Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.855
Filtrar
1.
Sci Rep ; 14(1): 10407, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710792

RESUMO

Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Ligação Proteica , Proteínas não Estruturais Virais , Zika virus , Chaperona BiP do Retículo Endoplasmático/metabolismo , Zika virus/metabolismo , Zika virus/fisiologia , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Células HEK293 , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia , Replicação Viral
2.
An Acad Bras Cienc ; 96(2): e20231336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747801

RESUMO

The disease coronavirus COVID-19 has been the cause of millions of deaths worldwide. Among the proteins of SARS-CoV-2, non-structural protein 12 (NSP12) plays a key role during COVID infection and is part of the RNA-dependent RNA polymerase complex. The monitoring of NSP12 polymorphisms is extremely important for the design of new antiviral drugs and monitoring of viral evolution. This study analyzed the NSP12 mutations detected in circulating SARS-CoV-2 during the years 2020 to 2022 in the population of the city of Manaus, Amazonas, Brazil. The most frequent mutations found were P323L and G671S. Reports in the literature indicate that these mutations are related to transmissibility efficiency, which may have contributed to the extremely high numbers of cases in this location. In addition, two mutations described here (E796D and R914K) are close and have RMSD that is similar to the mutations M794V and N911K, which have been described in the literature as influential on the performance of the NSP12 enzyme. These data demonstrate the need to monitor the emergence of new mutations in NSP12 in order to better understand their consequences for the treatments currently used and in the design of new drugs.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , Brasil , Proteínas não Estruturais Virais/genética , COVID-19/virologia , COVID-19/transmissão , Mutação/genética , Humanos , Simulação por Computador
3.
J Med Microbiol ; 73(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722305

RESUMO

Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/prevenção & controle , Dengue/imunologia , Vírus da Dengue/imunologia , Vírus da Dengue/genética , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/administração & dosagem , Técnicas de Laboratório Clínico/métodos , Anticorpos Antivirais/sangue , RNA Viral/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética
4.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38722808

RESUMO

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Assuntos
Cobre , Proteínas Intrinsicamente Desordenadas , SARS-CoV-2 , Proteínas não Estruturais Virais , Cobre/química , Cobre/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligação Proteica , Modelos Moleculares , COVID-19/virologia
5.
J Virol ; 98(5): e0006024, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557170

RESUMO

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.


Assuntos
Proteínas Reguladoras de Apoptose , Fator de Iniciação 4A em Eucariotos , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas de Ligação a RNA , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Suínos , Linhagem Celular , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interações Hospedeiro-Patógeno , Proteólise , Humanos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Int J Biol Macromol ; 267(Pt 2): 131629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631585

RESUMO

Current management of HCV infection is based on Direct-Acting Antiviral Drugs (DAAs). However, resistance-associated mutations, especially in the NS3 and NS5B regions are gradually decreasing the efficacy of DAAs. Among the most effective HCV NS3/4A protease drugs, Sofosbuvir also develops resistance due to mutations in the NS3 and NS5B regions. Four mutations at positions A156Y, L36P, Q41H, and Q80K are classified as high-level resistance mutations. The resistance mechanism of HCV NS3/4A protease toward Sofosbuvir caused by these mutations is still unclear, as there is less information available regarding the structural and functional effects of the mutations against Sofosbuvir. In this work, we combined molecular dynamics simulation, molecular mechanics/Generalized-Born surface area calculation, principal component analysis, and free energy landscape analysis to explore the resistance mechanism of HCV NS3/4A protease due to these mutations, as well as compare interaction changes in wild-type. Subsequently, we identified that the mutant form of HCV NS3/4A protease affects the activity of Sofosbuvir. In this study, the resistance mechanism of Sofosbuvir at the atomic level is proposed. The proposed drug-resistance mechanism will provide valuable guidance for the design of HCV drugs.


Assuntos
Antivirais , Farmacorresistência Viral , Hepacivirus , Simulação de Dinâmica Molecular , Mutação , Sofosbuvir , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/química , RNA Helicases DEAD-box , Farmacorresistência Viral/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/enzimologia , Nucleosídeo-Trifosfatase , Serina Endopeptidases , Serina Proteases , Sofosbuvir/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteases Virais
7.
J Virol ; 98(5): e0009324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591899

RESUMO

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Assuntos
Vírus da Panleucopenia Felina , Imunidade Inata , Proteínas não Estruturais Virais , Replicação Viral , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/imunologia , Animais , Gatos , Vírus da Panleucopenia Felina/genética , Vírus da Panleucopenia Felina/imunologia , Linhagem Celular , Mutação , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/imunologia
8.
J Virol ; 98(5): e0190123, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38629840

RESUMO

Many viruses inhibit general host gene expression to limit innate immune responses and gain preferential access to the cellular translational apparatus for their protein synthesis. This process is known as host shutoff. Influenza A viruses (IAVs) encode two host shutoff proteins: nonstructural protein 1 (NS1) and polymerase acidic X (PA-X). NS1 inhibits host nuclear pre-messenger RNA maturation and export, and PA-X is an endoribonuclease that preferentially cleaves host spliced nuclear and cytoplasmic messenger RNAs. Emerging evidence suggests that in circulating human IAVs NS1 and PA-X co-evolve to ensure optimal magnitude of general host shutoff without compromising viral replication that relies on host cell metabolism. However, the functional interplay between PA-X and NS1 remains unexplored. In this study, we sought to determine whether NS1 function has a direct effect on PA-X activity by analyzing host shutoff in A549 cells infected with wild-type or mutant IAVs with NS1 effector domain deletion. This was done using conventional quantitative reverse transcription polymerase chain reaction techniques and direct RNA sequencing using nanopore technology. Our previous research on the molecular mechanisms of PA-X function identified two prominent features of IAV-infected cells: nuclear accumulation of cytoplasmic poly(A) binding protein (PABPC1) and increase in nuclear poly(A) RNA abundance relative to the cytoplasm. Here we demonstrate that NS1 effector domain function augments PA-X host shutoff and is necessary for nuclear PABPC1 accumulation. By contrast, nuclear poly(A) RNA accumulation is not dependent on either NS1 or PA-X-mediated host shutoff and is accompanied by nuclear retention of viral transcripts. Our study demonstrates for the first time that NS1 and PA-X may functionally interact in mediating host shutoff.IMPORTANCERespiratory viruses including the influenza A virus continue to cause annual epidemics with high morbidity and mortality due to the limited effectiveness of vaccines and antiviral drugs. Among the strategies evolved by viruses to evade immune responses is host shutoff-a general blockade of host messenger RNA and protein synthesis. Disabling influenza A virus host shutoff is being explored in live attenuated vaccine development as an attractive strategy for increasing their effectiveness by boosting antiviral responses. Influenza A virus encodes two proteins that function in host shutoff: the nonstructural protein 1 (NS1) and the polymerase acidic X (PA-X). We and others have characterized some of the NS1 and PA-X mechanisms of action and the additive effects that these viral proteins may have in ensuring the blockade of host gene expression. In this work, we examined whether NS1 and PA-X functionally interact and discovered that NS1 is required for PA-X to function effectively. This work significantly advances our understanding of influenza A virus host shutoff and identifies new potential targets for therapeutic interventions against influenza and further informs the development of improved live attenuated vaccines.


Assuntos
Vírus da Influenza A , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Células A549 , Vírus da Influenza A/genética , Interações Hospedeiro-Patógeno , Influenza Humana/virologia , Influenza Humana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Virol ; 98(5): e0034924, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639488

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has rapidly spread worldwide since its emergence in late 2019. Its ongoing evolution poses challenges for antiviral drug development. Coronavirus nsp6, a multiple-spanning transmembrane protein, participates in the biogenesis of the viral replication complex, which accommodates the viral replication-transcription complex. The roles of its structural domains in viral replication are not well studied. Herein, we predicted the structure of the SARS-CoV-2 nsp6 protein using AlphaFold2 and identified a highly folded C-terminal region (nsp6C) downstream of the transmembrane helices. The enhanced green fluorescent protein (EGFP)-fused nsp6C was found to cluster in the cytoplasm and associate with membranes. Functional mapping identified a minimal membrane-associated element (MAE) as the region from amino acids 237 to 276 (LGV-KLL), which is mainly composed of the α-helix H1 and the α-helix H2; the latter exhibits characteristics of an amphipathic helix (AH). Mutagenesis studies and membrane flotation experiments demonstrate that AH-like H2 is required for MAE-mediated membrane association. This MAE was functionally conserved across MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-HKU1, and HCoV-NL63, all capable of mediating membrane association. In a SARS-CoV-2 replicon system, mutagenesis studies of H2 and replacements of H1 and H2 with their homologous counterparts demonstrated requirements of residues on both sides of the H2 and properly paired H1-H2 for MAE-mediated membrane association and viral replication. Notably, mutations I266A and K274A significantly attenuated viral replication without dramatically affecting membrane association, suggesting a dual role of the MAE in viral replication: mediating membrane association as well as participating in protein-protein interactions.IMPORTANCESevere acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) assembles a double-membrane vesicle (DMV) by the viral non-structural proteins for viral replication. Understanding the mechanisms of the DMV assembly is of paramount importance for antiviral development. Nsp6, a multiple-spanning transmembrane protein, plays an important role in the DMV biogenesis. Herein, we predicted the nsp6 structure of SARS-CoV-2 and other human coronaviruses using AlphaFold2 and identified a putative membrane-associated element (MAE) in the highly conserved C-terminal regions of nsp6. Experimentally, we verified a functionally conserved minimal MAE composed of two α-helices, the H1, and the amphipathic helix-like H2. Mutagenesis studies confirmed the requirement of H2 for MAE-mediated membrane association and viral replication and demonstrated a dual role of the MAE in viral replication, by mediating membrane association and participating in residue-specific interactions. This functionally conserved MAE may serve as a novel anti-viral target.


Assuntos
SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , COVID-19/virologia , Membrana Celular/metabolismo , Animais , Chlorocebus aethiops , Betacoronavirus/genética , Betacoronavirus/fisiologia , Betacoronavirus/metabolismo , Células HEK293 , Células Vero , Pandemias , Sequência de Aminoácidos
10.
J Virol ; 98(5): e0004724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38651898

RESUMO

RNA viruses lack proofreading in their RNA polymerases and therefore exist as genetically diverse populations. By exposing these diverse viral populations to selective pressures, viruses with mutations that confer fitness advantages can be enriched. To examine factors important for viral tropism and host restriction, we passaged murine norovirus (MNV) in a human cell line, HeLa cells, to select mutant viruses with increased fitness in non-murine cells. A major determinant of host range is expression of the MNV receptor CD300lf on mouse cells, but additional host factors may limit MNV replication in human cells. We found that viruses passaged six times in HeLa cells had enhanced replication compared with the parental virus. The passaged viruses had several mutations throughout the viral genome, which were primarily located in the viral non-structural coding regions. Although viral attachment was not altered for the passaged viruses, their replication was higher than the parental virus when the entry was bypassed, suggesting that the mutant viruses overcame a post-entry block in human cells. Three mutations in the viral NS1 protein were sufficient for enhanced post-entry replication in human cells. We found that the human cell-adapted MNV variants had reduced fitness in murine BV2 cells and infected mice, with reduced viral titers. These results suggest a fitness tradeoff, where increased fitness in a non-native host cell reduces fitness in a natural host environment. Overall, this work suggests that MNV tropism is determined by the presence of not only the viral receptor but also post-entry factors. IMPORTANCE: Viruses infect specific species and cell types, which is dictated by the expression of host factors required for viral entry as well as downstream replication steps. Murine norovirus (MNV) infects mouse cells, but not human cells. However, human cells expressing the murine CD300lf receptor support MNV replication, suggesting that receptor expression is a major determinant of MNV tropism. To determine whether other factors influence MNV tropism, we selected for variants with enhanced replication in human cells. We identified mutations that enhance MNV replication in human cells and demonstrated that these mutations enhance infection at a post-entry replication step. Therefore, MNV infection of human cells is restricted at both entry and post-entry stages. These results shed new light on factors that influence viral tropism and host range.


Assuntos
Especificidade de Hospedeiro , Mutação , Norovirus , Tropismo Viral , Internalização do Vírus , Replicação Viral , Norovirus/genética , Norovirus/fisiologia , Humanos , Animais , Camundongos , Células HeLa , Infecções por Caliciviridae/virologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Genoma Viral , Receptores Virais/metabolismo , Receptores Virais/genética , Ligação Viral
11.
J Virol ; 98(5): e0019524, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38656209

RESUMO

The host cytoskeleton plays crucial roles in various stages of virus infection, including viral entry, transport, replication, and release. However, the specific mechanisms by which intermediate filaments are involved in orthoflavivirus infection have not been well understood. In this study, we demonstrate that the Japanese encephalitis virus (JEV) remodels the vimentin network, resulting in the formation of cage-like structures that support viral replication. Mechanistically, JEV NS1 and NS1' proteins induce the translocation of CDK1 from the nucleus to the cytoplasm and interact with it, leading to the phosphorylation of vimentin at Ser56. This phosphorylation event recruits PLK1, which further phosphorylates vimentin at Ser83. Consequently, these phosphorylation modifications convert the typically filamentous vimentin into non-filamentous "particles" or "squiggles." These vimentin "particles" or "squiggles" are then transported retrogradely along microtubules to the endoplasmic reticulum, where they form cage-like structures. Notably, NS1' is more effective than NS1 in triggering the CDK1-PLK1 cascade response. Overall, our study provides new insights into how JEV NS1 and NS1' proteins manipulate the vimentin network to facilitate efficient viral replication. IMPORTANCE: Japanese encephalitis virus (JEV) is a mosquito-borne orthoflavivirus that causes severe encephalitis in humans, particularly in Asia. Despite the availability of a safe and effective vaccine, JEV infection remains a significant public health threat due to limited vaccination coverage. Understanding the interactions between JEV and host proteins is essential for developing more effective antiviral strategies. In this study, we investigated the role of vimentin, an intermediate filament protein, in JEV replication. Our findings reveal that JEV NS1 and NS1' proteins induce vimentin rearrangement, resulting in the formation of cage-like structures that envelop the viral replication factories (RFs), thus facilitating efficient viral replication. Our research highlights the importance of the interplay between the cytoskeleton and orthoflavivirus, suggesting that targeting vimentin could be a promising approach for the development of antiviral strategies to inhibit JEV propagation.


Assuntos
Proteína Quinase CDC2 , Proteínas de Ciclo Celular , Vírus da Encefalite Japonesa (Espécie) , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Vimentina , Proteínas não Estruturais Virais , Replicação Viral , Proteína Quinase CDC2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Humanos , Vimentina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosforilação , Animais , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Células HEK293 , Linhagem Celular , Interações Hospedeiro-Patógeno
12.
Viruses ; 16(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675882

RESUMO

As a mosquito-borne flavivirus, Zika virus (ZIKV) has been identified as a global health threat. The virus has been linked to severe congenital disabilities, including microcephaly and other congenital malformations, resulting in fatal intrauterine death. Therefore, developing sensitive and specific methods for the early detection and accurate diagnosis of the ZIKV is essential for controlling its spread and mitigating its impact on public health. Herein, we set up a novel nucleic acid detection system based on Pyrococcus furiosus Argonaute (PfAgo)-mediated nucleic acid detection, targeting the non-structural protein 5 (NS5) region of the ZIKV genome (abbreviated ZIKV-PAND). Without preamplification with the polymerase chain reaction (PCR), the minimum detection concentration (MDC) of ZIKV-PAND was about 10 nM. When introducing an amplification step, the MDC can be dramatically decreased to the aM level (8.3 aM), which is comparable to qRT-PCR assay (1.6 aM). In addition, the diagnostic findings from the analysis of simulated clinical samples or Zika virus samples using ZIKV-PAND show a complete agreement of 100% with qRT-PCR assays. This correlation can aid in the implementation of molecular testing for clinical diagnoses and the investigation of ZIKV infection on an epidemiological scale.


Assuntos
Pyrococcus furiosus , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia , Humanos , Proteínas não Estruturais Virais/genética , Pyrococcus furiosus/genética , Proteínas Argonautas/genética , Sensibilidade e Especificidade , RNA Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Genoma Viral
13.
Viruses ; 16(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675957

RESUMO

Equine hepacivirus (EqHV, Flaviviridae, hepacivirus) is a small, enveloped RNA virus generally causing sub-clinical hepatitis with occasional fatalities. EqHV is reported in equids worldwide, but for Italy data are limited. To address this, a survey study was set up to estimate prevalence at a national level and among different production categories (equestrian; competition; work and meat; reproduction) and national macro-regions (North, Central, South, and Islands). Data obtained testing 1801 horse serum samples by Real-Time RT PCR were compared within the categories and regions. The NS3 fragment of the PCR-positive samples was sequenced by Sanger protocol for phylogenetic and mutational analysis. The tertiary structure of the NS3 protein was also assessed. The estimated national prevalence was 4.27% [1.97-6.59, 95% CI] and no statistical differences were detected among production categories and macro-regions. The phylogenesis confirmed the distribution in Italy of the three known EqHV subtypes, also suggesting a possible fourth sub-type that, however, requires further confirmation. Mutational profiles that could also affect the NS3 binding affinity to the viral RNA were detected. The present paper demonstrates that EqHV should be included in diagnostic protocols when investigating causes of hepatitis, and in quality control protocols for blood derived products due to its parental transmission.


Assuntos
Hepacivirus , Hepatite C , Doenças dos Cavalos , Filogenia , Animais , Itália/epidemiologia , Cavalos/virologia , Doenças dos Cavalos/virologia , Doenças dos Cavalos/epidemiologia , Prevalência , Hepacivirus/genética , Hepacivirus/classificação , Hepacivirus/isolamento & purificação , Hepatite C/epidemiologia , Hepatite C/virologia , Hepatite C/veterinária , Proteínas não Estruturais Virais/genética , Genótipo , RNA Viral/genética
14.
J Vector Borne Dis ; 61(1): 61-71, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648407

RESUMO

BACKGROUND OBJECTIVES: Dengue and chikungunya infections are one of the major health problems that have plagued the human population globally. All dengue virus (DENV) serotypes circulate within Malaysia with particular serotypes dominating in different years/outbreaks. In the state of Kelantan, an increasing number of DENV and chikungunya virus (CHIKV) new cases have been reported, including several deaths. This study aimed to isolate and detect these arboviruses from adult mosquitoes in Kelantan. METHODS: Adult mo squito samples were collected from January to August 2019 and were identified according to gender, species and locality. The isolation of the virus was done in C6/36 cells. Dengue NS1 antigen was carried out using direct mosquito lysate and mosquito culture supernatant. Detection and serotyping of the DENV was performed using multiplex RT-PCR and CHIKV detection using a one-step RT-PCR assay. RESULTS: Of 91 mosquito pools, four were positive for NS1 antigen comprising two pools (2.2%) of male Ae. albopictus (Pulau Melaka and Kubang Siput) and two pools (2.2%) of Ae. aegypti (Kampung Demit Sungai). DENV 1 was detected in one pool (0.9%) of female Ae. albopictus among 114 tested Aedes pools. Two pools of 114 pools (1.7%) from both male Aedes species were positive with double serotypes, DENV 1 and DENV 2 (Pulau Melaka). However, no pool was positive for CHIKV. INTERPRETATION CONCLUSION: The presence of DENV and the main vectors of arboviruses in Kelantan are pertinent indicators of the need to improve vector controls to reduce arbovirus infections among people in the localities.


Assuntos
Aedes , Vírus Chikungunya , Vírus da Dengue , Dengue , Mosquitos Vetores , Animais , Malásia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/classificação , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/classificação , Masculino , Feminino , Aedes/virologia , Mosquitos Vetores/virologia , Dengue/virologia , Febre de Chikungunya/virologia , Humanos , Proteínas não Estruturais Virais/genética , Sorogrupo
15.
Phys Chem Chem Phys ; 26(18): 14046-14061, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38686454

RESUMO

The COVID-19 pandemic, driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates a profound understanding of the virus and its lifecycle. As an RNA virus with high mutation rates, SARS-CoV-2 exhibits genetic variability leading to the emergence of variants with potential implications. Among its key proteins, the RNA-dependent RNA polymerase (RdRp) is pivotal for viral replication. Notably, RdRp forms dimers via non-structural protein (nsp) subunits, particularly nsp7, crucial for efficient viral RNA copying. Similar to the main protease (Mpro) of SARS-CoV-2, there is a possibility that the nsp7 might also undergo mutational selection events to generate more stable and adaptable versions of nsp7 dimer during virus evolution. However, efforts to obtain such cohesive and comprehensive information are lacking. To address this, we performed this study focused on deciphering the molecular intricacies of nsp7 dimerization using a multifaceted approach. Leveraging computational protein design (CPD), machine learning (ML), AlphaFold v2.0-based structural analysis, and several related computational approaches, we aimed to identify critical residues and mutations influencing nsp7 dimer stability and adaptation. Our methodology involved identifying potential hotspot residues within the dimeric nsp7 interface using an interface-based CPD approach. Through Rosetta-based symmetrical protein design, we designed and modulated nsp7 dimerization, considering selected interface residues. Analysis of physicochemical features revealed acceptable structural changes and several structural and residue-specific insights emphasizing the intricate nature of such protein-protein complexes. Our ML models, particularly the random forest regressor (RFR), accurately predicted binding affinities and ML-guided sequence predictions corroborated CPD findings, elucidating potential nsp7 mutations and their impact on binding affinity. Validation against clinical sequencing data demonstrated the predictive accuracy of our approach. Moreover, AlphaFold v2.0 structural analyses validated optimal dimeric configurations of affinity-enhancing designs, affirming methodological precision. Affinity-enhancing designs exhibited favourable energetics and higher binding affinity as compared to their counterparts. The obtained physicochemical properties, molecular interactions, and sequence predictions advance our understanding of SARS-CoV-2 evolution and inform potential avenues for therapeutic intervention against COVID-19.


Assuntos
Aprendizado de Máquina , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , SARS-CoV-2/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Humanos , Multimerização Proteica , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/química , COVID-19/virologia , Mutação , Sequência de Aminoácidos
16.
Virol J ; 21(1): 94, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659036

RESUMO

BACKGROUND: The causative agents of diarrhea, rotavirus B (RVB) and rotavirus C (RVC) are common in adults and patients of all age groups, respectively. Due to the Rotavirus A (RVA) vaccination program, a significant decrease in the number of gastroenteritis cases has been observed globally. The replacement of RVA infections with RVB, RVC, or other related serogroups is suspected due to the possibility of reducing natural selective constraints due to RVA infections. The data available on RVB and RVC incidence are scant due to the lack of cheap and rapid commercial diagnostic assays and the focus on RVA infections. The present study aimed to develop real-time RT‒PCR assays using the data from all genomic RNA segments of human RVB and RVC strains available in the Gene Bank. RESULTS: Among the 11 gene segments, NSP3 and NSP5 of RVB and the VP6 gene of RVC were found to be suitable for real-time RT‒PCR (qRT‒PCR) assays. Fecal specimens collected from diarrheal patients were tested simultaneously for the presence of RVB (n = 192) and RVC (n = 188) using the respective conventional RT‒PCR and newly developed qRT‒PCR assays. All RVB- and RVC-positive specimens were reactive in their respective qRT‒PCR assays and had Ct values ranging between 23.69 and 41.97 and 11.49 and 36.05, respectively. All known positive and negative specimens for other viral agents were nonreactive, and comparative analysis showed 100% concordance with conventional RT‒PCR assays. CONCLUSIONS: The suitability of the NSP5 gene of RVB and the VP6 gene of RVC was verified via qRT‒PCR assays, which showed 100% sensitivity and specificity. The rapid qRT‒PCR assays developed will be useful diagnostic tools, especially during diarrheal outbreaks for testing non-RVA rotaviral agents and reducing the unnecessary use of antibiotics.


Assuntos
Diarreia , Fezes , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Rotavirus , Rotavirus , Rotavirus/genética , Rotavirus/isolamento & purificação , Humanos , Infecções por Rotavirus/virologia , Infecções por Rotavirus/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Fezes/virologia , Diarreia/virologia , Diarreia/diagnóstico , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas não Estruturais Virais/genética , Antígenos Virais/genética , RNA Viral/genética , Proteínas do Capsídeo/genética , Genoma Viral/genética , Gastroenterite/virologia , Gastroenterite/diagnóstico
17.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508309

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Assuntos
Interleucina-13 , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas não Estruturais Virais , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Interleucina-13/metabolismo , Interleucina-13/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Macrófagos Alveolares/imunologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Regulação para Cima
18.
PLoS Pathog ; 20(3): e1011794, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483968

RESUMO

Infection by chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes severe polyarthralgia and polymyalgia, which can last in some people for months to years. Chronic CHIKV disease signs and symptoms are associated with the persistence of viral nucleic acid and antigen in tissues. Like humans and nonhuman primates, CHIKV infection in mice results in the development of robust adaptive antiviral immune responses. Despite this, joint tissue fibroblasts survive CHIKV infection and can support persistent viral replication, suggesting that they escape immune surveillance. Here, using a recombinant CHIKV strain encoding the fluorescent protein VENUS with an embedded CD8+ T cell epitope, SIINFEKL, we observed a marked loss of both MHC class I (MHC-I) surface expression and antigen presentation by CHIKV-infected joint tissue fibroblasts. Both in vivo and ex vivo infected joint tissue fibroblasts displayed reduced cell surface levels of H2-Kb and H2-Db MHC-I proteins while maintaining similar levels of other cell surface proteins. Mutations within the methyl transferase-like domain of the CHIKV nonstructural protein 2 (nsP2) increased MHC-I cell surface expression and antigen presentation efficiency by CHIKV-infected cells. Moreover, expression of WT nsP2 alone, but not nsP2 with mutations in the methyltransferase-like domain, resulted in decreased MHC-I antigen presentation efficiency. MHC-I surface expression and antigen presentation was rescued by replacing VENUS-SIINFEKL with SIINFEKL tethered to ß2-microglobulin in the CHIKV genome, which bypasses the requirement for peptide processing and TAP-mediated peptide transport into the endoplasmic reticulum. Collectively, this work suggests that CHIKV escapes the surveillance of antiviral CD8+ T cells, in part, by nsP2-mediated disruption of MHC-I antigen presentation.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Animais , Camundongos , Apresentação de Antígeno , Replicação Viral , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Epitopos de Linfócito T , Peptídeos/metabolismo
19.
Microb Pathog ; 190: 106633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554778

RESUMO

Interferon-stimulated gene product 15 (ISG15) can be conjugated to substrates through ISGylation. Currently, the E3 ligase for porcine ISGylation remains unclear. Here, we identified porcine HERC5 and HERC6 (pHERC5/6) as ISGylation E3 ligases with pHERC6 acting as a major one by reconstitution of porcine ISGylation system in HEK-293 T cell via co-transfecting E1, E2 and porcine ISG15(pISG15) genes. Meanwhile, our data demonstrated that co-transfection of pISG15 and pHERC5/6 was sufficient to confer ISGylation, suggesting E1 and E2 of ISGylation are interchangeable between human and porcine. Using an immunoprecipitation based ISGylation analysis, our data revealed pHERC6 was a substrate for ISGylation and confirmed that K707 and K993 of pHERC6 were auto-ISGylation sites. Mutation of these sites reduced pHERC6 half-life and inhibited ISGylation, suggesting that auto-ISGylation of pHERC6 was required for effective ISGylation. Conversely, sustained ISGylation induced by overexpression of pISG15 and pHERC6 could be inhibited by a well-defined porcine ISGylation antagonist, the ovarian tumor (OTU) protease domain of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)-nsp2 and PRRSV-nsp1ß, further indicating such method could be used for identification of virus-encoded ISG15 antagonist. In conclusion, our study contributes new insights towards porcine ISGylation system and provides a novel tool for screening viral-encoded ISG15 antagonist.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitinas , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Suínos , Humanos , Células HEK293 , Ubiquitinas/metabolismo , Ubiquitinas/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Citocinas/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética
20.
J Virol ; 98(4): e0157523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38483167

RESUMO

As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE: Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , Humanos , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , COVID-19/virologia , Retículo Endoplasmático/metabolismo , Fosfolipídeos , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA