Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.574
Filtrar
1.
Nat Commun ; 15(1): 8521, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358329

RESUMO

Clostridioides difficile toxin B (TcdB) is the key virulence factor accounting for C. difficile infection-associated symptoms. Effectively neutralizing different TcdB variants with a universal solution poses a significant challenge. Here we present the de novo design and characterization of pan-specific mini-protein binders against major TcdB subtypes. Our design successfully binds to the first receptor binding interface (RBI-1) of the varied TcdB subtypes, exhibiting affinities ranging from 20 pM to 10 nM. The cryo-electron microscopy (cryo-EM) structures of the mini protein binder in complex with TcdB1 and TcdB4 are consistent with the computational design models. The engineered and evolved variants of the mini-protein binder and chondroitin sulfate proteoglycan 4 (CSPG4), another natural receptor that binds to the second RBI (RBI-2) of TcdB, better neutralize major TcdB variants both in cells and in vivo, as demonstrated by the colon-loop assay using female mice. Our findings provide valuable starting points for the development of therapeutics targeting C. difficile infections (CDI).


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Clostridioides difficile , Microscopia Crioeletrônica , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Animais , Clostridioides difficile/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Camundongos , Feminino , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Ligação Proteica , Humanos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Modelos Moleculares
2.
Int J Mol Sci ; 25(20)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39456774

RESUMO

Many central nervous system (CNS) disorders lack approved treatment options. Previous research demonstrated that peptide CAQK can bind to chondroitin sulfate proteoglycans (CSPGs) in the extracellular matrix of the CNS. In vivo studies have investigated CAQK conjugated to nanoparticles containing therapeutic agents with varying methodologies/outcomes. This paper presents the first systematic review assessing its properties, applications, and outcomes secondary to its use. Following PRISMA guidelines, a comprehensive search was performed across multiple databases. Studies utilizing CAQK as a therapeutic agent/homing molecule in animal/human models were selected. Sixteen studies met the inclusion criteria. Mice and rats were the predominant animal models. All studies except one used CAQK to deliver a therapeutic agent. The reviewed studies mostly included models of brain and spinal cord injuries. Most studies had intravenous administration of CAQK. All studies demonstrated various benefits and that CAQK conjugation facilitated localization to target tissues. No studies directly evaluated the effects of CAQK alone. The data are limited by the heterogeneity in study methodologies and the lack of direct comparison between CAQK and conjugated agents. Overall, these findings present CAQK utilization to deliver a therapeutic agent as a promising targeting strategy in the management of disorders where CSPGs are upregulated.


Assuntos
Peptídeos , Animais , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Ratos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Camundongos , Nanopartículas/química , Modelos Animais de Doenças
3.
Nature ; 633(8031): 914-922, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39294371

RESUMO

Metabolic diseases such as obesity and type 2 diabetes are marked by insulin resistance1,2. Cells within the arcuate nucleus of the hypothalamus (ARC), which are crucial for regulating metabolism, become insulin resistant during the progression of metabolic disease3-8, but these mechanisms are not fully understood. Here we investigated the role of a specialized chondroitin sulfate proteoglycan extracellular matrix, termed a perineuronal net, which surrounds ARC neurons. In metabolic disease, the perineuronal net of the ARC becomes augmented and remodelled, driving insulin resistance and metabolic dysfunction. Disruption of the perineuronal net in obese mice, either enzymatically or with small molecules, improves insulin access to the brain, reversing neuronal insulin resistance and enhancing metabolic health. Our findings identify ARC extracellular matrix remodelling as a fundamental mechanism driving metabolic diseases.


Assuntos
Núcleo Arqueado do Hipotálamo , Proteoglicanas de Sulfatos de Condroitina , Matriz Extracelular , Resistência à Insulina , Doenças Metabólicas , Animais , Masculino , Camundongos , Ratos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Insulina/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Doenças Metabólicas/terapia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/terapia , Ratos Sprague-Dawley
4.
Stem Cell Reports ; 19(10): 1451-1473, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39303705

RESUMO

Neural degeneration is a hallmark of spinal cord injury (SCI). Multipotent neural precursor cells (NPCs) have the potential to reconstruct the damaged neuron-glia network due to their tri-lineage capacity to generate neurons, astrocytes, and oligodendrocytes. However, astrogenesis is the predominant fate of resident or transplanted NPCs in the SCI milieu adding to the abundant number of resident astrocytes in the lesion. How NPC-derived astrocytes respond to the inflammatory milieu of SCI and the mechanisms by which they contribute to the post-injury recovery processes remain largely unknown. Here, we uncover that activated NPC-derived astrocytes exhibit distinct molecular signature that is immune modulatory and foster neurogenesis, neuronal maturity, and synaptogenesis. Mechanistically, NPC-derived astrocytes perform regenerative matrix remodeling by clearing inhibitory chondroitin sulfate proteoglycans (CSPGs) from the injury milieu through LAR and PTP-σ receptor-mediated endocytosis and the production of ADAMTS1 and ADAMTS9, while most resident astrocytes are pro-inflammatory and contribute to the pathologic deposition of CSPGs. These novel findings unravel critical mechanisms of NPC-mediated astrogenesis in SCI repair.


Assuntos
Astrócitos , Proteoglicanas de Sulfatos de Condroitina , Células-Tronco Neurais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Astrócitos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Neurogênese , Camundongos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Diferenciação Celular , Neurônios/metabolismo
5.
Front Immunol ; 15: 1393842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136008

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are fundamental components of the extracellular matrix in the central nervous system (CNS). Among these, the Nerve-Glial antigen 2 (NG2) stands out as a transmembrane CSPG exclusively expressed in a different population of cells collectively termed NG2-expressing cells. These enigmatic cells, found throughout the developing and adult CNS, have been indicated with various names, including NG2 progenitor cells, polydendrocytes, synantocytes, NG2 cells, and NG2-Glia, but are more commonly referred to as oligodendrocyte progenitor cells. Characterized by high proliferation rates and unique morphology, NG2-expressing cells stand apart from neurons, astrocytes, and oligodendrocytes. Intriguingly, some NG2-expressing cells form functional glutamatergic synapses with neurons, challenging the long-held belief that only neurons possess the intricate machinery required for neurotransmission. In the CNS, the complexity surrounding NG2-expressing cells extends to their classification. Additionally, NG2 expression has been documented in pericytes and immune cells, suggesting a role in regulating brain innate immunity and neuro-immune crosstalk in homeostasis. Ongoing debates revolve around their heterogeneity, potential as progenitors for various cell types, responses to neuroinflammation, and the role of NG2. Therefore, this review aims to shed light on the enigma of NG2-expressing cells by delving into their structure, functions, and signaling pathways. We will critically evaluate the literature on NG2 expression across the CNS, and address the contentious issues surrounding their classification and roles in neuroinflammation and neurodegeneration. By unraveling the intricacies of NG2-expressing cells, we hope to pave the way for a more comprehensive understanding of their contributions to CNS health and during neurological disorders.


Assuntos
Antígenos , Sistema Nervoso Central , Humanos , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Neuroglia/metabolismo , Neuroglia/imunologia , Neuroglia/fisiologia , Neurônios/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas
6.
BMC Musculoskelet Disord ; 25(1): 647, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148085

RESUMO

BACKGROUND: Our study aimed to identify potential specific biomarkers for osteoarthritis (OA) and assess their relationship with immune infiltration. METHODS: We utilized data from GSE117999, GSE51588, and GSE57218 as training sets, while GSE114007 served as a validation set, all obtained from the GEO database. First, weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were performed to identify hub modules and potential functions of genes. We subsequently screened for potential OA biomarkers within the differentially expressed genes (DEGs) of the hub module using machine learning methods. The diagnostic accuracy of the candidate genes was validated. Additionally, single gene analysis and ssGSEA was performed. Then, we explored the relationship between biomarkers and immune cells. Lastly, we employed RT-PCR to validate our results. RESULTS: WGCNA results suggested that the blue module was the most associated with OA and was functionally associated with extracellular matrix (ECM)-related terms. Our analysis identified ALB, HTRA1, DPT, MXRA5, CILP, MPO, and PLAT as potential biomarkers. Notably, HTRA1, DPT, and MXRA5 consistently exhibited increased expression in OA across both training and validation cohorts, demonstrating robust diagnostic potential. The ssGSEA results revealed that abnormal infiltration of DCs, NK cells, Tfh, Th2, and Treg cells might contribute to OA progression. HTRA1, DPT, and MXRA5 showed significant correlation with immune cell infiltration. The RT-PCR results also confirmed these findings. CONCLUSIONS: HTRA1, DPT, and MXRA5 are promising biomarkers for OA. Their overexpression strongly correlates with OA progression and immune cell infiltration.


Assuntos
Biomarcadores , Progressão da Doença , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Osteoartrite , Humanos , Biomarcadores/metabolismo , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Osteoartrite/imunologia , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/diagnóstico , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo
7.
Int J Cosmet Sci ; 46(4): 494-505, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113319

RESUMO

Objective: Desmosomes are the most prominent interkeratinocyte junctions. The correct barrier function of stratified epithelia such as epidermis depends on their expression. During epidermal differentiation, the molecular composition of desmosomes evolves and so do their physical and chemical properties. Desquamation of corneocytes at the surface of the stratum corneum depends on an orderly degradation of desmosomes by endogenous enzymes. This process may be regulated by glycosylated molecules. We focused on the detection and characterization of potentially implicated players bearing 'sugar' characteristics. Methods: Using an original monoclonal antibody and biochemical methods, we partially characterized a proteoglycan of the exclusively chondroitin/dermatan sulphate type, secreted into the interkeratinocyte spaces, that is incorporated into the extracellular parts of desmosomes in quantities proportional to the degree of cell differentiation, as visualized with immuno-electron microscopy. Results: This antigen, that we named desmosealin, displays biochemical and immunocytochemical characteristics that clearly differentiate it from known desmosomal elements. Unlike so far described epidermal proteoglycans, which belong to the heparan sulphate family, desmosealin displays chondroitin/dermatan sulphate glycosaminoglycan chains. It can be detected within the extracellular 'cores' of desmosomes in the upper viable epidermal layers and in corneodesmosomes from the lowermost part of the stratum corneum. Conclusion: Extensive integration of proteoglycans into the extracellular parts of desmosomes at the late stages of keratinocyte maturation is likely of functional importance. Given its biochemical profile, its pattern of expression in the epidermis and its desmosomal localization, desmosealin may emerge as a key element in the regulation of desmosome processing, epidermal cohesion and formation of a functional epidermal barrier.


OBJECTIF: Les desmosomes sont les jonctions inter­kératinocytaires les plus proéminentes. Le fonctionnement appropriée des épithéliums stratifiés comme épiderme dépend de leur expression. La composition moléculaire et les propriétés physico­chimiques des desmosomes évoluent au cours de la différenciation épidermique. La desquamation de cornéocytes la surface du stratum corneum depend de la dégradation ordonnée des desmosomes par les enzymes endogènes. Ce processus peut être régulé par les molécules glycosylées. Notre travail consistait en détection et caractérisation de l'un des acteurs potentiellement impliqués, portant des chaînes carbohydrate. METHODES: Les approches d'analyse biochimique s'appuyant sur un anticorps monoclonal original (immunotransfert mono­et bi­dimensionnel, immunoprécipitation­immunodétection croisées, digestions enzymatiques, tests de déglycosylation et d'inhibition de synthèse) nous ont permis la caractérisation partielle d'un protéoglycanne sécrété dans les espaces inter­kératinocytaires. Cette molécule s'intègre aux desmosomes en quantités proportionnelles au stade de différenciation des kératinocytes, comme le démontrent les marquages ultrastructuraux à l'or colloïdal sur des cryocoupes et tissus enrobés en résines acryliques. RESULTATS: Cet antigène, que nous avons appelé desmosealine, est clairement distinct des éléments constitutifs de desmosomes décrits jusqu'alors. Contrairement aux protéoglycannes épidermiques connus, il porte exclusivement les chaînes glycosaminoglycannes de type chondroïtine/dermatane sulfate. La desmosealine est présente dans les parties extracellulaires de desmosomes, dans la portion supérieure de l'épiderme vivant et le début du stratum corneum. CONCLUSION: L'intégration massive d'un protéoglycanne dans des parties intercellulaires de desmosomes revêt vraisemblablement une importance fonctionnelle. De par son profile biochimique, sa distribution dans l'épiderme et son affinité pour les desmosomes, le desmosealine peut s'avérer être un élément clé dans la régulation de la cohésion interkératinocytaire et la formation de la barrière de perméabilité épidermique.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Condroitina , Desmossomos , Humanos , Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Desmossomos/metabolismo
8.
J Mol Neurosci ; 74(3): 60, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904846

RESUMO

Our former studies have identified the alleviating effect of Calycosin (CA) on spinal cord injury (SCI). In this study, our purpose is to explore the influence of CA on SCI from the perspective of promoting axon growth. The SCI animal model was constructed by spinal cord compression, wherein rat primary cortex neuronal isolation was performed, and the axonal growth restriction cell model was established via chondroitin sulfate proteoglycan (CSPG) treatment. The expressions of axon regeneration markers were measured via immunofluorescent staining and western blot, and the direct target of CA was examined using silver staining. Finally, the expression of the protein tyrosine phosphatase receptor type S (PTPRS) was assessed using western blot. CA treatment increased neuronal process outgrowth and the expressions of axon regeneration markers, such as neurofilament H (NF-H), vesicular glutamate transporter 1 (vGlut1), and synaptophysin (Syn) in both SCI model rats and CSPG-treated primary cortical neurons, and PTPRS levels were elevated after SCI induction. In addition, PTPRS was the direct target of CA, and according to in vivo findings, exposure to CA reduced the PTPRS content. Furthermore, PTPRS overexpression inhibited CA's enhancement of axon regeneration marker content and neuronal axon lengths. CA improves SCI by increasing axon development through regulating PTPRS expression.


Assuntos
Axônios , Isoflavonas , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Sinaptofisina , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Ratos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Axônios/efeitos dos fármacos , Axônios/metabolismo , Células Cultivadas , Sinaptofisina/metabolismo , Sinaptofisina/genética , Proteínas de Neurofilamentos/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/citologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Masculino , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Feminino , Proteína Vesicular 2 de Transporte de Glutamato
9.
Neurochem Res ; 49(8): 2120-2130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38819695

RESUMO

Spinal cord injury (SCI) is a severe neurological condition that involves a lengthy pathological process. This process leads to the upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia, which impedes repair and regeneration in the spinal cord. The role of the CSPG-specific receptor protein tyrosine phosphatase-sigma (PTP-σ) in post-SCI remains largely unexplored. Exosomes have great potential in the diagnosis, prognosis, and treatment of SCI due to their ability to easily cross the blood‒brain barrier. Schwann cell-derived exosomes (SCDEs) promote functional recovery in mice post-SCI by decreasing CSPG deposition. However, the mechanism by which SCDEs decrease CSPGs after SCI remains unknown. Herein, we observed elevated levels of PTP-σ and increased CSPG deposition during glial scar formation after SCI in vivo. After SCDEs were injected into SCI mice, CSPG deposition decreased in scar tissue at the injury site, the expression of PTP-σ increased during axonal growth around the injury site, and motor function subsequently recovered. Additionally, we demonstrated that the use of both Rho/ROCK inhibitors and SCDEs inhibited the reparative effects of SCDEs on scar tissue after SCI. In conclusion, our study revealed that treatment with SCDEs targeting the Rho/ROCK signaling pathway reduced PTP-σ activation in the CSPG post-SCI, which inhibited scar tissue formation.


Assuntos
Axônios , Proteoglicanas de Sulfatos de Condroitina , Exossomos , Células de Schwann , Traumatismos da Medula Espinal , Quinases Associadas a rho , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Células de Schwann/metabolismo , Exossomos/metabolismo , Quinases Associadas a rho/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Axônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Feminino , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
10.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(5): 293-308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38735753

RESUMO

Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/imunologia , Proteoglicanas/metabolismo , Proteoglicanas/química , Terapia de Alvo Molecular , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Antígenos , Proteínas de Membrana
11.
J Chem Neuroanat ; 138: 102418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38621597

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of fatality and disability worldwide. From minutes to months following damage, injury can result in a complex pathophysiology that can lead to temporary or permanent deficits including an array of neurodegenerative symptoms. These changes can include behavioral dysregulation, memory dysfunctions, and mood changes including depression. The nature and severity of impairments resulting from TBIs vary widely given the range of injury type, location, and extent of brain tissue involved. In response to the injury, the brain induces structural and functional changes to promote repair and minimize injury size. Despite its high prevalence, effective treatment strategies for TBI are limited. PNNs are part of the neuronal extracellular matrix (ECM) that mediate synaptic stabilization in the adult brain and thus neuroplasticity. They are associated mostly with inhibitory GABAergic interneurons and are thought to be responsible for maintaining the excitatory/inhibitory balance of the brain. The major structural components of PNNs include multiple chondroitin sulfate proteoglycans (CSPGs) as well as other structural proteins. Here we examine the effects of injury on CSPG expression, specifically around the changes in the side change moieties. To investigate CSPG expression following injury, adult male and female zebra finches received either a bilateral penetrating, or no injury and qPCR analysis and immunohistochemistry for components of the CSPGs were examined at 1- or 7-days post-injury. Next, to determine if CSPGs and thus PNNs should be a target for therapeutic intervention, CSPG side chains were degraded at the time of injury with chondroitinase ABC (ChABC) CSPGs moieties were examined. Additionally, GABA receptor mRNA and aromatase mRNA expression was quantified following CSPG degradation as they have been implicated in neuronal survival and neurogenesis. Our data indicate the CSPG moieties change following injury, potentially allowing for a brief period of synaptic reorganization, and that treatments that target CSPG side chains are successful in further targeting this brief critical period by decreasing GABA mRNA receptor expression, but also decreasing aromatase expression.


Assuntos
Lesões Encefálicas Traumáticas , Proteoglicanas de Sulfatos de Condroitina , Tentilhões , RNA Mensageiro , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , RNA Mensageiro/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Masculino , Feminino , Encéfalo/metabolismo
12.
Elife ; 122024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512724

RESUMO

Radial neuronal migration is a key neurodevelopmental event for proper cortical laminar organization. The multipolar-to-bipolar transition, a critical step in establishing neuronal polarity during radial migration, occurs in the subplate/intermediate zone (SP/IZ), a distinct region of the embryonic cerebral cortex. It has been known that the extracellular matrix (ECM) molecules are enriched in the SP/IZ. However, the molecular constitution and functions of the ECM formed in this region remain poorly understood. Here, we identified neurocan (NCAN) as a major chondroitin sulfate proteoglycan in the mouse SP/IZ. NCAN binds to both radial glial-cell-derived tenascin-C (TNC) and hyaluronan (HA), a large linear polysaccharide, forming a ternary complex of NCAN, TNC, and HA in the SP/IZ. Developing cortical neurons make contact with the ternary complex during migration. The enzymatic or genetic disruption of the ternary complex impairs radial migration by suppressing the multipolar-to-bipolar transition. Furthermore, both TNC and NCAN promoted the morphological maturation of cortical neurons in vitro. The present results provide evidence for the cooperative role of neuron- and radial glial-cell-derived ECM molecules in cortical development.


Assuntos
Matriz Extracelular , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Matriz Extracelular/metabolismo , Córtex Cerebral/metabolismo , Movimento Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo
13.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474072

RESUMO

This study has reviewed the many roles of lumican as a biomarker of tissue pathology in health and disease. Lumican is a structure regulatory proteoglycan of collagen-rich tissues, with cell instructive properties through interactions with a number of cell surface receptors in tissue repair, thereby regulating cell proliferation, differentiation, inflammation and the innate and humoral immune systems to combat infection. The exponential increase in publications in the last decade dealing with lumican testify to its role as a pleiotropic biomarker regulatory protein. Recent findings show lumican has novel roles as a biomarker of the hypercoagulative state that occurs in SARS CoV-2 infections; thus, it may also prove useful in the delineation of the complex tissue changes that characterize COVID-19 disease. Lumican may be useful as a prognostic and diagnostic biomarker of long COVID disease and its sequelae.


Assuntos
COVID-19 , Proteoglicanas , Humanos , Lumicana , Síndrome de COVID-19 Pós-Aguda , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Biomarcadores
14.
Mol Psychiatry ; 29(7): 1968-1979, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38355786

RESUMO

Several lines of evidence point to a key role of the hippocampus in Autism Spectrum Disorders (ASD). Altered hippocampal volume and deficits in memory for person and emotion related stimuli have been reported, along with enhanced ability for declarative memories. Mouse models have demonstrated a critical role of the hippocampus in social memory dysfunction, associated with ASD, together with decreased synaptic plasticity. Chondroitin sulfate proteoglycans (CSPGs), a family of extracellular matrix molecules, represent a potential key link between neurodevelopment, synaptic plasticity, and immune system signaling. There is a lack of information regarding the molecular pathology of the hippocampus in ASD. We conducted RNAseq profiling on postmortem human brain samples containing the hippocampus from male children with ASD (n = 7) and normal male children (3-14 yrs old), (n = 6) from the NIH NeuroBioBank. Gene expression profiling analysis implicated molecular pathways involved in extracellular matrix organization, neurodevelopment, synaptic regulation, and immune system signaling. qRT-PCR and Western blotting were used to confirm several of the top markers identified. The CSPG protein BCAN was examined with multiplex immunofluorescence to analyze cell-type specific expression of BCAN and astrocyte morphology. We observed decreased expression of synaptic proteins PSD95 (p < 0.02) and SYN1 (p < 0.02), increased expression of the extracellular matrix (ECM) protease MMP9 (p < 0.03), and decreased expression of MEF2C (p < 0.03). We also observed increased BCAN expression with astrocytes in children with ASD, together with altered astrocyte morphology. Our results point to alterations in immune system signaling, glia cell differentiation, and synaptic signaling in the hippocampus of children with ASD, together with alterations in extracellular matrix molecules. Furthermore, our results demonstrate altered expression of genes implicated in genetic studies of ASD including SYN1 and MEF2C.


Assuntos
Transtorno do Espectro Autista , Proteoglicanas de Sulfatos de Condroitina , Hipocampo , Humanos , Criança , Hipocampo/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Masculino , Adolescente , Pré-Escolar , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Perfilação da Expressão Gênica/métodos , Astrócitos/metabolismo , Plasticidade Neuronal , Metaloproteinase 9 da Matriz/metabolismo , Matriz Extracelular/metabolismo , Glicoproteínas de Membrana , Receptor trkB
15.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338902

RESUMO

Most epithelial ovarian cancer (EOC) patients are diagnosed with peritoneal dissemination. Cellular interactions are an important aspect of EOC cells when they detach from the primary site of the ovary. However, the mechanism remains underexplored. Our study aimed to reveal the role of chondroitin sulfate proteoglycan 4 (CSPG4) in EOC with a major focus on cell-cell interactions. We examined the expression of CSPG4 in clinical samples and cell lines of EOC. The proliferation, migration, and invasion abilities of the CSPG4 knockdown cells were assessed. We also assessed the role of CSPG4 in spheroid formation and peritoneal metastasis in an in vivo model using sh-CSPG4 EOC cell lines. Of the clinical samples, 23 (44.2%) samples expressed CSPG4. CSPG4 was associated with a worse prognosis in patients with advanced EOC. Among the EOC cell lines, aggressive cell lines, including ES2, expressed CSPG4. When CSPG4 was knocked down using siRNA or shRNA, the cell proliferation, migration, and invasion abilities were significantly decreased compared to the control cells. Proteomic analyses showed changes in the expression of proteins related to the cell movement pathways. Spheroid formation was significantly inhibited when CSPG4 was inhibited. The number of nodules and the tumor burden of the omentum were significantly decreased in the sh-CSPG4 mouse models. In the peritoneal wash fluid from mice injected with sh-CSPG4 EOC cells, significantly fewer spheroids were present. Reduced CSPG4 expression was observed in lymphoid enhancer-binding factor 1-inhibited cells. CSPG4 is associated with aggressive features of EOC and poor prognosis. CSPG4 could be a new treatment target for blocking peritoneal metastasis by inhibiting spheroid formation.


Assuntos
Antígenos , Proteoglicanas de Sulfatos de Condroitina , Neoplasias Ovarianas , Neoplasias Peritoneais , Proteoglicanas , Animais , Feminino , Humanos , Camundongos , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Proteômica , RNA Interferente Pequeno/genética
16.
J Biol Chem ; 300(3): 105706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309500

RESUMO

Glioma stem cell/glioma-initiating cell (GIC) and their niches are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanisms of GIC maintenance/differentiation, we performed a unique integrated proteogenomics utilizing GIC clones established from patient tumors having the potential to develop glioblastoma. After the integration and extraction of the transcriptomics/proteomics data, we found that chondroitin sulfate proteoglycan 4 (CSPG4) and its glycobiosynthetic enzymes were significantly upregulated in GICs. Glyco-quantitative PCR array revealed that chondroitin sulfate (CS) biosynthetic enzymes, such as xylosyltransferase 1 (XYLT1) and carbohydrate sulfotransferase 11, were significantly downregulated during serum-induced GIC differentiation. Simultaneously, the CS modification on CSPG4 was characteristically decreased during the differentiation and also downregulated by XYLT1 knockdown. Notably, the CS degradation on CSPG4 by ChondroitinaseABC treatment dramatically induced GIC differentiation, which was significantly inhibited by the addition of CS. GIC growth and differentiation ability were significantly suppressed by CSPG4 knockdown, suggesting that CS-CSPG4 is an important factor in GIC maintenance/differentiation. To understand the molecular function of CS-CSPG4, we analyzed its associating proteins in GICs and found that CSPG4, but not CS-CSPG4, interacts with integrin αV during GIC differentiation. This event sequentially upregulates integrin-extracellular signal-regulated kinase signaling, which can be inhibited by cyclic-RGD (Arg-Gly-Asp) integrin αV inhibitor. These results indicate that CS-CSPG4 regulates the GIC microenvironment for GIC maintenance/differentiation via the CS moiety, which controls integrin signaling. This study demonstrates a novel function of CS on CSPG4 as a niche factor, so-called "glyco-niche" for GICs, and suggests that CS-CSPG4 could be a potential target for malignant glioma.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Sulfatos de Condroitina , Glioma , Proteínas de Membrana , Humanos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/metabolismo , Glioma/metabolismo , Glioma/patologia , Integrina alfaV , Proteínas de Membrana/metabolismo , Microambiente Tumoral
17.
Aging Dis ; 15(1): 153-168, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307832

RESUMO

Reactive astrocytes (RAs) produce chondroitin sulfate proteoglycans (CSPGs) in large quantities after spinal cord injury (SCI) and inhibit axon regeneration through the Rho-associated protein kinase (ROCK) pathway. However, the mechanism of producing CSPGs by RAs and their roles in other aspects are often overlooked. In recent years, novel generation mechanisms and functions of CSPGs have gradually emerged. Extracellular traps (ETs), a new recently discovered phenomenon in SCI, can promote secondary injury. ETs are released by neutrophils and microglia, which activate astrocytes to produce CSPGs after SCI. CSPGs inhibit axon regeneration and play an important role in regulating inflammation as well as cell migration and differentiation; some of these regulations are beneficial. The current review summarized the process of ET-activated RAs to generate CSPGs at the cellular signaling pathway level. Moreover, the roles of CSPGs in inhibiting axon regeneration, regulating inflammation, and regulating cell migration and differentiation were discussed. Finally, based on the above process, novel potential therapeutic targets were proposed to eliminate the adverse effects of CSPGs.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Traumatismos da Medula Espinal , Humanos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Axônios/metabolismo , Regeneração Nervosa , Traumatismos da Medula Espinal/tratamento farmacológico , Inflamação
18.
Brain ; 147(5): 1856-1870, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38146224

RESUMO

Alterations in the extracellular matrix are common in patients with epilepsy and animal models of epilepsy, yet whether they are the cause or consequence of seizures and epilepsy development is unknown. Using Theiler's murine encephalomyelitis virus (TMEV) infection-induced model of acquired epilepsy, we found de novo expression of chondroitin sulfate proteoglycans (CSPGs), a major extracellular matrix component, in dentate gyrus (DG) and amygdala exclusively in mice with acute seizures. Preventing the synthesis of CSPGs specifically in DG and amygdala by deletion of the major CSPG aggrecan reduced seizure burden. Patch-clamp recordings from dentate granule cells revealed enhanced intrinsic and synaptic excitability in seizing mice that was significantly ameliorated by aggrecan deletion. In situ experiments suggested that dentate granule cell hyperexcitability results from negatively charged CSPGs increasing stationary cations on the membrane, thereby depolarizing neurons, increasing their intrinsic and synaptic excitability. These results show increased expression of CSPGs in the DG and amygdala as one of the causal factors for TMEV-induced acute seizures. We also show identical changes in CSPGs in pilocarpine-induced epilepsy, suggesting that enhanced CSPGs in the DG and amygdala may be a common ictogenic factor and potential therapeutic target.


Assuntos
Tonsila do Cerebelo , Proteoglicanas de Sulfatos de Condroitina , Giro Denteado , Convulsões , Animais , Giro Denteado/metabolismo , Tonsila do Cerebelo/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Camundongos , Convulsões/metabolismo , Masculino , Theilovirus , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Camundongos Knockout , Agrecanas/metabolismo , Neurônios/metabolismo
19.
J Exp Clin Cancer Res ; 42(1): 326, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017479

RESUMO

BACKGROUND: As a small G protein of Ras family, Ras-like-without-CAAX-1 (RIT1) plays a critical role in various tumors. Our previous study has demonstrated the involvement of RIT1 in promoting malignant progression of hepatocellular carcinoma (HCC). However, its underlying mechanism remains unclear. METHODS: Gene set enrichment analysis (GSEA) was conducted in the TCGA LIHC cohort to investigate the underlying biological mechanism of RIT1. Live cell imaging, immunofluorescence (IF) and flow cytometry assays were used to verify biological function of RIT1 in HCC mitosis. Subcutaneous xenografting of human HCC cells in BALB/c nude mice was utilized to assess tumor proliferation in vivo. RNA-seq, co-immunoprecipitation (Co-IP), mass spectrometry analyses, western blot and IF assays were employed to elucidate the mechanisms by which RIT1 regulates mitosis and promotes proliferation in HCC. RESULTS: Our findings demonstrate that RIT1 plays a crucial role in regulating mitosis in HCC. Knockdown of RIT1 disrupts cell division, leading to G2/M phase arrest, mitotic catastrophe, and apoptosis in HCC cells. SMC3 is found to interact with RIT1 and knockdown of SMC3 attenuates the proliferative effects mediated by RIT1 both in vitro and in vivo. Mechanistically, RIT1 protects and maintains SMC3 acetylation by binding to SMC3 and PDS5 during mitosis, thereby promoting rapid cell division and proliferation in HCC. Notably, we have observed an upregulation of SMC3 expression in HCC tissues, which is associated with poor patient survival and promotion of HCC cell proliferation. Furthermore, there is a significant positive correlation between the expression levels of RIT1, SMC3, and PDS5. Importantly, HCC patients with high expression of both RIT1 and SMC3 exhibit worse prognosis compared to those with high RIT1 but low SMC3 expression. CONCLUSIONS: Our findings underscore the crucial role of RIT1 in regulating mitosis in HCC and further demonstrate its potential as a promising therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Camundongos Nus , Proliferação de Células/genética , Mitose , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas ras/metabolismo
20.
Ultrastruct Pathol ; 47(6): 484-494, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37840262

RESUMO

Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Telócitos , Feminino , Humanos , Biglicano/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Lumicana/metabolismo , Decorina/metabolismo , Fibromodulina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Endométrio , Telócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA