Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Viruses ; 16(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205213

RESUMO

Emergence of newer variants of SARS-CoV-2 underscores the need for effective antivirals to complement the vaccination program in managing COVID-19. The multi-functional papain-like protease (PLpro) of SARS-CoV-2 is an essential viral protein that not only regulates the viral replication but also modulates the host immune system, making it a promising therapeutic target. To this end, we developed an in vitro interferon stimulating gene 15 (ISG15)-based Förster resonance energy transfer (FRET) assay and screened the National Cancer Institute (NCI) Diversity Set VI compound library, which comprises 1584 small molecules. Subsequently, we assessed the PLpro enzymatic activity in the presence of screened molecules. We identified three potential PLpro inhibitors, namely, NSC338106, 651084, and 679525, with IC50 values in the range from 3.3 to 6.0 µM. These molecules demonstrated in vitro inhibition of the enzyme activity and exhibited antiviral activity against SARS-CoV-2, with EC50 values ranging from 0.4 to 4.6 µM. The molecular docking of all three small molecules to PLpro suggested their specificity towards the enzyme's active site. Overall, our study contributes promising prospects for further developing potential antivirals to combat SARS-CoV-2 infection.


Assuntos
Antivirais , Proteases Semelhantes à Papaína de Coronavírus , Citocinas , Ensaios de Triagem em Larga Escala , SARS-CoV-2 , Ubiquitinas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/química , Humanos , Ensaios de Triagem em Larga Escala/métodos , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Citocinas/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/química , Ubiquitinas/antagonistas & inibidores , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Transferência Ressonante de Energia de Fluorescência , COVID-19/virologia
2.
J Enzyme Inhib Med Chem ; 39(1): 2387417, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39163165

RESUMO

Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.


Assuntos
Simulação de Acoplamento Molecular , Pirimidinas , SARS-CoV-2 , Sulfonas , Humanos , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , Sulfonas/farmacologia , Sulfonas/química , Pirimidinas/química , Pirimidinas/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade
3.
Nat Commun ; 15(1): 6219, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043718

RESUMO

Papain-like protease (PLpro) is an attractive drug target for SARS-CoV-2 because it is essential for viral replication, cleaving viral poly-proteins pp1a and pp1ab, and has de-ubiquitylation and de-ISGylation activities, affecting innate immune responses. We employ Deep Mutational Scanning to evaluate the mutational effects on PLpro enzymatic activity and protein stability in mammalian cells. We confirm features of the active site and identify mutations in neighboring residues that alter activity. We characterize residues responsible for substrate binding and demonstrate that although residues in the blocking loop are remarkably tolerant to mutation, blocking loop flexibility is important for function. We additionally find a connected network of mutations affecting activity that extends far from the active site. We leverage our library to identify drug-escape variants to a common PLpro inhibitor scaffold and predict that plasticity in both the S4 pocket and blocking loop sequence should be considered during the drug design process.


Assuntos
Mutação , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Domínio Catalítico , Antivirais/farmacologia , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Modelos Moleculares , Células HEK293
5.
Antiviral Res ; 228: 105944, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914283

RESUMO

SARS-CoV-2 papain-like protease (PLpro) could facilitate viral replication and host immune evasion by respectively hydrolyzing viral polyprotein and host ubiquitin conjugates, thereby rendering itself as an important antiviral target. Yet few noncovalent PLpro inhibitors of SARS-CoV-2 have been reported with improved directed towards pathogenic deubiquitinating activities inhibition. Herein, we report that coronavirus PLpro proteases have distinctive substrate bias and are conserved to deubiquitylate K63-linked polyubiquitination, thereby attenuating host type I interferon response. We identify a noncovalent compound specifically optimized towards halting the K63-deubiquitinase activity of SARS-CoV-2 PLpro, but not other coronavirus (CoV) counterparts or host deubiquitinase. Contrasting with GRL-0617, a SARS-CoV-1 PLpro inhibitor, SIMM-036 is 50-fold and 7-fold (half maximal inhibitory concentration (IC50)) more potent to inhibit viral replication during SARS-CoV-2 infection and restore the host interferon-ß (IFN-ß) response in human angiotensin-converting enzyme 2 (hACE2)-HeLa cells, respectively. Structure-activity relationship (SAR) analysis further reveals the importance of BL2 groove of PLpro, which could determine the selectivity of K63-deubiquitinase activity of the enzyme.


Assuntos
Antivirais , SARS-CoV-2 , Replicação Viral , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , COVID-19/virologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Ubiquitinação/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Células Vero , Chlorocebus aethiops , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Animais , Células HEK293
6.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869150

RESUMO

Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.


Assuntos
Simulação de Dinâmica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimologia , Zika virus/enzimologia , Fluxo de Trabalho , RNA Helicases/química , RNA Helicases/metabolismo , Humanos , DNA Helicases/química , DNA Helicases/metabolismo , Antivirais/química , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Sítios de Ligação , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
7.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932170

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global COVID-19 pandemic, challenging healthcare systems worldwide. Effective therapeutic strategies against this novel coronavirus remain limited, underscoring the urgent need for innovative approaches. The present research investigates the potential of cannabis compounds as therapeutic agents against SARS-CoV-2 through their interaction with the virus's papain-like protease (PLpro) protein, a crucial element in viral replication and immune evasion. Computational methods, including molecular docking and molecular dynamics (MD) simulations, were employed to screen cannabis compounds against PLpro and analyze their binding mechanisms and interaction patterns. The results showed cannabinoids with binding affinities ranging from -6.1 kcal/mol to -4.6 kcal/mol, forming interactions with PLpro. Notably, Cannabigerolic and Cannabidiolic acids exhibited strong binding contacts with critical residues in PLpro's active region, indicating their potential as viral replication inhibitors. MD simulations revealed the dynamic behavior of cannabinoid-PLpro complexes, highlighting stable binding conformations and conformational changes over time. These findings shed light on the mechanisms underlying cannabis interaction with SARS-CoV-2 PLpro, aiding in the rational design of antiviral therapies. Future research will focus on experimental validation, optimizing binding affinity and selectivity, and preclinical assessments to develop effective treatments against COVID-19.


Assuntos
Antivirais , Canabinoides , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Canabinoides/farmacologia , Canabinoides/química , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos
8.
J Virol ; 98(4): e0157523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38483167

RESUMO

As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE: Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.


Assuntos
COVID-19 , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , Humanos , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , COVID-19/virologia , Retículo Endoplasmático/metabolismo , Fosfolipídeos , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
9.
Science ; 383(6690): 1434-1440, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547259

RESUMO

The emergence of SARS-CoV-2 variants and drug-resistant mutants calls for additional oral antivirals. The SARS-CoV-2 papain-like protease (PLpro) is a promising but challenging drug target. We designed and synthesized 85 noncovalent PLpro inhibitors that bind to a recently discovered ubiquitin binding site and the known BL2 groove pocket near the S4 subsite. Leads inhibited PLpro with the inhibitory constant Ki values from 13.2 to 88.2 nanomolar. The co-crystal structures of PLpro with eight leads revealed their interaction modes. The in vivo lead Jun12682 inhibited SARS-CoV-2 and its variants, including nirmatrelvir-resistant strains with EC50 from 0.44 to 2.02 micromolar. Oral treatment with Jun12682 improved survival and reduced lung viral loads and lesions in a SARS-CoV-2 infection mouse model, suggesting that PLpro inhibitors are promising oral SARS-CoV-2 antiviral candidates.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Protease de Coronavírus , Desenho de Fármacos , SARS-CoV-2 , Animais , Camundongos , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Modelos Animais de Doenças , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Inibidores de Protease de Coronavírus/administração & dosagem , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Administração Oral , Cristalografia por Raios X , Relação Estrutura-Atividade , Carga Viral/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
10.
J Mol Biol ; 435(24): 168337, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37918563

RESUMO

Identifying residues critical to protein-protein binding and efficient design of stable and specific protein binders are challenging tasks. Extending beyond the direct contacts in a protein-protein binding interface, our study employs computational modeling to reveal the essential network of residue interactions and dihedral angle correlations critical in protein-protein recognition. We hypothesized that mutating residues exhibiting highly correlated dynamic motion within the interaction network could efficiently optimize protein-protein interactions to create tight and selective protein binders. We tested this hypothesis using the ubiquitin (Ub) and MERS coronaviral papain-like protease (PLpro) complex, since Ub is a central player in multiple cellular functions and PLpro is an antiviral drug target. Our designed ubiquitin variant (UbV) hosting three mutated residues displayed a ∼3,500-fold increase in functional inhibition relative to wild-type Ub. Further optimization of two C-terminal residues within the Ub network resulted in a KD of 1.5 nM and IC50 of 9.7 nM for the five-point Ub mutant, eliciting 27,500-fold and 5,500-fold enhancements in affinity and potency, respectively, as well as improved selectivity, without destabilizing the UbV structure. Our study highlights residue correlation and interaction networks in protein-protein interactions, and introduces an effective approach to design high-affinity protein binders for cell biology research and future therapeutics.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , Coronavírus da Síndrome Respiratória do Oriente Médio , Ubiquitina , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Ligação Proteica , Ubiquitina/química , Ubiquitina/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo
11.
PLoS Pathog ; 19(8): e1011614, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37651466

RESUMO

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Replicação Viral , Animais , Humanos , Camundongos , Alanina , Antivirais , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902093

RESUMO

We report synthesis of a novel 1,2,3,4-tetrahydroquinazoline derivative, named 2-(6,8-dibromo-3-(4-hydroxycyclohexyl)-1,2,3,4-tetrahydroquinazolin-2-yl)phenol (1), which was obtained from the hydrochloride of 4-((2-amino-3,5-dibromobenzyl)amino)cyclohexan-1-ol (ambroxol hydrochloride) and salicylaldehyde in EtOH. The resulting compound was produced in the form of colorless crystals of the composition 1∙0.5EtOH. The formation of the single product was confirmed by the IR and 1H spectroscopy, single-crystal and powder X-ray diffraction, and elemental analysis. The molecule of 1 contains a chiral tertiary carbon of the 1,2,3,4-tetrahydropyrimidine fragment and the crystal structure of 1∙0.5EtOH is a racemate. Optical properties of 1∙0.5EtOH were revealed by UV-vis spectroscopy in MeOH and it was established that the compound absorbs exclusively in the UV region up to about 350 nm. 1∙0.5EtOH in MeOH exhibits dual emission and the emission spectra contains bands at about 340 and 446 nm upon excitation at 300 and 360 nm, respectively. The DFT calculations were performed to verify the structure as well as electronic and optical properties of 1. ADMET properties of the R-isomer of 1 were evaluated using the SwissADME, BOILED-Egg, and ProTox-II tools. As evidenced from the blue dot position in the BOILED-Egg plot, both human blood-brain barrier penetration and gastrointestinal absorption properties are positive with the positive PGP effect on the molecule. Molecular docking was applied to examine the influence of the structures of both R-isomer and S-isomer of 1 on a series of the SARS-CoV-2 proteins. According to the docking analysis results, both isomers of 1 were found to be active against all the applied SARS-CoV-2 proteins with the best binding affinities with Papain-like protease (PLpro) and nonstructural protein 3 (Nsp3_range 207-379-AMP). Ligand efficiency scores for both isomers of 1 inside the binding sites of the applied proteins were also revealed and compared with the initial ligands. Molecular dynamics simulations were also applied to evaluate the stability of complexes of both isomers with Papain-like protease (PLpro) and nonstructural protein 3 (Nsp3_range 207-379-AMP). The complex of the S-isomer with Papain-like protease (PLpro) was found to be highly unstable, while the other complexes are stable.


Assuntos
Ambroxol , COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Quinazolinas , SARS-CoV-2 , Humanos , Ambroxol/análogos & derivados , Ambroxol/farmacocinética , Ambroxol/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Quinazolinas/química , Quinazolinas/farmacocinética , Quinazolinas/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química
13.
J Med Chem ; 65(22): 15227-15237, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36356292

RESUMO

Severe acute respiratory syndrome-coronavirus-1/2 (SARS-CoV-1/2) macrodomain 3 (Mac3) is critical for replication and transcription of the viral genome and is therefore a potential therapeutic target. Here, we solved the crystal structure of SARS-CoV-2 Mac3, which reveals a small-molecule binding pocket. Two low-molecular-weight drugs, oxaprozin and meclomen, induced different patterns of nuclear magnetic resonance (NMR) chemical shift perturbations (CSPs). Meclomen binds to site I of SARS-CoV-2 Mac3 with binding pose determined by NMR CSP and transferred paramagnetic relaxation enhancement, while oxaprozin binds to site II as revealed by the crystal structure. Interestingly, oxaprozin and meclomen both perturb residues in site I of SARS-CoV Mac3. Fluorescence polarization experiments further demonstrated that oxaprozin and meclomen inhibited the binding of DNA-G4s to SARS-CoV-2 Mac3. Our work identified two adjacent ligand-binding sites of SARS-CoV-2 Mac3 that shall facilitate structure-guided fragment linking of these compounds for more potent inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Humanos , Sítios de Ligação , Ácido Meclofenâmico , Oxaprozina , Proteínas não Estruturais Virais/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química
14.
Protein Pept Lett ; 29(7): 574-583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657040

RESUMO

The coronavirus family consists of pathogens that seriously affect human and animal health. They mostly cause respiratory or enteric diseases, which can be severe and life-threatening, such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome (SARS), and Middle East Respiratory Syndrome (MERS) in humans. The conserved coronaviral papain-like protease is an attractive antiviral drug target because it is essential for coronaviral replication, and it also inhibits host innate immune responses. This review focuses on the latest research progress relating to the mechanism of coronavirus infection, the structural and functional characteristics of coronavirus papain-like protease, and the potent inhibitors of the protease.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Proteases Semelhantes à Papaína de Coronavírus/química , Animais , Antivirais/química , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Humanos , Papaína/química , Peptídeo Hidrolases/química , Inibidores de Proteases/farmacologia , Tratamento Farmacológico da COVID-19
15.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209006

RESUMO

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Assuntos
Artemisia/química , COVID-19/enzimologia , Cromonas/química , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Tratamento Farmacológico da COVID-19
16.
ChemistryOpen ; 11(2): e202100248, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103413

RESUMO

In the current pandemic, finding an effective drug to prevent or treat the infection is the highest priority. A rapid and safe approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 PLpro promotes viral replication and modulates the host immune system, resulting in inhibition of the host antiviral innate immune response, and therefore is an attractive drug target. In this study, we used a combined in silico virtual screening for candidates for SARS-CoV-2 PLpro protease inhibitors. We used the Informational spectrum method applied for Small Molecules for searching the Drugbank database followed by molecular docking. After in silico screening of drug space, we identified 44 drugs as potential SARS-CoV-2 PLpro inhibitors that we propose for further experimental testing.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/química , SARS-CoV-2/química , COVID-19 , Humanos , Simulação de Acoplamento Molecular
17.
J Med Chem ; 65(1): 876-884, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34981929

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic, a global health threat, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 papain-like cysteine protease (PLpro) was recognized as a promising drug target because of multiple functions in virus maturation and antiviral immune responses. Inhibitor GRL0617 occupied the interferon-stimulated gene 15 (ISG15) C-terminus-binding pocket and showed an effective antiviral inhibition. Here, we described a novel peptide-drug conjugate (PDC), in which GRL0617 was linked to a sulfonium-tethered peptide derived from PLpro-specific substrate LRGG. The EM-C and EC-M PDCs showed a promising in vitro IC50 of 7.40 ± 0.37 and 8.63 ± 0.55 µM, respectively. EC-M could covalently label PLpro active site C111 and display anti-ISGylation activities in cellular assays. The results represent the first attempt to design PDCs composed of stabilized peptide inhibitors and GRL0617 to inhibit PLpro. These novel PDCs provide promising opportunities for antiviral drug design.


Assuntos
Compostos de Anilina/química , Antivirais/metabolismo , Benzamidas/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Desenho de Fármacos , Naftalenos/química , Peptídeos/química , SARS-CoV-2/enzimologia , Compostos de Anilina/metabolismo , Compostos de Anilina/farmacologia , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzamidas/metabolismo , Benzamidas/farmacologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteases Semelhantes à Papaína de Coronavírus/química , Citocinas/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Naftalenos/metabolismo , Naftalenos/farmacologia , SARS-CoV-2/isolamento & purificação , Ubiquitinas/química , Tratamento Farmacológico da COVID-19
18.
J Biomol Struct Dyn ; 40(7): 3071-3081, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33200683

RESUMO

Novel coronavirus SARS-CoV-2 has infected 18 million people with 700,000+ mortalities worldwide and this deadly numeric figure is rapidly rising. With very few success stories, the therapeutic targeting of this epidemic has been mainly attributed to main protease (Mpro), whilst Papain-like proteases (PLpro) also plays a vital role in the processing of replicase polyprotein. Multifunctional roles of PLpro such as viral polypeptide cleavage, de-ISGlyation and immune suppression have made it a promising drug target for therapeutic interventions. Whilst there have been a number of studies and others are on-going on repurposing and new-small molecule screening, albeit previously FDA approved drugs viz. Chloroquine (CQ) and Hydroxychloroquine (HCQ) have only been found effective against this pandemic. Inspired by this fact, we have carried out molecular docking and dynamics simulation studies of FDA approved CQ and HCQ against SARS-CoV-2 PLpro. The end aim is to characterise the binding mode of CQ and HCQ and identify the key amino acid residues involved in the mechanism of action. Further, molecular dynamics simulations (MDS) were carried out with the docked complex to search for the conformational space and for understanding the integrity of binding mode. We showed that the CQ and HCQ can bind with better binding affinity with PLpro as compared to reference known PLpro inhibitor. Based on the presented findings, it can be anticipated that the SARS-CoV-2 PLpro may act as molecular target of CQ and HCQ, and can be projected for further exploration to design potent inhibitors of SARS-CoV-2 PLpro in the near future.


Assuntos
Tratamento Farmacológico da COVID-19 , Cloroquina , Proteases Semelhantes à Papaína de Coronavírus , Hidroxicloroquina , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Cloroquina/química , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Hidroxicloroquina/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Papaína/química
19.
Mol Biotechnol ; 64(1): 1-8, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34420183

RESUMO

Because of the essential roles of SARS-CoV-2 papain-like protease (PLpro) in the viral polyprotein processing and suppression of host immune responses, it is a crucial target for drug discovery against COVID-19. To develop robust biochemical methodologies for inhibitor screening against PLpro, extensive characterization of recombinant protein is important. Here we report cloning, expression, and purification of the recombinant SARS-CoV-2 PLpro, and explore various parameters affecting its stability and the catalytic activity. We also report the optimum conditions which should be used for high-throughput inhibitor screening using a fluorogenic tetrapeptide substrate.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Cumarínicos/química , Cumarínicos/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Dimetil Sulfóxido/química , Difusão Dinâmica da Luz , Ácido Edético/química , Estabilidade Enzimática , Fluorometria/métodos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Peptídeos/química , Peptídeos/metabolismo , Temperatura
20.
J Virol ; 96(1): e0137221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643430

RESUMO

Coronaviral papain-like proteases (PLpros) are essential enzymes that mediate not only the proteolytic processes of viral polyproteins during virus replication but also the deubiquitination and deISGylation of cellular proteins that attenuate host innate immune responses. Therefore, PLpros are attractive targets for antiviral drug development. Here, we report the crystal structure of papain-like protease 2 (PLP2) of porcine epidemic diarrhea virus (PEDV) in complex with ubiquitin (Ub). The X-ray structural analyses reveal that PEDV PLP2 interacts with the Ub substrate mainly through the Ub core region and C-terminal tail. Mutations of Ub-interacting residues resulted in a moderately or completely abolished deubiquitinylating function of PEDV PLP2. In addition, our analyses also indicate that 2-residue-extended blocking loop 2 at the S4 subsite contributes to the substrate selectivity and binding affinity of PEDV PLP2. Furthermore, the PEDV PLP2 Glu99 residue, conserved in alphacoronavirus PLpros, was found to govern the preference of a positively charged P4 residue of peptidyl substrates. Collectively, our data provided structure-based information for the substrate binding and selectivity of PEDV PLP2. These findings may help us gain insights into the deubiquitinating (DUB) and proteolytic functions of PEDV PLP2 from a structural perspective. IMPORTANCE Current challenges in coronaviruses (CoVs) include a comprehensive understanding of the mechanistic effects of associated enzymes, including the 3C-like and papain-like proteases. We have previously reported that the PEDV PLP2 exhibits a broader substrate preference, superior DUB function, and inferior peptidase activity. However, the structural basis for these functions remains largely unclear. Here, we show the high-resolution X-ray crystal structure of PEDV PLP2 in complex with Ub. Integrated structural and biochemical analyses revealed that (i) three Ub core-interacting residues are essential for DUB function, (ii) 2-residue-elongated blocking loop 2 regulates substrate selectivity, and (iii) a conserved glutamate residue governs the substrate specificity of PEDV PLP2. Collectively, our findings provide not only structural insights into the catalytic mechanism of PEDV PLP2 but also a model for developing antiviral strategies.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/química , Vírus da Diarreia Epidêmica Suína/química , Coronavirus/química , Coronavirus/classificação , Coronavirus/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Cristalografia por Raios X , Mutação , Vírus da Diarreia Epidêmica Suína/enzimologia , Vírus da Diarreia Epidêmica Suína/genética , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA