Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-39377443

RESUMO

During infection, the hepatitis C virus (HCV) can evade immune response and cause chronic disease. Formation of effective T-cell response is important for the control of HCV infection. Dendritic cells derived from peripheral blood monocytes activated by immunodominant epitopes of the pathogen can effectively stimulate T-lymphocytes. Previously, we obtained recombinant proteins containing cytotoxic T-lymphocyte epitopes of NS3 and NS4ab proteins of HCV, the T-helper epitope PADRE, and self-assembling peptides that cause the formation of nanoparticles. Here, we studied the activation of human dendritic cells isolated from peripheral blood monocytes and from monocytes derived from induced pluripotent stem cells. Both types of dendritic cells effectively respond to activation by recombinant HCV proteins and stimulated lymphocytes along the Th1 pathway. Recombinant nanoparticles induced more efficient responses. These results open prospects for immunotherapy of patients with chronic hepatitis C using activated dendritic cells derived from their induced pluripotent stem cells.


Assuntos
Células Dendríticas , Hepacivirus , Células-Tronco Pluripotentes Induzidas , Ativação Linfocitária , Células Dendríticas/imunologia , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Hepacivirus/imunologia , Ativação Linfocitária/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Monócitos/imunologia , Epitopos de Linfócito T/imunologia , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Diferenciação Celular/imunologia , Antígenos da Hepatite C/imunologia , Células Th1/imunologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Proteases Virais , Serina Endopeptidases , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
2.
Mol Biol (Mosk) ; 58(2): 282-294, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39355885

RESUMO

The tick-borne encephalitis virus (TBEV) strain C11-13 (GenBank acc. no. OQ565596) of the Siberian genotype was previously isolated from the brain of a deceased person. TBEV C11-13 variants obtained at passages 3 and 8 in SPEV cells were inoculated into the brains of white mice for subsequent passages. Full genome sequences of all virus variants were analyzed by high-throughput sequencing. A total of 41 single nucleotide substitutions were found to occur mainly in the genes for the nonstructural proteins NS3 and NS5 (GenBank MF043953, OP902894, and OP902895), and 12 amino acid substitutions were identified in the deduced protein sequences. Reverse nucleotide and amino acid substitutions were detected after three passages through mouse brains. The substitutions restored the primary structures that were characteristic of the isolate C11-13 from a human patient and changed during the eight subsequent passages in SPEV cells. In addition, the 3'-untranslated region (3'-UTR) of the viral genome increased by 306 nt. The Y3 and Y2 3'-UTR elements were found to contain imperfect L and R repeats, which were probably associated with inhibition of cellular XRN1 RNase and thus involved in the formation of subgenomic flaviviral RNAs (sfRNAs). All TBEV variants showed high-level reproduction in both cell cultures and mouse brains. The genomic changes that occurred during successive passages of TBEV are most likely due to its significant genetic variability, which ensures its efficient reproduction in various hosts and its broad distribution in various climatic zones.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Genoma Viral , Proteínas não Estruturais Virais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Animais , Camundongos , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Regiões 3' não Traduzidas/genética , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/genética , Substituição de Aminoácidos , Cultura de Vírus/métodos , Encéfalo/virologia , Encéfalo/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Linhagem Celular , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
3.
Emerg Microbes Infect ; 13(1): 2417864, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39404735

RESUMO

It is believed that DNA double-strand breaks induced by Zika virus (ZIKV) infection in pregnant women is a main reason of brain damage (e.g. microcephaly, severe brain malformation, and neuropathy) in newborn babies [1,2], but its underlying mechanism is poorly understood. In this study, we report that the depletion of ERp57, a member of the protein disulphide isomerase (PDI) family, leads to the limited production of ZIKV in nerve cells. ERp57 knockout not only suppresses viral induced reactive oxygen species (ROS) mediated host DNA damage, but also decreases apoptosis. Strikingly, DNA damage depends on ERp57-bridged complex formation of viral protein NS2B/NS3. LOC14, an ERp57 inhibitor, restricts ZIKV infection and virus-induced DNA damage. Our work reveals an important role of ERp57 in both ZIKV propagation and virus-induced DNA damage, suggesting a potential target against ZIKV infection.


Assuntos
Dano ao DNA , Isomerases de Dissulfetos de Proteínas , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Zika virus/genética , Zika virus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Animais , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Células Vero , Chlorocebus aethiops , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
4.
J Virol Methods ; 330: 115037, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39326634

RESUMO

The pS273R protease of the African swine fever virus (ASFV) is responsible for the processing of the viral polyproteins pp220 and pp62, precursors of the internal capsid of the virus. The protease is essential for a productive viral infection and is an attractive target for antiviral therapy. This work presents a method for the production of pS273R in E. coli cells by fusing the protease with the SlyD chaperone. The chimeric protein pS273R protease, during expression, is formed in a soluble form possessing enzymatic activity. Subsequently, pS273R separates from SlyD through autocatalytic cleavage at the TEV protease site in vivo. This work devised a straightforward protocol for chromatographic purification, resulting in the production of a highly purified viral protease. Additionally, we suggest using a fluorescence method to assess the activity of pS273R. This method is predicated on a shift in the chimeric protein thioredoxin-EGFP's electrophoretic mobility following its protease cleavage. It was shown that thioredoxin-EGFP substrate is effectively and selectively cleaved by the pS273R protease, even in complex protein mixtures such as mammalian cell lysates.


Assuntos
Vírus da Febre Suína Africana , Escherichia coli , Proteínas Recombinantes de Fusão , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , Escherichia coli/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Animais , Proteases Virais/metabolismo , Proteases Virais/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Suínos , Endopeptidases/metabolismo , Endopeptidases/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
5.
Microb Pathog ; 195: 106894, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39214424

RESUMO

Dengue virus (DENV) infection is a worldwide public health concern infecting approximately 400 million individuals and about 40,000 mortalities yearly. Despite this, no licensed or readily available antiviral medication is currently available specifically for DENV infection, and therapy is typically symptomatic. Therefore, the objective of the study was to investigate the antiviral activity of Beta vulgaris L. phytoconstituents against DENV-2 targeting NS3 protein. The antiviral activity of phytochemicals was examined through virtual ligand-based screening, antiviral inhibition and dosage response assays, western blotting analysis and MD simulations. We conducted toxicological, and pharmacokinetic analysis to assess plant-based natural compound's efficacy, safety, and non-toxic doses. Molecular docking and MD simulation results revealed that the nonstructural protein-3 (NS3) might prove as a funamental target for Betanin and Glycine Betaine against Dengue virus. Betanin and Glycine betaine were initially studied for their non-toxic doses in HeLa, CHO, and Vero cells via MTT assay. HeLa cells were transiently transfected with cloned vector pcDNA3.1/Zeo(+)/DENV-2 NS3 along with non-toxic doses (80 µM-10 µM) of selected phytochemicals. The dose-response assay illustrated downregulated expression of DENV-2 NS3 gene after administration of Betanin (IC50 = 4.35 µM) and Glycine Betaine (IC50 = 4.49 µM). Dose response analysis of Betanin (80 µM-10 µM) depicted the significant inhibition of NS3 protein expression as well. These results suggested downregulated expression of DENV-2 NS3 at mRNA and protein level portraying the DENV replication inhibition. Based on our study findings, NS3 protease is depicted as distinctive DENV-2 inhibitor target. We will channel our study further into in vitro characterization employing the mechanistic study to understand the role of host factors in anti-flavi therapeutic.


Assuntos
Antivirais , Betaína , Vírus da Dengue , Simulação de Acoplamento Molecular , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Humanos , Antivirais/farmacologia , Células HeLa , Animais , Chlorocebus aethiops , Células Vero , Betaína/farmacologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Betacianinas/farmacologia , Células CHO , Cricetulus , Compostos Fitoquímicos/farmacologia , Simulação de Dinâmica Molecular , Replicação Viral/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Dengue/tratamento farmacológico , Dengue/virologia , Proteases Virais
6.
Stud Health Technol Inform ; 316: 631-635, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39176820

RESUMO

Traditional medicine offers a wide range of application for in silico study techniques. This drug research and development strategy is embryonic in the West African context, particularly in Burkina Faso, which is increasingly faced with emerging diseases such as dengue fever. Circulation of the 4 serotypes of this virus has been documented in the country. This study aims to evaluate the therapeutic potential of phytocompounds contained in the West African pharmacopoeia against dengue virus NS2B/NS3 protein, using computational methods integrating several software packages and databases. Based on a literature review, we identified 191 molecules from 30 plants known for their antiviral effects. Five met the inclusion criteria for molecular docking: patulin from calotropis procera, resiniferonol from Euphorbia poissonii, Securinol A from Flueggea virosa, Shikimic acid and Methyl gallate from Terminalia macroptera. The best binding scores were observed between resiniferonol and the serotypes 1, 2 and 4 NS2B/NS3 protease, with binding energies of -7.4 Kcal/mol, -6.8 Kcal/mol and -7.3 Kcal/mol respectively; while the NS2B/NS3 protease of serotype 3 had the best affinity for securinol A (-7 Kcal/mol). This study points the way to further research in computer aided drug design field and calls for multidisciplinary collaboration to promote West African medicinal plants against health challenges.


Assuntos
Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Dengue/efeitos dos fármacos , Medicina Tradicional , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , África Ocidental , Simulação por Computador , Humanos , Proteases Virais , Serina Endopeptidases
7.
Viruses ; 16(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39205224

RESUMO

The emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad. We then modelled each mutational variant for pharmacophore-based virtual screening (PBVS) followed by covalent docking towards identifying a potential covalent inhibitor, i.e., cpd-217. The binding stability of cpd-217 was then supported by molecular dynamic simulation followed by MM/GBSA binding free energy calculation. The free energy decomposition analysis indicated that the resistant mutants alter the HCV NS3/4A-ligand interaction, resulting in unbalanced energy distribution within the binding site, leading to drug resistance. Cpd-217 was identified as interacting with all NS3/4A G3 variants with significant covalent docking scores. In conclusion, cpd-217 emerges as a potential inhibitor of HCV NS3/4A G3 variants that warrants further in vitro and in vivo studies. This study provides a theoretical foundation for drug design and development targeting HCV G3 NS3/4A.


Assuntos
Antivirais , Farmacorresistência Viral , Genótipo , Hepacivirus , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Hepacivirus/genética , Hepacivirus/enzimologia , Hepacivirus/efeitos dos fármacos , Farmacorresistência Viral/genética , Antivirais/farmacologia , Antivirais/química , Humanos , Mutação , Simulação de Dinâmica Molecular , Hepatite C/virologia , Hepatite C/tratamento farmacológico , Sítios de Ligação , Ligação Proteica , Farmacóforo , Serina Proteases , Proteases Virais , RNA Helicases DEAD-box , Nucleosídeo-Trifosfatase , Serina Endopeptidases
8.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125676

RESUMO

Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.


Assuntos
Antivirais , Inibidores de Proteases , Infecções Respiratórias , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases Virais/metabolismo , COVID-19/virologia , Rhinovirus/efeitos dos fármacos , Rhinovirus/enzimologia
9.
Viruses ; 16(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39205277

RESUMO

West Nile virus (WNV) nonstructural protein 5 (NS5) possesses multiple enzymatic domains essential for viral RNA replication. During infection, NS5 predominantly localizes to unique replication organelles (ROs) at the rough endoplasmic reticulum (RER), known as vesicle packets (VPs) and convoluted membranes (CMs), with a portion of NS5 accumulating in the nucleus. NS5 is a soluble protein that must be in the VP, where its enzymatic activities are required for viral RNA synthesis. However, the mechanistic processes behind the recruitment of NS5 from the cytoplasm to the RER membrane remain unclear. Here, we utilize high-resolution confocal microscopy and sucrose density gradient ultracentrifugation to investigate whether the association of NS5 with other NS proteins contributes to its membrane recruitment and retention. We demonstrate that NS1 or NS3 partially influences the NS5 association with the membrane. We further demonstrate that processed NS5 is predominantly in the cytoplasm and nucleus, indicating that the processing of NS5 from the viral polyprotein does not contribute to its membrane localization. These observations suggest that other host or viral factors, such as the enwrapment of NS5 by the RO, may also be necessary for the complete membrane retention of NS5. Therefore, studies on the inhibitors that disrupt the membrane localization of WNV NS5 are warranted for antiviral drug development.


Assuntos
Proteínas não Estruturais Virais , Vírus do Nilo Ocidental , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/fisiologia , Humanos , Animais , Replicação Viral , RNA Helicases/metabolismo , RNA Helicases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Chlorocebus aethiops , Citoplasma/metabolismo , Células Vero , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Febre do Nilo Ocidental/virologia , Linhagem Celular , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
10.
PLoS One ; 19(8): e0307902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39116118

RESUMO

Microcephaly, Guillain-Barré syndrome, and potential sexual transmission stand as prominent complications associated with Zika virus (ZIKV) infection. The absence of FDA-approved drugs or vaccines presents a substantial obstacle in combatting the virus. Furthermore, the inclusion of pregnancy in the pharmacological screening process complicates and extends the endeavor to ensure molecular safety and minimal toxicity. Given its pivotal role in viral assembly and maturation, the NS2B-NS3 viral protease emerges as a promising therapeutic target against ZIKV. In this context, a dipeptide inhibitor was specifically chosen as a control against 200 compounds for docking analysis. Subsequent molecular dynamics simulations extending over 200 ns were conducted to ascertain the stability of the docked complex and confirm the binding of the inhibitor at the protein's active site. The simulation outcomes exhibited conformity to acceptable thresholds, encompassing parameters such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), ligand-protein interaction analysis, ligand characterization, and surface area analysis. Notably, analysis of ligand angles bolstered the identification of prospective ligands capable of inhibiting viral protein activity and impeding virus dissemination. In this study, the integration of molecular docking and dynamics simulations has pinpointed the dipeptide inhibitor as a potential candidate ligand against ZIKV protease, thereby offering promise for therapeutic intervention against the virus.


Assuntos
Dipeptídeos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , Proteínas não Estruturais Virais , Zika virus , Zika virus/enzimologia , Zika virus/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/química , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Humanos , Ligação Proteica , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
11.
SAR QSAR Environ Res ; 35(8): 707-728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39210743

RESUMO

Dengue fever, prevalent in Southeast Asian countries, currently lacks effective pharmaceutical interventions for virus replication control. This study employs a strategy that combines machine learning (ML)-based quantitative-structure-activity relationship (QSAR), molecular docking, and molecular dynamics simulations to discover potential inhibitors of the NS3 protease of the dengue virus. We used nine molecular fingerprints from PaDEL to extract features from the NS3 protease dataset of dengue virus type 2 in the ChEMBL database. Feature selection was achieved through the low variance threshold, F-Score, and recursive feature elimination (RFE) methods. Our investigation employed three ML models - support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) - for classifier development. Our SVM model, combined with SVM-RFE, had the best accuracy (0.866) and ROC_AUC (0.964) in the testing set. We identified potent inhibitors on the basis of the optimal classifier probabilities and docking binding affinities. SHAP and LIME analyses highlighted the significant molecular fingerprints (e.g. ExtFP69, ExtFP362, ExtFP576) involved in NS3 protease inhibitory activity. Molecular dynamics simulations indicated that amphotericin B exhibited the highest binding energy of -212 kJ/mol and formed a hydrogen bond with the critical residue Ser196. This approach enhances NS3 protease inhibitor identification and expedites the discovery of dengue therapeutics.


Assuntos
Antivirais , Vírus da Dengue , Reposicionamento de Medicamentos , Serina Endopeptidases , Proteínas não Estruturais Virais , Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/enzimologia , Vírus da Dengue/efeitos dos fármacos , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Relação Quantitativa Estrutura-Atividade , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteases Virais
12.
J Virol ; 98(7): e0049824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953667

RESUMO

Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE: RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B , Proteólise , Enterovirus Humano B/metabolismo , Humanos , Camundongos , Animais , Células HeLa , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/metabolismo , Proteínas Virais/metabolismo , Proteômica/métodos , Interações Hospedeiro-Patógeno , Proteases Virais 3C/metabolismo , Linhagem Celular , Proteases Virais/metabolismo , Poliproteínas/metabolismo
13.
mSphere ; 9(7): e0040624, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38980068

RESUMO

Dengue virus (DENV) infection is known to affect host cell metabolism, but the molecular players involved are still poorly known. Using a proteomics approach, we identified six DENV proteins associated with mitochondria isolated from infected hepatocytes, and most of the peptides identified were from NS3. We also found an at least twofold decrease of several electron transport system (ETS) host proteins. Thus, we investigated whether NS3 could modulate the ETS function by incubating recombinant DENV NS3 constructs in mitochondria isolated from mouse liver. We found that NS3pro (NS3 protease domain), but not the correspondent catalytically inactive mutant (NS3proS135A), impairs complex I (CI)-dependent NADH:ubiquinone oxidoreductase activity, but not the activities of complexes II, III, IV, or V. Accordingly, using high-resolution respirometry, we found that both NS3pro and full-length NS3 decrease the respiratory rates associated with malate/pyruvate oxidation in mitochondria. The NS3-induced impairment in mitochondrial respiration occurs without altering either leak respiration or mitochondria's capacity to maintain membrane potential, suggesting that NS3 does not deeply affect mitochondrial integrity. Remarkably, CI activity is also inhibited in DENV-infected cells, supporting that the NS3 effects observed in isolated mitochondria may be relevant in the context of the infection. Finally, in silico analyses revealed the presence of potential NS3 cleavage sites in 17 subunits of mouse CI and 16 subunits of human CI, most of them located on the CI surface, suggesting that CI is prone to undergo proteolysis by NS3. Our findings suggest that DENV NS3 can modulate mitochondrial bioenergetics by directly affecting CI function. IMPORTANCE: Dengue virus (DENV) infection is a major public health problem worldwide, affecting about 400 million people yearly. Despite its importance, many molecular aspects of dengue pathogenesis remain poorly known. For several years, our group has been investigating DENV-induced metabolic alterations in the host cells, focusing on the bioenergetics of mitochondrial respiration. The results of the present study reveal that the DENV non-structural protein 3 (NS3) is found in the mitochondria of infected cells, impairing mitochondrial respiration by directly targeting one of the components of the electron transport system, the respiratory complex I (CI). NS3 acts as the viral protease during the DENV replication cycle, and its proteolytic activity seems necessary for inhibiting CI function. Our findings uncover new nuances of DENV-induced metabolic alterations, highlighting NS3 as an important player in the modulation of mitochondria function during infection.


Assuntos
Vírus da Dengue , Complexo I de Transporte de Elétrons , Mitocôndrias , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Animais , Vírus da Dengue/fisiologia , Vírus da Dengue/genética , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Humanos , Mitocôndrias/metabolismo , Hepatócitos/virologia , Hepatócitos/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Dengue/virologia , Dengue/metabolismo , Respiração Celular , Proteômica , Proteases Virais
14.
Nat Commun ; 15(1): 6080, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030239

RESUMO

Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.


Assuntos
Antivirais , Vírus da Dengue , Dengue , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Humanos , Dengue/virologia , Dengue/tratamento farmacológico , Sorogrupo , RNA Helicases/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Ligação Proteica , Animais , Organelas/metabolismo , Organelas/efeitos dos fármacos , Proteases Virais , Aminofenóis , Proteínas de Membrana , Indóis , RNA Helicases DEAD-box , Nucleosídeo-Trifosfatase , Butiratos
15.
Protein Pept Lett ; 31(7): 532-543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039677

RESUMO

BACKGROUND: Peptide drugs are advantageous because they are subject to rational design and exhibit highly diverse structures and broad biological activities. The NS2B-NS3 protein is a particularly promising flavivirus therapeutic target, with extensive research on the development of inhibitors as therapeutic candidates, and was used as a model in this work to determine the mechanism by which GA-Hecate inhibits ZIKV replication. OBJECTIVE: The present study aimed to evaluate the potential of GA-Hecate, a new antiviral developed by our group, against the Brazilian Zika virus and to evaluate the mechanism of action of this compound on the flavivirus NS2B-NS3 protein. METHODS: Solid-phase peptide Synthesis, High-Performance Liquid Chromatography, and Mass Spectrometry were used to obtain, purify, and characterize the synthesized compound. Real-time and enzymatic assays were used to determine the antiviral potential of GA-Hecate against ZIKV. RESULTS: The RT-qPCR results showed that GA-Hecate decreased the number of ZIKV RNA copies in the virucidal, pre-treatment, and post-entry assays, with 5- to 6-fold fewer RNA copies at the higher nontoxic concentration in Vero cells (HNTC: 10 µM) than in the control cells. Enzymatic and kinetic assays indicated that GA-Hecate acts as a competitive ZIKV NS2B-NS3 protease inhibitor with an IC50 of 32 nM and has activity against the yellow fever virus protease. CONCLUSION: The results highlight the antiviral potential of the GA-Hecate bioconjugate and open the door for the development of new antivirals.


Assuntos
Antivirais , Proteínas não Estruturais Virais , Replicação Viral , Zika virus , Zika virus/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Chlorocebus aethiops , Células Vero , Replicação Viral/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Peptídeos/farmacologia , Peptídeos/química , RNA Helicases/metabolismo , RNA Helicases/antagonistas & inibidores , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases Virais , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
16.
Vaccine ; 42(22): 126032, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38964950

RESUMO

For the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8+ T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells. In vitro priming of naïve CD8 T cells was achieved by culturing unfractionated PBMCs in the presence of a specific cocktail of growth factors and cytokines, and next exposing the cells to hepatic cells expressing the NS3 protein of HCV. After a 10-day co-culture, HCV-specific T-cell responses were identified based on IFN-γ ELISpot analysis. For this, the T cells were restimulated with long synthetic peptides (SLPs) spanning the whole NS3 protein sequence allowing the identification of HCV-specificity. We demonstrated that this protocol resulted in the in vitro priming of naïve precursors to antigen-experienced T-cells specific for 11 out of 98 SLPs tested. These 11 SLPs contain 12 different HLA-A*02:01-restricted epitopes, as predicted by a combination of three epitope prediction algorithms. Furthermore, we identified responses against 3 peptides that were not predicted to contain any immunogenic HLA class I epitopes, yet showed HCV-specific responses in vitro. Separation of CD8+ and CD8- T cells from PBMCs primed in vitro showed responses only upon restimulation with short peptides. We established an in vitro method that enables the identification of HLA class I epitopes resulting from cross-presented antigens and that can cross-prime T cells and allows the effective selection of functional immunogenic epitopes, but also less immunogenic ones, for the design of tailored therapeutic vaccines against persistent viral infections and tumor antigens.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Hepacivirus , Vacinas contra Hepatite Viral , Proteínas não Estruturais Virais , Linfócitos T CD8-Positivos/imunologia , Humanos , Epitopos de Linfócito T/imunologia , Hepacivirus/imunologia , Hepacivirus/genética , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , ELISPOT/métodos , Antígeno HLA-A2/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Proteases Virais , Serina Endopeptidases , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
17.
Int J Biol Macromol ; 277(Pt 1): 133791, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38992553

RESUMO

Dengue virus (DENV2) is the cause of dengue disease and a worldwide health problem. DENV2 replicates in the host cell using polyproteins such as NS3 protease in conjugation with NS2B cofactor, making NS3 protease a promising antiviral drug-target. This study investigated the efficacy of 'Niloticin' against NS2B/NS3-protease. In silico and in vitro analyses were performed which included interaction of niloticin with NS2B/NS3-protease, protein stability and flexibility, mutation effect, betweenness centrality of residues and analysis of cytotoxicity, protein expression and WNV NS3-protease activity. Similar like acyclovir, niloticin forms strong H-bonds and hydrophobic interactions with residues LEU149, ASN152, LYS74, GLY148 and ALA164. The stability of the niloticin-NS2B/NS3-protease complex was found to be stable compared to the apo NS2B/NS3-protease in structural deviation, PCA, compactness and FEL analysis. The IC50 value of niloticin was 0.14 µM in BHK cells based on in vitro cytotoxicity analysis and showed significant activity at 2.5 µM in a concentration-dependent manner. Western blotting and qRT-PCR analyses showed that niloticin reduced DENV2 protein transcription in a dose-dependent manner. Besides, niloticin confirmed the inhibition of NS3-protease by the SensoLyte 440 WNV protease detection kit. These promising results suggest that niloticin could be an effective antiviral drug against DENV2 and other flaviviruses.


Assuntos
Antivirais , Vírus da Dengue , Serina Endopeptidases , Proteínas não Estruturais Virais , Vírus da Dengue/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Serina Endopeptidases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Animais , Dengue/tratamento farmacológico , Dengue/virologia , Humanos , Proteases Virais
18.
EMBO Mol Med ; 16(8): 1817-1839, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009885

RESUMO

Zika virus (ZIKV) infection may lead to severe neurological consequences, including seizures, and early infancy death. However, the involved mechanisms are still largely unknown. TRPC channels play an important role in regulating nervous system excitability and are implicated in seizure development. We investigated whether TRPCs might be involved in the pathogenesis of ZIKV infection. We found that ZIKV infection increases TRPC4 expression in host cells via the interaction between the ZIKV-NS3 protein and CaMKII, enhancing TRPC4-mediated calcium influx. Pharmacological inhibition of CaMKII decreased both pCREB and TRPC4 protein levels, whereas the suppression of either TRPC4 or CaMKII improved the survival rate of ZIKV-infected cells and reduced viral protein production, likely by impeding the replication phase of the viral life cycle. TRPC4 or CaMKII inhibitors also reduced seizures and increased the survival of ZIKV-infected neonatal mice and blocked the spread of ZIKV in brain organoids derived from human-induced pluripotent stem cells. These findings suggest that targeting CaMKII or TRPC4 may offer a promising approach for developing novel anti-ZIKV therapies, capable of preventing ZIKV-associated seizures and death.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Canais de Cátion TRPC , Infecção por Zika virus , Zika virus , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Animais , Humanos , Zika virus/fisiologia , Zika virus/efeitos dos fármacos , Camundongos , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Células HEK293 , Proteínas Virais/metabolismo , Convulsões/virologia , Convulsões/metabolismo , Convulsões/tratamento farmacológico , Proteases Virais , Serina Endopeptidases , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
19.
Int J Biol Macromol ; 272(Pt 1): 132855, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834129

RESUMO

Approximately 3.9 billion individuals are vulnerable to dengue infection, a prevalent cause of tropical diseases worldwide. Currently, no drugs are available for preventing or treating Flavivirus diseases, including Dengue, West Nile, and the more recent Zika virus. The highly conserved Flavivirus NS2B-NS3 protease, crucial for viral replication, is a promising therapeutic target. This study employed in-silico methodologies to identify novel and potentially effective anti-dengue small molecules. A pharmacophore model was constructed using an experimentally validated NS2B-NS3 inhibitor, with the Gunner Henry score confirming the model's validity. The Natural Product Activity and Species Source (NPASS) database was screened using the validated pharmacophore model, yielding a total of 60 hits against the NS2B-NS3 protease. Furthermore, the docking finding reveals that our newly identified compounds from the NPASS database have enhanced binding affinities and established significant interactions with allosteric residues of the target protein. MD simulation and post-MD analysis further validated this finding. The free binding energy was computed in terms of MM-GBSA analysis, with the total binding energy for compound 1 (-57.3 ± 2.8 and - 52.9 ± 1.9 replica 1 and 2) indicating a stronger binding affinity for the target protein. Overall, this computational study identified these compounds as potential hit molecules, and these findings can open up a new avenue to explore and develop inhibitors against Dengue virus infection.


Assuntos
Antivirais , Vírus da Dengue , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , Serina Endopeptidases , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica , Proteases Virais
20.
J Vector Borne Dis ; 61(2): 211-219, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922655

RESUMO

BACKGROUND OBJECTIVES: Peptides isolated from different sources of plants have the advantages of specificity, lower toxicity, and increased therapeutic effects; hence, it is necessary to search for newer antivirals from plant sources for the treatment of dengue viral infections. METHODS: In silico screening of selected plant peptides against the non-structural protein 1, NS3 protease domain (NS2B-NS3Pro) with the cofactor and ATPase/helicase domain (NS3 helicase domain/NS3hel) of dengue virus was performed. The physicochemical characteristics of the peptides were calculated using Protparam tools, and the allergenicity and toxicity profiles were assessed using allergenFP and ToxinPred, respectively. RESULTS: Among the tested compounds, Ginkbilobin demonstrated higher binding energy against three tested nonstructural protein targets. Kalata B8 demonstrated maximum binding energy against NSP-1 and NSP-2, whereas Circulin A acted against the NSP3 protein of dengue virus. INTERPRETATION CONCLUSION: The three compounds identified by in silico screening can be tested in vitro, which could act as potential leads as they are involved in hampering the replication of the dengue virus by interacting with the three prime non-structural proteins.


Assuntos
Antivirais , Simulação por Computador , Vírus da Dengue , Peptídeos , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/química , Vírus da Dengue/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Simulação de Acoplamento Molecular , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Proteases Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA