Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.526
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719748

RESUMO

Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.


Assuntos
Dineínas , Ligação Proteica , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Dineínas/metabolismo , Dineínas/química , Sítios de Ligação , Cinesinas/metabolismo , Cinesinas/química , Cinesinas/genética , Mutação , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Transporte Proteico , Modelos Moleculares , Guanosina Trifosfato/metabolismo
2.
Bone Res ; 12(1): 29, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744829

RESUMO

Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.


Assuntos
Endossomos , Lisossomos , Osteoclastos , Animais , Osteoclastos/metabolismo , Lisossomos/metabolismo , Endossomos/metabolismo , Camundongos , Camundongos Knockout , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Reabsorção Óssea/genética , Transporte Proteico , Camundongos Endogâmicos C57BL , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Diferenciação Celular , Deleção de Genes , Catepsina K/metabolismo , Catepsina K/genética , Feminino , proteínas de unión al GTP Rab7
3.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728007

RESUMO

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Assuntos
Mitofagia , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Mitofagia/genética , Humanos , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Células HeLa , Ligação Proteica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Células HEK293
4.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709385

RESUMO

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Assuntos
Catepsina B , Lisossomos , Pancreatite , Vesículas Secretórias , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Animais , Lisossomos/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/genética , Catepsina B/metabolismo , Catepsina B/genética , Camundongos , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7/metabolismo , Doença Aguda , Células Acinares/metabolismo , Células Acinares/patologia , Tripsinogênio/metabolismo , Tripsinogênio/genética , Ceruletídeo , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
J Cell Sci ; 137(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578235

RESUMO

Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.


Assuntos
Endossomos , ATPases Vacuolares Próton-Translocadoras , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Endossomos/metabolismo , Concentração de Íons de Hidrogênio , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Lisossomos/metabolismo , Células HeLa , Transporte Proteico , Receptor IGF Tipo 2/metabolismo , Receptor IGF Tipo 2/genética , Animais , Proteínas Adaptadoras de Transdução de Sinal
6.
Anticancer Res ; 44(5): 1939-1946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677763

RESUMO

BACKGROUND/AIM: Macropinocytosis is a non-selective form of endocytosis that facilitates the uptake of extracellular substances, such as nutrients and macromolecules, into the cells. In KRAS-driven cancers, including pancreatic ductal adenocarcinoma, macropinocytosis and subsequent lysosomal utilization are known to be enhanced to overcome metabolic stress. In this study, we investigated the role of Casein Kinase 2 (CK2) inhibition in macropinocytosis and subsequent metabolic processes in KRAS mutant cholangiocarcinoma (CCA) cell lines. MATERIALS AND METHODS: The bovine serum albumin (BSA) uptake indicating macropinocytosis was performed by flow cytometry using the HuCCT1 KRAS mutant CCA cell line. To validate macropinosome, the Rab7 and LAMP2 were labeled and analyzed via immunocytochemistry and western blot. The CX-4945 (Silmitasertib), CK2 inhibitor, was used to investigate the role of CK2 in macropinocytosis and subsequent lysosomal metabolism. RESULTS: The TFK-1, a KRAS wild-type CCA cell line, showed only apoptotic morphological changes. However, the HuCCT1 cell line showed macropinocytosis. Although CX-4945 induced morphological changes accompanied by the accumulation of intracellular vacuoles and cell death, the level of macropinocytosis did not change. These intracellular vacuoles were identified as late macropinosomes, representing Rab7+ vesicles before fusion with lysosomes. In addition, CX-4945 suppressed LAMP2 expression following the inhibition of the Akt-mTOR signaling pathway, which interrupts mature macropinosome and lysosomal metabolic utilization. CONCLUSION: Macropinocytosis is used as an energy source in the KRAS mutant CCA cell line HuCCT1. The inhibition of CK2 by CX-4945 leads to cell death in HuCCT1 cells through alteration of the lysosome-dependent metabolism.


Assuntos
Neoplasias dos Ductos Biliares , Caseína Quinase II , Colangiocarcinoma , Lisossomos , Mutação , Naftiridinas , Fenazinas , Pinocitose , Piperazinas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Lisossomos/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Pinocitose/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Caseína Quinase II/antagonistas & inibidores , Piperazinas/farmacologia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , proteínas de unión al GTP Rab7/metabolismo , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética
7.
J Plant Physiol ; 296: 154239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574493

RESUMO

Small GTPase is a type of crucial regulator in eukaryotes. It acts as a molecular switch by binding with GTP and GDP in cytoplasm, affecting various cellular processes. Small GTPase were divided into five subfamilies based on sequence, structure and function: Ras, Rho, Rab, Arf/Sar and Ran, with Rab being the largest subfamily. Members of the Rab subfamily play an important role in regulating complex vesicle transport and microtubule system activity. Plant cells are composed of various membrane-bound organelles, and vesicle trafficking is fundamental to the existence of plants. At present, the function of some Rab members, such as RabA1a, RabD2b/c and RabF2, has been well characterized in plants. This review summarizes the role of Rab GTPase in regulating plant tip growth, morphogenesis, fruit ripening and stress response, and briefly describes the regulatory mechanisms involved. It provides a reference for further alleviating environmental stress, improving plant resistance and even improving fruit quality.


Assuntos
Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico
8.
Genes (Basel) ; 15(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674387

RESUMO

Salinity in plants generates an osmotic and ionic imbalance inside cells that compromises the viability of the plant. Rab GTPases, the largest family within the small GTPase superfamily, play pivotal roles as regulators of vesicular trafficking in plants, including the economically important and globally cultivated tomato (Solanum lycopersicum). Despite their significance, the specific involvement of these small GTPases in tomato vesicular trafficking and their role under saline stress remains poorly understood. In this work, we identified and classified 54 genes encoding Rab GTPases in cultivated tomato, elucidating their genomic distribution and structural characteristics. We conducted an analysis of duplication events within the S. lycopersicum genome, as well as an examination of gene structure and conserved motifs. In addition, we investigated the transcriptional profiles for these Rab GTPases in various tissues of cultivated and wild tomato species using microarray-based analysis. The results showed predominantly low expression in most of the genes in both leaves and vegetative meristem, contrasting with notably high expression levels observed in seedling roots. Also, a greater increase in gene expression in shoots from salt-tolerant wild tomato species was observed under normal conditions when comparing Solanum habrochaites, Solanum pennellii, and Solanum pimpinellifolium with S. lycopersicum. Furthermore, an expression analysis of Rab GTPases from Solanum chilense in leaves and roots under salt stress treatment were also carried out for their characterization. These findings revealed that specific Rab GTPases from the endocytic pathway and the trans-Golgi network (TGN) showed higher induction in plants exposed to saline stress conditions. Likewise, disparities in gene expression were observed both among members of the same Rab GTPase subfamily and between different subfamilies. Overall, this work emphasizes the high degree of conservation of Rab GTPases, their high functional diversification in higher plants, and the essential role in mediating salt stress tolerance and suggests their potential for further exploration of vesicular trafficking mechanisms in response to abiotic stress conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Salino , Solanum lycopersicum , Proteínas rab de Ligação ao GTP , Solanum lycopersicum/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Filogenia , Perfilação da Expressão Gênica/métodos
9.
Mol Biol Rep ; 51(1): 564, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647725

RESUMO

BACKGROUND: Recent studies suggest that hypoxia-inducible factor 1-alpha (HIF-1α) and the small GTPase protein Ras-related protein Rab-22 A (RAB22A) may be colocalized in the cytoplasm and that as a conequence they may enhance the formation of microvesicles in breast cancer cells under hypoxia. Therefore, we sought to determine whether these two proteins are present in intracellular complexes in breast carcinoma cells. METHODS AND RESULTS: Evaluation using molecular docking indicated that HIF-1α and RAB22A interact with each other. Co-immunoprecipitation of endogenous or ectopically expressed HIF-1α and RAB22A proteins in MDA-MB-231 breast cancer cells or HEK-293T cells demonstrated that endogenous HIF-1α and RAB22A can form an intracellular complex; however, transiently expressed HIF-1α and RAB22A failed to interact. Investigating RAB22A and HIF-1α interactions in various cancer cell lines under hypoxia may shed light on their roles in cancer cell survival and progression through regulation of intracellular trafficking by HIF-1α under hypoxic conditions. CONCLUSIONS: Our study is the first to reveal the potential involvement of HIF-1α in intracellular trafficking through physical interactions with the small GTPase protein RAB22A. We discuss the implications of our work on the role of exosomes and microvesicles in tumor invasiveness.


Assuntos
Neoplasias da Mama , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas rab de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Hipóxia Celular , Simulação de Acoplamento Molecular , Ligação Proteica
10.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607975

RESUMO

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Assuntos
Autofagia Mediada por Chaperonas , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Lipólise , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas de Membrana Lisossomal , RNA Interferente Pequeno
11.
Gene ; 915: 148423, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38575100

RESUMO

Rice cytoplasmic male sterility (CMS) provides an exceptional model for studying genetic interaction within plant nuclei given its inheritable trait of non-functional male gametophyte. Gaining a comprehensive understanding of the genes and pathways associated with the CMS mechanism is imperative for improving the vigor of hybrid rice agronomically, such as its productivity. Here, we observed a significant decrease in the expression of a gene named OsRab7 in the anther of the CMS line (SJA) compared to the maintainer line (SJB). OsRab7 is responsible for vesicle trafficking and loss function of OsRab7 significantly reduced pollen fertility and setting rate relative to the wild type. Meanwhile, over-expression of OsRab7 enhanced pollen fertility in the SJA line while a decrease in its expression in the SJB line led to the reduced pollen fertility. Premature tapetum and abnormal development of microspores were observed in the rab7 mutant. The expression of critical genes involved in tapetum development (OsMYB103, OsPTC1, OsEAT1 and OsAP25) and pollen development (OsMSP1, OsDTM1 and OsC4) decreased significantly in the anther of rab7 mutant. Reduced activities of the pDR5::GUS marker in the young panicle and anther of the rab7 mutant were also observed. Furthermore, the mRNA levels of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PINs), auxin response factors (ARFs), and members of the IAA family (IAAs) were all downregulated in the rab7 mutant, indicating its impact on auxin signaling and distribution. In summary, these findings underscore the importance of OsRab7 in rice pollen development and its potential link to cytoplasmic male sterility.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidade/genética , Citoplasma/metabolismo , Citoplasma/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
12.
Free Radic Biol Med ; 218: 120-131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583680

RESUMO

Sepsis-induced acute kidney injury (S-AKI) is the most common type of acute kidney injury (AKI), accompanied by elevated morbidity and mortality rates. This study investigated the mechanism by which lipid droplets (LDs) degraded via autophagy (lipophagy)required for RAB7 regulated ferroptosis in the pathogenesis of S-AKI. Here, we constructed the S-AKI model in vitro and in vivo to elucidate the potential relationship of lipophagy and ferroptosis, and we first confirmed that the activation of lipophagy promoted renal tubular epithelial cell ferroptosis and renal damage in S-AKI. The results showed that lipopolysaccharide (LPS) induced a marked increase in lipid peroxidation and ferroptosis, which were rescued by ferrstain-1 (Fer-1), an inhibitor of ferroptosis. In addition, LPS induced the remarkable activation of RAB7-mediated lipophagy. Importantly, silencing RAB7 alleviated LPS-induced lipid peroxidation and ferroptosis. Thus, the present study demonstrated the potential significant role of ferroptosis and lipophagy in sepsis-induced AKI, and contributed to better understanding of the pathogenesis and treatment targets of AKI.


Assuntos
Injúria Renal Aguda , Autofagia , Ferroptose , Peroxidação de Lipídeos , Lipopolissacarídeos , Sepse , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/etiologia , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Sepse/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Ferroptose/genética , Animais , Camundongos , Humanos , Masculino , Gotículas Lipídicas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
13.
Vet Microbiol ; 293: 110091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626624

RESUMO

Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.


Assuntos
Células Epiteliais , Mastite Bovina , Fagocitose , Infecções Estafilocócicas , Staphylococcus aureus , Proteínas rab de Ligação ao GTP , Animais , Bovinos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Staphylococcus aureus/fisiologia , Feminino , Células Epiteliais/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Mastite Bovina/microbiologia , Glândulas Mamárias Animais/microbiologia , Endossomos/metabolismo , Endossomos/microbiologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Linhagem Celular , Fagossomos/microbiologia
14.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673776

RESUMO

Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.


Assuntos
Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Infecções por Salmonella , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Interações Hospedeiro-Patógeno/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Animais , Evolução Molecular
15.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432637

RESUMO

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Proteínas rab de Ligação ao GTP , Humanos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Fator 6 de Ribosilação do ADP , Mutação com Perda de Função , Citocinese/genética , Masculino , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Cílios/genética , Cílios/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Feminino
16.
Aging (Albany NY) ; 16(5): 4169-4190, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431306

RESUMO

BACKGROUND: Multiple myeloma (MM) is an incurable malignant plasma cell disease. We explored the role of RAB22A in exosome secretion, epithelial-mesenchymal transition (EMT) and immune regulation. METHODS: We obtained MM samples from Gene Expression Omnibus (GEO) data sets. We downloaded the "IOBR" package, and used the "PCA" and "ssGSEA" algorithms to calculate the EMT scores and exosome scores. The "CIBERSORT" package was used to analyze the infiltration of immune cells. We extracted the exosomes of mesenchymal stem cell (MSC) to verify the biological function of RAB22A. RESULTS: The expression level of RAB22A in smoldering multiple myeloma (SMM) and MM patients was significantly higher than that in normal people and monoclonal gammopathy of undetermined significance (MGUS) patients, and the expression level of RAB22A in relapse MM patients was significantly higher than that in newly diagnosed patients. The EMT scores and exosome scores of high RAB22A group were significantly higher than those of low RAB22A group, and the exosome scores of MSC in recurrent patients were significantly higher than those of newly diagnosed patients. In addition, the infiltration levels of monocyte, NK cells resting, eosinophils, T cells regulatory and T cells CD4 memory activated were positively correlated with RAB22A. After down-regulating the expression of RAB22A in MM-MSC, the secretion of exosomes decreased. Compared with the exosomes of MSC in si-RAB22A group, the exosomes in control group significantly promoted the proliferation of MM. CONCLUSIONS: RAB22A is a potential therapeutic target to improve the prognosis of MM, which is closely related to exosome secretion, EMT and immune cell infiltration.


Assuntos
Exossomos , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Exossomos/metabolismo , Prognóstico , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Doença Crônica , Recidiva , Progressão da Doença , Proteínas rab de Ligação ao GTP/genética
17.
Plant Sci ; 343: 112074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548138

RESUMO

As a member of the small GTPases family, Rab GTPases play a key role in specifying transport pathways in the intracellular membrane trafficking system and are involved in plant growth and development. By quantitative trait locus (QTL) mapping, PdRabG3f was identified as a candidate gene associated with shoot height in a hybrid offspring of Populus deltoides 'Danhong' × Populus simonii 'Tongliao1'. PdRabG3f localized to the nucleus, endoplasmic reticulum and tonoplast and was primarily expressed in the xylem and cambium. Overexpression of PdRabG3f in Populus alba × Populus glandulosa (84 K poplar) had inhibitory effects on vertical and radical growth. In the transgenic lines, there were evident changes in the levels of 15 gibberellin (GA) derivatives, and the application of exogenous GA3 partially restored the phenotypes mediated by GAs deficiency. The interaction between PdRabG3f and RIC4, which was the GA-responsive factor, provided additional explanation for PdRabG3f's inhibitory effect on poplar growth. RNA-seq analysis revealed differentially expressed genes (DEGs) associated with cell wall, xylem, and gibberellin response. PdRabG3f interfering endogenous GAs levels in poplar might involve the participation of MYBs and ultimately affected internode elongation and xylem development. This study provides a potential mechanism for gibberellin-mediated regulation of plant growth through Rab GTPases.


Assuntos
Giberelinas , Populus , Giberelinas/metabolismo , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Plantas Geneticamente Modificadas/genética
18.
Cell Rep ; 43(4): 114010, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38536817

RESUMO

Although the small GTPase RAB37 acts as an organizer of autophagosome biogenesis, the upstream regulatory mechanism of autophagy via guanosine diphosphate (GDP)-guanosine triphosphate (GTP) exchange in maintaining retinal function has not been determined. We found that retinitis pigmentosa GTPase regulator (RPGR) is a guanine nucleotide exchange factor that activates RAB37 by accelerating GDP-to-GTP exchange. RPGR directly interacts with RAB37 via the RPGR-RCC1-like domain to promote autophagy through stimulating exchange. Rpgr knockout (KO) in mice leads to photoreceptor degeneration owing to autophagy impairment in the retina. Notably, the retinopathy phenotypes of Rpgr KO retinas are rescued by the adeno-associated virus-mediated transfer of pre-trans-splicing molecules, which produce normal Rpgr mRNAs via trans-splicing in the Rpgr KO retinas. This rescue upregulates autophagy through the re-expression of RPGR in KO retinas to accelerate GDP-to-GTP exchange; thus, retinal homeostasis reverts to normal. Taken together, these findings provide an important missing link for coordinating RAB37 GDP-GTP exchange via the RPGR and retinal homeostasis by autophagy regulation.


Assuntos
Autofagia , Proteínas de Transporte , Proteínas do Olho , Fatores de Troca do Nucleotídeo Guanina , Camundongos Knockout , Retina , Proteínas rab de Ligação ao GTP , Animais , Retina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Camundongos , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Células HEK293 , Camundongos Endogâmicos C57BL , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo , Ligação Proteica
19.
Int J Biol Macromol ; 263(Pt 1): 130219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367785

RESUMO

Dysfunctional mitophagy contributes to Parkinson's disease (PD) by affecting dopamine-producing neurons. Mutations in parkin and pink1 genes, linked to familial PD, impede the removal of damaged mitochondria. Previous studies suggested Rab11's involvement in mitophagy alongside Parkin and Pink1. Additionally, mitochondria-endoplasmic reticulum contact sites (MERCS) regulate cellular functions, including mitochondrial quality control and calcium regulation. Our study explored whether activating mitophagy triggers the unfolded protein response and ER stress pathway in SH-SY5Y human cells. We induced a PD-like state by exposing undifferentiated SH-SY5Y cells to rotenone, an established PD-inducing agent. This led to reduced Rab11 and PERK- expression while increasing ATP5a, a mitochondrial marker, when Rab11 was overexpressed. Our findings suggest that enhancing endosomal trafficking can mitigate ER stress by regulating mitochondria, rescuing cells from apoptosis. Furthermore, we assessed the therapeutic potential of Rab11, both alone and in combination with L-Dopa, in a Drosophila PD model. In summary, our research underscores the role of mitophagy dysfunction in PD pathogenesis, highlighting Rab11's importance in alleviating ER stress and preserving mitochondrial function. It also provides insights into potential PD management strategies, including the synergistic use of Rab11 and L-Dopa.


Assuntos
Proteínas de Drosophila , Neuroblastoma , Doença de Parkinson , Animais , Humanos , Levodopa , Rotenona/farmacologia , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Drosophila/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
20.
PLoS Genet ; 20(2): e1011152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315726

RESUMO

Endocytosis and endolysosomal trafficking are essential for almost all aspects of physiological functions of eukaryotic cells. As our understanding on these membrane trafficking events are mostly from studies in yeast and cultured mammalian cells, one challenge is to systematically evaluate the findings from these cell-based studies in multicellular organisms under physiological settings. One potentially valuable in vivo system to address this challenge is the vitellogenic oocyte in Drosophila, which undergoes extensive endocytosis by Yolkless (Yl), a low-density lipoprotein receptor (LDLR), to uptake extracellular lipoproteins into oocytes and package them into a specialized lysosome, the yolk granule, for storage and usage during later development. However, by now there is still a lack of sufficient understanding on the molecular and cellular processes that control yolk granule biogenesis. Here, by creating genome-tagging lines for Yl receptor and analyzing its distribution in vitellogenic oocytes, we observed a close association of different endosomal structures with distinct phosphoinositides and actin cytoskeleton dynamics. We further showed that Rab5 and Rab11, but surprisingly not Rab4 and Rab7, are essential for yolk granules biogenesis. Instead, we uncovered evidence for a potential role of Rab7 in actin regulation and observed a notable overlap of Rab4 and Rab7, two Rab GTPases that have long been proposed to have distinct spatial distribution and functional roles during endolysosomal trafficking. Through a small-scale RNA interference (RNAi) screen on a set of reported Rab5 effectors, we showed that yolk granule biogenesis largely follows the canonical endolysosomal trafficking and maturation processes. Further, the data suggest that the RAVE/V-ATPase complexes function upstream of or in parallel with Rab7, and are involved in earlier stages of endosomal trafficking events. Together, our study provides s novel insights into endolysosomal pathways and establishes vitellogenic oocyte in Drosophila as an excellent in vivo model for dissecting the highly complex membrane trafficking events in metazoan.


Assuntos
Drosophila , Endossomos , Animais , Drosophila/genética , Drosophila/metabolismo , Endossomos/genética , Endossomos/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Oócitos/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA