the role and mechanism of LSP1 in the progression of acute myelogenous leukemia. In this study, we established shLSP1 cell line to analyze the function of LSP1 in AML. We observed high expression of LSP1 in AML patients, whereas it showed no expression in normal adults. Furthermore, we found that LSP1 expression was associated with disease prognosis. Our results indicate that LSP1 plays a crucial role in mediating proliferation and survival of leukemia cells through the KSR/ERK signaling pathway. Additionally, LSP1 promotes cell chemotaxis and homing by enhancing cell adhesion and migration. We also discovered that LSP1 confers chemotactic ability to leukemia cells in vivo. Finally, our study identified 12 genes related to LSP1 in AML, which indicated poor survival outcome in AML patients and were enriched in Ras and cell adhesion signaling pathways. Our results revealed that the overexpression of LSP1 is related to the activation of the KSR/ERK signaling pathway, as well as cell adhesion and migration in AML patients. Reducing LSP1 expression impair AML progression, suggesting that LSP1 may serve as a potential drug therapy target for more effective treatment of AML.


Assuntos
Leucemia Mieloide Aguda , Transdução de Sinais , Adulto , Humanos , Movimento Celular , Linhagem Celular , Leucemia Mieloide Aguda/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
15.
BMC Cancer ; 24(1): 357, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509504

RESUMO

BACKGROUND: Biliary tract cancer (BTC) is a relatively rare but aggressive gastrointestinal cancer with a high mortality rate. Cancer stem cell (CSC) populations play crucial roles in tumor biology and are responsible for the low response to anti-cancer treatment and the high recurrence rate. This study investigated the role of Transgelin-2 (TAGLN2), overexpressed in CSC in BTC cells, and analyzed its expression in patient tissues and serum to identify potential new targets for BTC. METHODS: TAGLN2 expression was suppressed by small-interfering or short hairpin RNAs, and its effects on tumor biology were assessed in several BTC cell lines. Furthermore, the effects of TAGLN2 silencing on gemcitabine-resistant BTC cells, differentially expressed genes, proteins, and sensitivity to therapeutics or radiation were assessed. TAGLN2 expression was also assessed using western blotting and immunohistochemistry in samples obtained from patients with BTC to validate its clinical application. RESULTS: Suppression of TAGLN2 in BTC cell lines decreased cell proliferation, migration, invasion, and tumor size, in addition to a reduction in CSC features, including clonogenicity, radioresistance, and chemoresistance. TAGLN2 was highly expressed in BTC tissues, especially in cancer-associated fibroblasts in the stroma. Patients with a low stromal immunohistochemical index had prolonged disease-free survival compared to those with a high stromal immunohistochemical index (11.5 vs. 7.4 months, P = 0.013). TAGLN2 expression was higher in the plasma of patients with BTC than that in those with benign diseases. TAGLN2 had a higher area under the curve (0.901) than CA19-9, a validated tumor biomarker (0.799; P < 0.001). CONCLUSION: TAGLN2 plays a critical role in promoting BTC cell growth and motility and is involved in regulating BTC stemness. Silencing TAGLN2 expression enhanced cell sensitivity to radiation and chemotherapeutic drugs. The expression of TAGLN2 in patient tissue and plasma suggests its potential to serve as a secretory biomarker for BTC. Overall, targeting TAGLN2 could be an appropriate therapeutic strategy against advanced cancer following chemotherapy failure.


Assuntos
Neoplasias do Sistema Biliar , Proteínas dos Microfilamentos , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/genética , Linhagem Celular Tumoral
16.
Dev Biol ; 511: 12-25, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38556137

RESUMO

During epithelial morphogenesis, the apical junctions connecting cells must remodel as cells change shape and make new connections with their neighbors. In the C. elegans embryo, new apical junctions form when epidermal cells migrate and seal with one another to encase the embryo in skin ('ventral enclosure'), and junctions remodel when epidermal cells change shape to squeeze the embryo into a worm shape ('elongation'). The junctional cadherin-catenin complex (CCC), which links epithelial cells to each other and to cortical actomyosin, is essential for C. elegans epidermal morphogenesis. RNAi genetic enhancement screens have identified several genes encoding proteins that interact with the CCC to promote epidermal morphogenesis, including the scaffolding protein Afadin (AFD-1), whose depletion alone results in only minor morphogenesis defects. Here, by creating a null mutation in afd-1, we show that afd-1 provides a significant contribution to ventral enclosure and elongation on its own. Unexpectedly, we find that afd-1 mutant phenotypes are strongly modified by diet, revealing a previously unappreciated parental nutritional input to morphogenesis. We identify functional interactions between AFD-1 and the CCC by demonstrating that E-cadherin is required for the polarized distribution of AFD-1 to cell contact sites in early embryos. Finally, we show that afd-1 promotes the enrichment of polarity regulator, and CCC-interacting protein, PAC-1/ARHGAP21 to cell contact sites, and we identify genetic interactions suggesting that afd-1 and pac-1 regulate epidermal morphogenesis at least in part through parallel mechanisms. Our findings reveal that C. elegans AFD-1 makes a significant contribution to epidermal morphogenesis and functionally interfaces with core and associated CCC proteins.


Assuntos
Caderinas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Epiderme , Morfogênese , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caderinas/metabolismo , Caderinas/genética , Epiderme/metabolismo , Epiderme/embriologia , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Cateninas/metabolismo , Cateninas/genética , Células Epidérmicas/metabolismo
17.
J Pharm Sci ; 113(6): 1674-1681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432625

RESUMO

Lung cancer metastasis often leads to a poor prognosis for patients. Mesenchymal-epithelial transition (MET) is one key process associated with metastasis. MET has also been linked to multidrug drug resistance (MDR). MDR arises from the overactivity of drug efflux transporters such as P-glycoprotein (P-gp) which operate at the cell plasma membrane, under the regulatory control of the scaffold proteins ezrin (Ezr), radixin (Rdx), and moesin (Msn), collectively known as ERM proteins. The current study was intended to clarify the functional changing of P-gp and the underlying mechanisms in the context of dexamethasone (DEX)-induced MET in lung cancer cells. We found that the mRNA and membrane protein expression of Ezr and P-gp was increased in response to DEX treatment. Moreover, the DEX-treated group exhibited an increase in Rho123 efflux, and it was reversed by treatment with the P-gp inhibitor verapamil or Ezr siRNA. The decrease in cell viability with paclitaxel (PTX) treatment was mitigated by pretreatment with DEX. The increased expression and activation of P-gp during the progression of lung cancer MET was regulated by Ezr. The regulatory mechanism of P-gp expression and activity may differ depending on the cell status.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Dexametasona , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Paclitaxel , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Dexametasona/farmacologia , Linhagem Celular Tumoral , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Verapamil/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Células A549
18.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508714

RESUMO

Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.


Assuntos
Cocaína , Corpo Estriado , Camundongos Knockout , Plasticidade Neuronal , Animais , Cocaína/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Camundongos , Masculino , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Camundongos Endogâmicos C57BL , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Feminino , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Excitabilidade Cortical/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem
19.
Stem Cell Res ; 76: 103357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412658

RESUMO

INF2 mutations cause Charcot-Marie-Tooth disease (CMT), and /or focal segmental glomerulosclerosis (FSGS) in an autosomal dominant inheritance mode, whose underlying mechanism remainsunclear. Here, we report the generation of an iPSC line from a female patient with CMT and FSGS. The iPSC line from the patient's PBMCscarried aheterozygous INF2 deletion mutation (c.315_323delGCGCGCCGT) within the conserved E2. This line exhibited a normal karyotype, high expression of pluripotency markers, and trilineage differentiation potential. This line can be used to dissect the complex pathomechanism through further induction of differentiation into related cells and as a drug screening tool for INF2-associated diseases.


Assuntos
Doença de Charcot-Marie-Tooth , Glomerulosclerose Segmentar e Focal , Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Glomerulosclerose Segmentar e Focal/genética , Doença de Charcot-Marie-Tooth/genética , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Forminas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA