Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
J Sep Sci ; 47(9-10): e2400120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772720

RESUMO

Current techniques identifying herbal medicine species require marker labeling or lack systematical accuracy (expert authentication). There is an emerging interest in developing an accurate and label-free tool for herbal medicine authentication. Here, a high-resolution microfluidic-based method is developed for identifying herbal species by protoplast subpopulations. Moso bamboo and henon bamboo are used as a model to be differentiated based on protoplast. Their biophysical properties factors are characterized to be 7.09 (± 0.39) × 108 V/m2 and 6.54 (± 0.26) × 108 V/m2, respectively. Their biophysical distributions could be distinguished by the Cramér-von Mises criterion with a 94.60% confidence level. The subpopulations of each were compared with conventional flow cytometry indicating the existence of subpopulations and the differences between the two species. The subsets divided by a biophysical factor of 8.05(± 0.51) × 108 V/m2 suggest good consistency with flow cytometry. The work demonstrated the possibility of microfluidics manipulation on protoplast for medication safety use taking advantage of dielectrophoresis. The device is promising in developing a reliable and accurate way of identifying herbal species with difficulties in authentication.


Assuntos
Folhas de Planta , Protoplastos , Análise de Célula Única , Protoplastos/citologia , Folhas de Planta/química , Citometria de Fluxo , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica/instrumentação
2.
CRISPR J ; 4(5): 752-760, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569819

RESUMO

Versatile genome editing can be facilitated by the insertion of DNA sequences into specific locations. Current protocols involving CRISPR and Cas proteins rely on low efficiency homology-directed repair or non-homologous end joining with modified double-stranded DNA oligonucleotides as donors. Our simple protocol eliminates the need for expensive equipment, chemical and enzymatic donor DNA modification, or plasmid construction by using polyethylene glycol-calcium to deliver non-modified single-stranded DNA oligonucleotides and CRISPR-Cas9 ribonucleoprotein into protoplasts. Plants regenerated via edited protoplasts achieved targeted insertion frequencies of up to 50% in Nicotiana benthamiana and 13.6% in rapid cycling Brassica oleracea without antibiotic selection. Using a 60 nt donor containing 27 nt in each homologous arm, 6/22 regenerated N. benthamiana plants showed targeted insertions, and one contained a precise insertion of a 6 bp HindIII site. The inserted sequences were transmitted to the next generation and invite the possibility of future exploration of versatile genome editing by targeted DNA insertion in plants.


Assuntos
Marcação de Genes/métodos , Genoma de Planta , Mutagênese Insercional , Custos e Análise de Custo , Edição de Genes/economia , Edição de Genes/métodos , Marcação de Genes/economia , Protoplastos/citologia , Protoplastos/metabolismo , Nicotiana/genética
3.
PLoS One ; 16(8): e0255842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34375348

RESUMO

The Australian finger lime is a unique citrus species that has gained importance due to its unique fruit characteristics and perceived tolerance to Huanglongbing (HLB), an often-fatal disease of citrus trees. In this study, we developed allotetraploid finger lime hybrids and cybrids by utilizing somatic cell fusion techniques to fuse diploid 'OLL8' sweet orange or 'Page' tangelo callus-derived protoplasts with finger lime (FL) mesophyll-derived protoplasts. Six somatic fusions were regenerated from the 'OLL8' + FL fusion, while three putative cybrids were regenerated from the 'Page' + FL fusion. Ploidy levels and nuclear-expressed sequence tag derived simple sequence repeat (EST-SSR) markers confirmed the somatic hybrid production, and mitochondrial DNA primer sets confirmed the cybrid nature. Several trees produced by the somatic fusion remained HLB negative even after 6 years of growth in an HLB-endemic environment. Pathogenesis related (PR) and other genes that are often upregulated in HLB-tolerant trees were also upregulated in our somatic fusions. These newly developed somatic fusions and cybrids could potentially be used as breeding parents to develop the next generation of improved HLB-tolerant rootstocks and scions.


Assuntos
Citrus/genética , Melhoramento Vegetal/métodos , Austrália , Citrus/anatomia & histologia , Citrus sinensis/anatomia & histologia , Citrus sinensis/genética , Diploide , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Híbridas/citologia , Células Híbridas/metabolismo , Repetições de Microssatélites/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Polimorfismo Genético , Protoplastos/citologia , Protoplastos/metabolismo , Tetraploidia
4.
Plant Cell Rep ; 40(6): 1037-1045, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32959126

RESUMO

KEY MESSAGE: We obtained a complete mutant line of Petunia having mutations in both F3H genes via Cas9-ribonucleoproteins delivery, which exhibited a pale purplish pink flower color. The CRISPR-Cas system is now revolutionizing agriculture by allowing researchers to generate various desired mutations in plants at will. In particular, DNA-free genome editing via Cas9-ribonucleoproteins (RNPs) delivery has many advantages in plants; it does not require codon optimization or specific promoters for expression in plant cells; furthermore, it can bypass GMO regulations in some countries. Here, we have performed site-specific mutagenesis in Petunia to engineer flower color modifications. We determined that the commercial Petunia cultivar 'Madness Midnight' has two F3H coding genes and designed one guide RNA that targets both F3H genes at once. Among 67 T0 plants regenerated from Cas9-RNP transfected protoplasts, we obtained seven mutant lines that contain mutations in either F3HA or F3HB gene and one complete mutant line having mutations in both F3H genes without any selectable markers. It is noteworthy that only the f3ha f3hb exhibited a clearly modified, pale purplish pink flower color (RHS 69D), whereas the others, including the single copy gene knock-out plants, displayed purple violet (RHS 93A) flowers similar to the wild-type Petunia. To the best of our knowledge, we demonstrated a precedent of ornamental crop engineering by DNA-free CRISPR method for the first time, which will greatly accelerate a transition from a laboratory to a farmer's field.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/métodos , Genes Duplicados , Petunia/genética , Pigmentação/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/isolamento & purificação , Edição de Genes/métodos , Genes de Plantas , Mutagênese Sítio-Dirigida , Petunia/fisiologia , Plantas Geneticamente Modificadas/genética , Protoplastos/citologia , Protoplastos/fisiologia , RNA Guia de Cinetoplastídeos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
5.
Plant Cell Rep ; 40(6): 1059-1070, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32945949

RESUMO

KEY MESSAGE: Calli protoplasts isolated from three soybean cultivars are useful tools to evaluate guide RNAs for clustered regularly interspaced short palindromic repeats (CRISPR)-based precise gene editing. A type V CRISPR effector, LbCpf1(Cas12a) from Lachnospiraceae bacterium ND 2006, has been used for precision editing of the plant genome. We report that callus-derived protoplasts from three soybeans, including Glycine Max var. Williams 82 and two Korean cultivars (Kwangan and Daewon) represent efficient systems for the screening of active crRNA for CRISPR/LbCpf1. CRISPR/LbCpf1 ribonucleoproteins (RNPs) were delivered as complexes of purified endonucleases mixed with designed crRNA to simultaneously edit target genes of GlymaFAD2-1A and GlymaFAD2-1B transfected into three soybean protoplasts including genome-sequenced Williams 82 with cultivars, Kwangan and Daewon. Previously, we reported that nine crRNAs designed for LbCpf1 exhibited varying degrees of editing efficacy for two FAD2 genes. Among the nine crRNAs, the LbCpf1-crRNA3 complexes showed the highest efficiency in soybean cotyledon protoplasts. The new screening systems of callus protoplasts from three soybeans have been successfully used to transfect GFP-tagged markers and CRISPR/LbCpf1 RNPs. The callus protoplasts confirm that the LbCpf1-crRNA3 complex is an active crRNA for LbCpf1 to edit two FAD2 genes similar to cotyledon protoplasts. These results demonstrate that soybean callus protoplast-based CRISPR/crRNA selection is a new and practical tool to screen the efficacy of crRNAs and a prerequisite for progressive regeneration of the edited soybean.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , Glycine max/citologia , Glycine max/genética , Ribonucleoproteínas/genética , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Cotilédone/genética , Endodesoxirribonucleases/genética , Plantas Geneticamente Modificadas , Protoplastos/citologia , RNA Guia de Cinetoplastídeos , Reprodutibilidade dos Testes
6.
Methods Mol Biol ; 2200: 255-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33175382

RESUMO

Flow cytometry and sorting represents a valuable and mature experimental platform for the analysis of cellular populations. Applications involving higher plants started to emerge around 40 years ago and are now widely employed both to provide unique information regarding basic and applied questions in the biosciences and to advance agricultural productivity in practical ways. Further development of this platform is being actively pursued, and this promises additional progress in our understanding of the interactions of cells within complex tissues and organs. Higher plants offer unique challenges in terms of flow cytometric analysis, first since their organs and tissues are, almost without exception, three-dimensional assemblies of different cell types held together by tough cell walls, and, second, because individual plant cells are generally larger than those of mammals.This chapter, which updates work last reviewed in 2014 [Galbraith DW (2014) Flow cytometry and sorting in Arabidopsis. In: Sanchez Serrano JJ, Salinas J (eds) Arabidopsis Protocols, 3rd ed. Methods in molecular biology, vol 1062. Humana Press, Totowa, pp 509-537], describes the application of techniques of flow cytometry and sorting to the model plant species Arabidopsis thaliana, in particular emphasizing (a) fluorescence labeling in vivo of specific cell types and of subcellular components, (b) analysis using both conventional cytometers and spectral analyzers, (c) fluorescence-activated sorting of protoplasts and nuclei, and (d) transcriptome analyses using sorted protoplasts and nuclei, focusing on population analyses at the level of single protoplasts and nuclei. Since this is an update, details of new experimental methods are emphasized.


Assuntos
Arabidopsis/citologia , Citometria de Fluxo , Células Vegetais , Protoplastos/citologia , Arabidopsis/metabolismo , Protoplastos/metabolismo
7.
BMC Plant Biol ; 20(1): 549, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287709

RESUMO

BACKGROUND: Nitrate plays an important role in grapevines vegetative and reproductive development. However, how grapevines uptake, translocate and utilize nitrate and the molecular mechanism still remains to be investigated. RESULTS: In this study, we report the functional characterization of VvNPF6.5, a member of nitrate transporter 1/peptide transporter family (NRT1/PTR/NPF) in Vitis vinifera. Subcellular localization in Arabidopsis protoplasts indicated that VvNPF6.5 is plasma membrane localized. Quantitative RT-PCR analysis indicated that VvNPF6.5 is expressed predominantly in roots and stems and its expression is rapidly induced by nitrate. Functional characterization using cRNA-injected Xenopus laevis oocytes showed that VvNPF6.5 uptake nitrate in a pH dependent way and function as a dual-affinity nitrate transporter involved in both high- and low-affinity nitrate uptake. Further ectopic expression of VvNPF6.5 in Arabidopsis resulted in more 15NO3- accumulation in shoots and roots and significantly improved nitrogen use efficiency (NUE). Moreover, VvNPF6.5 might participate in the nitrate signaling by positively regulating the expression of primary nitrate response genes. CONCLUSION: Our results suggested that VvNPF6.5 encodes a pH-dependent, dual-affinity nitrate transporter. VvNPF6.5 regulates nitrate uptake and allocation in grapevines and is involved in primary nitrate response.


Assuntos
Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/genética , Vitis/genética , Animais , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Transporte Biológico/genética , Expressão Ectópica do Gene , Feminino , Regulação da Expressão Gênica de Plantas , Transportadores de Nitrato , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Protoplastos/citologia , Protoplastos/metabolismo , Transgenes/genética , Vitis/metabolismo , Xenopus laevis
8.
BMC Plant Biol ; 20(1): 555, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302867

RESUMO

BACKGROUND: The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. RESULTS: Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. CONCLUSIONS: These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Cloroplastos/genética , Cloroplastos/metabolismo , Interações Hospedeiro-Patógeno , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/classificação , Protoplastos/citologia , Protoplastos/metabolismo , Puccinia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Homologia de Sequência de Aminoácidos , Nicotiana/citologia , Nicotiana/metabolismo , Triticum/metabolismo , Triticum/microbiologia
9.
Proc Natl Acad Sci U S A ; 117(51): 32731-32738, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288703

RESUMO

In plant cells, cortical microtubules (CMTs) generally control morphogenesis by guiding cellulose synthesis. CMT alignment has been proposed to depend on geometrical cues, with microtubules aligning with the cell long axis in silico and in vitro. Yet, CMTs are usually transverse in vivo, i.e., along predicted maximal tension, which is transverse for cylindrical pressurized vessels. Here, we adapted a microwell setup to test these predictions in a single-cell system. We confined protoplasts laterally to impose a curvature ratio and modulated pressurization through osmotic changes. We find that CMTs can be longitudinal or transverse in wallless protoplasts and that the switch in CMT orientation depends on pressurization. In particular, longitudinal CMTs become transverse when cortical tension increases. This explains the dual behavior of CMTs in planta: CMTs become longitudinal when stress levels become low, while stable transverse CMT alignments in tissues result from their autonomous response to tensile stress fluctuations.


Assuntos
Microtúbulos/química , Microtúbulos/metabolismo , Protoplastos/citologia , Anisotropia , Arabidopsis/citologia , Arabidopsis/genética , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Poloxâmero/química , Pressão
10.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545519

RESUMO

Plants are sessile organisms that have a remarkable developmental plasticity, which ensures their optimal adaptation to environmental stresses. Plant cell totipotency is an extreme example of such plasticity, whereby somatic cells have the potential to form plants via direct shoot organogenesis or somatic embryogenesis in response to various exogenous and/or endogenous signals. Protoplasts provide one of the most suitable systems for investigating molecular mechanisms of totipotency, because they are effectively single cell populations. In this review, we consider the current state of knowledge of the mechanisms that induce cell proliferation from individual, differentiated somatic plant cells. We highlight initial explant metabolic status, ploidy level and isolation procedure as determinants of successful cell reprogramming. We also discuss the importance of auxin signalling and its interaction with stress-regulated pathways in governing cell cycle induction and further stages of plant cell totipotency.


Assuntos
Células do Mesofilo/citologia , Protoplastos/citologia , Células-Tronco Totipotentes/citologia , Diferenciação Celular , Proliferação de Células , Reprogramação Celular , Fenômenos Fisiológicos Vegetais , Ploidias , Transdução de Sinais
11.
PLoS One ; 15(6): e0234154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497144

RESUMO

Phytohormones mediate most diverse processes in plants, ranging from organ development to immune responses. Receptor protein complexes perceive changes in intracellular phytohormone levels and trigger a signaling cascade to effectuate downstream responses. The in planta analysis of elements involved in phytohormone signaling can be achieved through transient expression in mesophyll protoplasts, which are a fast and versatile alternative to generating plant lines that stably express a transgene. While promoter-reporter constructs have been used successfully to identify internal or external factors that change phytohormone signaling, the range of available marker constructs does not meet the potential of the protoplast technique for large scale approaches. The aim of our study was to provide novel markers for phytohormone signaling in the Arabidopsis mesophyll protoplast system. We validated 18 promoter::luciferase constructs towards their phytohormone responsiveness and specificity and suggest an experimental setup for high-throughput analyses. We recommend novel markers for the analysis of auxin, abscisic acid, cytokinin, salicylic acid and jasmonic acid responses that will facilitate future screens for biological elements and environmental stimuli affecting phytohormone signaling.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Protoplastos/citologia , Transdução de Sinais , Arabidopsis/citologia , Biomarcadores/metabolismo
12.
Biomed Res Int ; 2020: 1979318, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32420325

RESUMO

Saccharomyces cerevisiae is a typical fermentation yeast in beer production. Improving ethanol tolerance of S. cerevisiae will increase fermentation efficiency, thereby reducing capital costs. Here, we found that S. cerevisiae strain L exhibited a higher ethanol tolerance (14%, v/v) than the fermentative strain Q (10%, v/v). In order to enhance the strain Q ethanol tolerance but preserve its fermentation property, protoplast fusion was performed with haploids from strain Q and L. The fusant Q/L-f2 with 14% ethanol tolerance was obtained. Meanwhile, the fermentation properties (flocculability, SO2 production, α-N assimilation rate, GSH production, etc.) of Q/L-f2 were similar to those of strain Q. Therefore, our works established a series of high ethanol-tolerant strains in beer production. Moreover, this demonstration of inactivated protoplast fusion in industrial S. cerevisiae strain opens many doors for yeast-based biotechnological applications.


Assuntos
Etanol/metabolismo , Protoplastos , Saccharomyces cerevisiae , Protoplastos/citologia , Protoplastos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
Biotechnol Bioeng ; 117(6): 1696-1709, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100874

RESUMO

A barrier to cost-efficient biomanufacturing is the instability of engineered genetic elements, such as plasmids. Instability can also manifest at the whole-genome level, when fungal dikaryons revert to parental species due to nuclear segregation during cell division. Here, we show that by encapsulating Saccharomyces cerevisiae-Pichia stipitis dikaryons in an alginate matrix, we can limit cell division and preserve their expanded metabolic capabilities. As a proxy to cellulosic ethanol production, we tested the capacity of such cells to carry out ethanologenic fermentation of glucose and xylose, examining substrate use, ploidy, and cell viability in relation to planktonic fusants, as well as in relation to planktonic and encapsulated cell cultures consisting of mixtures of these species. Glucose and xylose consumption and ethanol production by encapsulated dikaryons were greater than planktonic controls. Simultaneous co-fermentation did not occur; rather the order and kinetics of glucose and xylose catabolism by encapsulated dikaryons were similar to cultures where the two species were encapsulated together. Over repeated cycles of fed-batch culture, encapsulated S. cerevisiae-P. stipitis fusants exhibited a dramatic increase in genomic stability, relative to planktonic fusants. Encapsulation also increased the stability of antibiotic-resistance plasmids used to mark each species and preserved a fixed ratio of S. cerevisiae to P. stipitis cells in mixed cultures. Our data demonstrate how encapsulating cells in an extracellular matrix restricts cell division and, thereby, preserves the stability and biological activity of entities ranging from genomes to plasmids to mixed populations, each of which can be essential to cost-efficient biomanufacturing.


Assuntos
Alginatos/química , Células Imobilizadas/citologia , Protoplastos/citologia , Saccharomyces cerevisiae/citologia , Saccharomycetales/citologia , Materiais Biocompatíveis/química , Divisão Celular , Células Imobilizadas/metabolismo , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
14.
J Appl Genet ; 61(2): 151-162, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31970663

RESUMO

GS5 encoding a serine carboxypeptidase-like protein positively regulates grain size and weight through the regulation of grain width and filling and is helpful in improving cereal yields. Grain width variation determined by GS5 is associated with cell number and size, but the actual underlying mechanism is still unclear. Two orthologs of GS5, TtGS5-3A-G and TtGS5-3G-G, were cloned from the Triticum timopheevi accession no. CWI17006. To identify the proteins that interacted with TtGS5-3A-G and TtGS5-3G-G in premature grains, we performed pull-down assays followed by liquid chromatography-mass spectrometry/mass spectrometry analysis. The analyses revealed 18 proteins were present in both the TtGS5-3A-G and TtGS5-3G-G interactomes. Among five candidates selected, only Annexin D1 interacted with both TtGS5-3A-G and TtGS5-3G-G in yeast. Annexin D1, TtGS5-3A-G, and TtGS5-3G-G were located on the cytoplasmic membranes of Arabidopsis protoplasts and onion epidermal cells, and interactions between Annexin D1 and TtGS5-3A-G, as well as TtGS5-3G-G, were shown by bimolecular fluorescence complementation assays. Annexin D1 was expressed widely in different tissues, and it co-expressed with TtGS5-3A-G/TtGS5-3G-G at the grain enlargement phase. These results indicated that Annexin D1 interacted with TtGS5-3A-G and TtGS5-3G-G in premature grains. Together with the structural similarities of Annexin D1 to known fiber elongation factors, we proposed that TtGS5 might regulate the cell size by interacting with Annexin D1. The results provide significant new information for understanding the roles that GS5 plays in regulating grain size, which may be useful in improving crop yields.


Assuntos
Anexinas/genética , Carboxipeptidases/genética , Sementes/genética , Triticum/genética , Arabidopsis/genética , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas/genética , Espectrometria de Massas , Desenvolvimento Vegetal/genética , Protoplastos/citologia , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
15.
BMC Plant Biol ; 20(1): 11, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910821

RESUMO

BACKGROUND: NAD kinases (NADKs) are the only known enzymes that directly phosphorylate NAD(H) to generate NADP(H) in different subcellular compartments. They participate in multiple life activities, such as modulating the NADP/NAD ratio, maintaining the intracellular redox balance and responding to environmental stresses. However, the functions of individual NADK in plants are still under investigation. Here, a rice NADK, namely, OsNADK1, was identified, and its functions in plant growth regulation and stress tolerance were analysed by employing a series of transgenic plant lines. RESULTS: OsNADK1 is a cytosol-localized NADK in rice. It was expressed in all rice tissues examined, and its transcriptional expression could be stimulated by a number of environmental stress treatments. Compared with wild-type (WT) rice, the mutant plant osnadk1 in which OsNADK1 was knocked out was a dwarf at the heading stage and had decreased NADP(H)/NAD(H), ascorbic acid (ASA)/dehydroascorbate (DHA) and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios, which led to increased oxidation states in the rice cells and sensitivity to drought. Moreover, certain stress-related genes showed differential expression patterns in osnadk1 under both normal growth and drought-stress conditions compared with WT. Among these genes, OsDREB1B and several WRKY family transcription factors, e.g., OsWRKY21 and OsWRKY42, showed correlated co-expression patterns with OsNADK1 in osnadk1 and the plants overexpressing or underexpressing OsNADK1, implying roles for these transcription factors in OsNADK1-mediated processes. In addition, overexpression of OsNADK1 enhanced the drought tolerance of rice plants, whereas loss of function of the gene reduced the tolerance. Furthermore, the proline content was dramatically increased in the leaves of the OsNADK1-overexpressing lines under drought conditions. CONCLUSIONS: Altogether, the results suggest that an OsNADK1-mediated intracellular redox balance is involved in the tolerance of rice plants to drought.


Assuntos
Secas , NAD , Oryza/genética , Fosfotransferases (Aceptor do Grupo Álcool) , Estresse Fisiológico/genética , Clonagem Molecular/métodos , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , NAD/genética , NAD/metabolismo , Oryza/metabolismo , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Protoplastos/citologia , Protoplastos/metabolismo , Transcriptoma
16.
Cells ; 8(12)2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795159

RESUMO

The phytohormone jasmonic acid (JA) plays an important role in various plant developmental processes and environmental adaptations. The JA signaling pathway has been well-elucidated in the reference plant Arabidopsis thaliana. It starts with the perception of the active JA derivative, jasmonoyl-isoleucine (JA-Ile), by the F-box protein COI1 which is part of the E3-ligase SCFCOI1. Binding of JA-Ile enables the interaction between COI1 and JAZ repressor proteins. Subsequent degradation of JAZ proteins leads to the activation of transcription factors like e.g., MYC2. Here we demonstrate that the pathway can be reconstituted in transiently transformed protoplasts. Analysis of the stability of a JAZ1-fLuc fusion protein as a function of COI1 transiently expressed in coi1 protoplasts allows structure function analysis of both JAZs and COI1. Using this system, we found that conserved cysteines in COI1 influence steady state COI1 protein levels. Using a luciferase reporter gene under the control of the JAZ1 promoter enable to address those features of JAZ1 that are required for MYC2 repression. Interestingly, the conserved TIFY-motif previously described to interact with NINJA to recruit the corepressor TOPLESS is not necessary for repression. This result is in favor of the alternative repression mode that proposes a direct competition between repressive JAZs and promotive MEDIATOR25 at MYC2. Finally, using protoplasts from the aoscoi1 double mutant, which is deficient in JA synthesis and perception, we provide a system that has the potential to study the activity of different COI1 variants in the presence of different ligands.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Protoplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Protoplastos/citologia , Proteínas Repressoras/metabolismo , Transdução de Sinais
17.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661801

RESUMO

Oil palm (Elaeis guineensis, Jacq.) is a prominent vegetable-oil-yielding crop. Cultivating high-yielding oil palm with improved traits is a pre-requisite to meet the increasing demands of palm oil consumption. However, tissue culture and biotechnological approaches can resolve these concerns. Over the past three decades, significant research has been carried out to develop tissue culture and genetic transformation protocols for oil palm. Somatic embryogenesis is an efficient platform for the micropropagation of oil palm on a large scale. In addition, various genetic transformation techniques, including microprojectile bombardment, Agrobacterium tumefaciens mediated, Polyethylene glycol mediated mediated, and DNA microinjection, have been developed by optimizing various parameters for the efficient genetic transformation of oil palm. This review mainly emphasizes the methods established for in vitro propagation and genetic transformation of oil palm. Finally, we propose the application of the genome editing tool CRISPR/Cas9 to improve the various traits in this oil yielding crop.


Assuntos
Arecaceae/crescimento & desenvolvimento , Arecaceae/genética , Transformação Genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arecaceae/embriologia , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Microinjeções/métodos , Óleo de Palmeira/economia , Técnicas de Embriogênese Somática de Plantas/métodos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Protoplastos/citologia , Protoplastos/efeitos dos fármacos , Técnicas de Cultura de Tecidos
18.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540359

RESUMO

Effector proteins play an important role in the virulence of plant pathogens such as phytoplasma, which are the causative agents of hundreds of different plant diseases. The plant hosts comprise economically relevant crops such as apples (Malus × domestica), which can be infected by 'Candidatus Phytoplasma mali' (P. mali), a highly genetically dynamic plant pathogen. As the result of the genetic and functional analyses in this study, a new putative P. mali effector protein was revealed. The so-called "Protein in Malus Expressed 2" (PME2), which is expressed in apples during P. mali infection but not in the insect vector, shows regional genetic differences. In a heterologous expression assay using Nicotiana benthamiana and Nicotiana occidentalis mesophyll protoplasts, translocation of both PME2 variants in the cell nucleus was observed. Overexpression of the effector protein affected cell integrity in Nicotiana spp. protoplasts, indicating a potential role of this protein in pathogenic virulence. Interestingly, the two genetic variants of PME2 differ regarding their potential to manipulate cell integrity. However, the exact function of PME2 during disease manifestation and symptom development remains to be further elucidated. Aside from the first description of the function of a novel effector of P. mali, the results of this study underline the necessity for a more comprehensive description and understanding of the genetic diversity of P. mali as an indispensable basis for a functional understanding of apple proliferation disease.


Assuntos
Proteínas de Bactérias/genética , Malus/microbiologia , Nicotiana/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Sobrevivência Celular , Expressão Gênica , Interações Hospedeiro-Patógeno , Malus/citologia , Phytoplasma/química , Phytoplasma/genética , Phytoplasma/patogenicidade , Protoplastos/citologia , Protoplastos/microbiologia , Alinhamento de Sequência , Nicotiana/citologia , Fatores de Virulência/análise , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
BMC Biotechnol ; 19(1): 36, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208390

RESUMO

BACKGROUND: CRISPR/Cas9 is widely used for precise genetic editing in various organisms. CRISPR/Cas9 editing may in many plants be hampered by the presence of complex and high ploidy genomes and inefficient or poorly controlled delivery of the CRISPR/Cas9 components to gamete cells or cells with regenerative potential. Optimized strategies and methods to overcome these challenges are therefore in demand. RESULTS: In this study we investigated the feasibility of improving CRISPR/Cas9 editing efficiency by Fluorescence Activated Cell Sorting (FACS) of protoplasts. We used Agrobacterium infiltration in leaves of Nicotiana benthamiana for delivery of viral replicons for high level expression of gRNAs designed to target two loci in the genome, NbPDS and NbRRA, together with the Cas9 nuclease in fusion with the 2A self-splicing sequence and GFP (Cas9-2A-GFP). Protoplasts isolated from the infiltrated leaves were then subjected to FACS for selection of GFP enriched protoplast populations. This procedure resulted in a 3-5 fold (from 20 to 30% in unsorted to more than 80% in sorted) increase in mutation frequencies as evidenced by restriction enzyme analysis and the Indel Detection by Amplicon Analysis, which allows for high throughput profiling and quantification of the generated mutations. CONCLUSIONS: FACS of protoplasts expressing GFP tagged CRISPR/Cas9, delivered through A. tumefaciens leaf infiltration, facilitated clear CRISPR/Cas9 mediated mutation enrichment in selected protoplast populations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteínas de Fluorescência Verde/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Protoplastos/metabolismo , Citometria de Fluxo , Fluorescência , Proteínas de Fluorescência Verde/genética , Microscopia de Fluorescência , Mutação , Folhas de Planta/citologia , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Protoplastos/citologia , Nicotiana/citologia , Nicotiana/genética
20.
Genome Res ; 29(8): 1343-1351, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31186303

RESUMO

Eukaryotic gene expression is often tightly regulated by interactions between transcription factors (TFs) and their DNA cis targets. Yeast one-hybrid (Y1H) is one of the most extensively used methods to discover these interactions. We developed a high-throughput meiosis-directed yeast one-hybrid system using the Magic Markers of the synthetic genetic array analysis. The system has a transcription factor-DNA interaction discovery rate twice as high as the conventional diploid-mating approach and a processing time nearly one-tenth of the haploid-transformation method. The system also offers the highest accuracy in identifying TF-DNA interactions that can be authenticated in vivo by chromatin immunoprecipitation. With these unique features, this meiosis-directed Y1H system is particularly suited for constructing novel and comprehensive genome-scale gene regulatory networks for various organisms.


Assuntos
DNA/genética , Análise em Microsséries/métodos , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Animais , DNA/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Marcadores Genéticos , Humanos , Meiose , Análise em Microsséries/instrumentação , Plasmídeos/química , Plasmídeos/metabolismo , Ploidias , Populus/citologia , Ligação Proteica , Protoplastos/citologia , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA