Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
mBio ; 15(8): e0093624, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38940615

RESUMO

Facultative endosymbiotic bacteria, such as Wolbachia and Spiroplasma species, are commonly found in association with insects and can dramatically alter their host physiology. Many endosymbionts are defensive and protect their hosts against parasites or pathogens. Despite the widespread nature of defensive insect symbioses and their importance for the ecology and evolution of insects, the mechanisms of symbiont-mediated host protection remain poorly characterized. Here, we utilized the fruit fly Drosophila melanogaster and its facultative endosymbiont Spiroplasma poulsonii to characterize the mechanisms underlying symbiont-mediated host protection against bacterial and fungal pathogens. Our results indicate a variable effect of S. poulsonii on infection outcome, with endosymbiont-harboring flies being more resistant to Rhyzopus oryzae, Staphylococcus aureus, and Providencia alcalifaciens but more sensitive or as sensitive as endosymbiont-free flies to the infections with Pseudomonas species. Further focusing on the protective effect, we identified Transferrin-mediated iron sequestration induced by Spiroplasma as being crucial for the defense against R. oryzae and P. alcalifaciens. In the case of S. aureus, enhanced melanization in Spiroplasma-harboring flies plays a major role in protection. Both iron sequestration and melanization induced by Spiroplasma require the host immune sensor protease Persephone, suggesting a role of proteases secreted by the symbiont in the activation of host defense reactions. Hence, our work reveals a broader defensive range of Spiroplasma than previously appreciated and adds nutritional immunity and melanization to the defensive arsenal of symbionts. IMPORTANCE: Defensive endosymbiotic bacteria conferring protection to their hosts against parasites and pathogens are widespread in insect populations. However, the mechanisms by which most symbionts confer protection are not fully understood. Here, we studied the mechanisms of protection against bacterial and fungal pathogens mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii. We demonstrate that besides the previously described protection against wasps and nematodes, Spiroplasma also confers increased resistance to pathogenic bacteria and fungi. We identified Spiroplasma-induced iron sequestration and melanization as key defense mechanisms. Our work broadens the known defense spectrum of Spiroplasma and reveals a previously unappreciated role of melanization and iron sequestration in endosymbiont-mediated host protection. We propose that the mechanisms we have identified here may be of broader significance and could apply to other endosymbionts, particularly to Wolbachia, and potentially explain their protective properties.


Assuntos
Drosophila melanogaster , Ferro , Spiroplasma , Simbiose , Animais , Spiroplasma/fisiologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/imunologia , Ferro/metabolismo , Melaninas/metabolismo , Staphylococcus aureus/fisiologia , Staphylococcus aureus/imunologia , Providencia/metabolismo , Providencia/fisiologia , Providencia/genética , Resistência à Doença
2.
Microbiol Spectr ; 12(7): e0428623, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842327

RESUMO

Similarly to other strict blood feeders, leeches from the Haementeria genus (Hirudinida: Glossiphoniidae) have established a symbiotic association with bacteria harbored intracellularly in esophageal bacteriomes. Previous genome sequence analyses of these endosymbionts revealed co-divergence with their hosts, a strong genome reduction, and a simplified metabolism largely dedicated to the production of B vitamins, which are nutrients lacking from a blood diet. 'Candidatus Providencia siddallii' has been identified as the obligate nutritional endosymbiont of a monophyletic clade of Mexican and South American Haementeria spp. However, the Haementeria genus includes a sister clade of congeners from Central and South America, where the presence or absence of the aforementioned symbiont taxon remains unknown. In this work, we report on a novel bacterial endosymbiont found in a representative from this Haementeria clade. We found that this symbiont lineage has evolved from within the Pluralibacter genus, known mainly from clinical but also environmental strains. Similarly to Ca. Providencia siddallii, the Haementeria-associated Pluralibacter symbiont displays clear signs of genome reduction, accompanied by an A+T-biased sequence composition. Genomic analysis of its metabolic potential revealed a retention of pathways related to B vitamin biosynthesis, supporting its role as a nutritional endosymbiont. Finally, comparative genomics of both Haementeria symbiont lineages suggests that an ancient Providencia symbiont was likely replaced by the novel Pluralibacter one, thus constituting the first reported case of nutritional symbiont replacement in a leech without morphological changes in the bacteriome. IMPORTANCE: Obligate symbiotic associations with a nutritional base have likely evolved more than once in strict blood-feeding leeches. Unlike those symbioses found in hematophagous arthropods, the nature, identity, and evolutionary history of these remains poorly studied. In this work, we further explored obligate nutritional associations between Haementeria leeches and their microbial symbionts, which led to the unexpected discovery of a novel symbiosis with a member of the Pluralibacter genus. When compared to Providencia siddallii, an obligate nutritional symbiont of other Haementeria leeches, this novel bacterial symbiont shows convergent retention of the metabolic pathways involved in B vitamin biosynthesis. Moreover, the genomic characteristics of this Pluralibacter symbiont suggest a more recent association than that of Pr. siddallii and Haementeria. We conclude that the once-thought stable associations between blood-feeding Glossiphoniidae and their symbionts (i.e., one bacteriome structure, one symbiont lineage) can break down, mirroring symbiont turnover observed in various arthropod lineages.


Assuntos
Sanguessugas , Filogenia , Simbiose , Animais , Sanguessugas/microbiologia , Sanguessugas/fisiologia , Genoma Bacteriano , Providencia/genética , Providencia/isolamento & purificação , Providencia/metabolismo , Providencia/classificação , Providencia/fisiologia
3.
Euro Surveill ; 29(23)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847120

RESUMO

BackgroundThe war in Ukraine led to migration of Ukrainian people. Early 2022, several European national surveillance systems detected multidrug-resistant (MDR) bacteria related to Ukrainian patients.AimTo investigate the genomic epidemiology of New Delhi metallo-ß-lactamase (NDM)-producing Providencia stuartii from Ukrainian patients among European countries.MethodsWhole-genome sequencing of 66 isolates sampled in 2022-2023 in 10 European countries enabled whole-genome multilocus sequence typing (wgMLST), identification of resistance genes, replicons, and plasmid reconstructions. Five bla NDM-1-carrying-P. stuartii isolates underwent antimicrobial susceptibility testing (AST). Transferability to Escherichia coli of a bla NDM-1-carrying plasmid from a patient strain was assessed. Epidemiological characteristics of patients with NDM-producing P. stuartii were gathered by questionnaire.ResultswgMLST of the 66 isolates revealed two genetic clusters unrelated to Ukraine and three linked to Ukrainian patients. Of these three, two comprised bla NDM-1-carrying-P. stuartii and the third bla NDM-5-carrying-P. stuartii. The bla NDM-1 clusters (PstCluster-001, n = 22 isolates; PstCluster-002, n = 8 isolates) comprised strains from seven and four countries, respectively. The bla NDM-5 cluster (PstCluster-003) included 13 isolates from six countries. PstCluster-001 and PstCluster-002 isolates carried an MDR plasmid harbouring bla NDM-1, bla OXA-10, bla CMY-16, rmtC and armA, which was transferrable in vitro and, for some Ukrainian patients, shared by other Enterobacterales. AST revealed PstCluster-001 isolates to be extensively drug-resistant (XDR), but susceptible to cefiderocol and aztreonam-avibactam. Patients with data on age (n = 41) were 19-74 years old; of 49 with information on sex, 38 were male.ConclusionXDR P. stuartii were introduced into European countries, requiring increased awareness and precautions when treating patients from conflict-affected areas.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos , Providencia , Sequenciamento Completo do Genoma , beta-Lactamases , Humanos , Ucrânia/epidemiologia , beta-Lactamases/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Providencia/genética , Providencia/isolamento & purificação , Providencia/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Europa (Continente)/epidemiologia , Plasmídeos/genética , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Idoso , Adulto Jovem
4.
Eur J Clin Microbiol Infect Dis ; 43(7): 1461-1467, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714595

RESUMO

Providencia genus is known to harbor certain opportunistic pathogens capable of causing human infections. Here, we report two strains of multidrug-resistant bacteria initially identified as Providencia rettgeri by mass spectrometry, but genome analysis revealed their ANI (79.84-84.20%) and dDDH (21.1-25.6%) values to fall below the accepted species threshold for known Providencia species. We therefore propose that these isolates be recognized as a novel species, Providencia xianensis sp. nov. Alarmingly, both strains, isolated from locations far apart, exhibited resistance to last-resort antibiotics, indicating their possible wide distribution, underscoring the urgency for immediate attention and enhanced surveillance for this emerging multidrug-resistant pathogen.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Providencia , Providencia/efeitos dos fármacos , Providencia/genética , Providencia/isolamento & purificação , Providencia/classificação , Humanos , Infecções por Enterobacteriaceae/microbiologia , Antibacterianos/farmacologia , Filogenia , Masculino , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Feminino , Pessoa de Meia-Idade
5.
Int J Antimicrob Agents ; 64(2): 107211, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795927

RESUMO

Providencia species are important opportunistic pathogens for humans and are associated with several infectious diseases. In this study, we found three clinical strains belonging to a novel Providencia species, namely Providencia huashanensis, including strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111. These strains were recovered from three patients, and all of them were associated with nosocomial infections, including incision infection, urinary tract infection, and intracranial infection. The three strains showed high-level resistance to many types of antimicrobials, including amikacin, aztreonam, ceftazidime, cefepime, ciprofloxacin, colistin, polymyxin B, imipenem, meropenem, ceftazidime-avibactam, imipenem-relebactam. Investigation of the resistance mechanism revealed that acquired resistance genes such as blaKPC, blaNDM, blaPER, blaOXA, aac, ant, and qnrD, played an important role in the multi-drug-resistant phenotype for the three strains. The phylogenetic trees were reconstructed based on the 16S rRNA gene sequences, multi-locus sequence analysis, and core single nucleotide polymorphisms. The genome sequence of the strains had a range of 83.5%-85.8% average nucleotide identity and 21%-25.5% in silico DNA-DNA hybridization scores with other Providencia type strains. The average nucleotide identity and in silico DNA-DNA hybridization values and the phylogenetic trees indicated that the strains CRE-3FA-0001T, CRE-138-0026, and CRE-138-0111 strains should be considered as a novel species of the genus Providencia, for which the name P. huashanensis sp. nov. is proposed. The type strain is CRE-3FA-0001T = China Center for Type Culture Collection AB 2023186T = Korean Collection for Type Cultures 8373T.


Assuntos
Antibacterianos , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Filogenia , Providencia , RNA Ribossômico 16S , Humanos , Antibacterianos/farmacologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Enterobacteriaceae/microbiologia , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Providencia/genética , Providencia/efeitos dos fármacos , Providencia/isolamento & purificação , RNA Ribossômico 16S/genética , Infecções Urinárias/microbiologia
6.
Diagn Microbiol Infect Dis ; 109(1): 116246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452556

RESUMO

Providencia rettgeri, belonging to the genus Providencia, had gained significant interest due to its increasing prevalence as a common pathogen responsible for healthcare-associated infections in hospitals. P. rettgeri isolates producing carbapenemases have been reported to reduce the efficiency of carbapenems in clinical antimicrobial therapy. However, coexistence with other resistance determinants is rarely reported. The goal of this study was the molecular characterization of carbapenemase-producing Providencia spp. clinical isolates. Among 23 Providencia spp. resistant to imipenem, 21 were positive to blaNDM-1; one positive to blaNDM-1 and blaOXA-58 like; and one isolate co-producing blaIMP-27, blaOXA-24/40 like, and blaOXA-58 like were identified. We observed a low clonal relationship, and the incompatibility groups Col3M and ColRNAI were identified in the plasmid harboring blaNDM-1. We report for the first time a P. rettgeri strain co-producing blaIMP-27, blaOXA-24-like, and blaOXA-58 like. The analysis of these resistance mechanisms in carbapenemase co-producing clinical isolates reflects the increased resistance.


Assuntos
Antibacterianos , Providencia , Humanos , Antibacterianos/farmacologia , Providencia/genética , México/epidemiologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética
7.
Front Cell Infect Microbiol ; 14: 1305742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481663

RESUMO

Introduction: Acute haemorrhagic diarrhoea syndrome (AHDS) in dogs is a condition of unknown aetiology. Providencia alcalifaciens is suspected to play a role in the disease as it was commonly found in dogs suffering from AHDS during a Norwegian outbreak in 2019. The role of this bacterium as a constituent of the canine gut microbiota is unknown, hence this study set out to investigate its occurrence in healthy dogs using metagenomics. Materials and methods: To decrease the likelihood of false detection, we established a metagenomic threshold for P. alcalifaciens by spiking culture-negative stool samples with a range of bacterial dilutions and analysing these by qPCR and shotgun metagenomics. The detection limit for P. alcalifaciens was determined and used to establish a metagenomic threshold. The threshold was validated on naturally contaminated faecal samples with known cultivation status for P. alcalifaciens. Finally, the metagenomic threshold was used to determine the occurrence of P. alcalifaciens in shotgun metagenomic datasets from canine faecal samples (n=362) collected in the HUNT One Health project. Results: The metagenomic assay and qPCR had a detection limit of 1.1x103 CFU P. alcalifaciens per faecal sample, which corresponded to a Cq value of 31.4 and 569 unique k-mer counts by shotgun metagenomics. Applying this metagenomic threshold to 362 faecal metagenomic datasets from healthy dogs, P. alcalifaciens was found in only 1.1% (95% CI [0.0, 6.8]) of the samples, and then in low relative abundances (median: 0.04%; range: 0.00 to 0.81%). The sensitivity of the qPCR and shotgun metagenomics assay was low, as only 40% of culture-positive samples were also positive by qPCR and metagenomics. Discussion: Using our detection limit, the occurrence of P. alcalifaciens in faecal samples from healthy dogs was low. Given the low sensitivity of the metagenomic assay, these results do not rule out a significantly higher occurrence of this bacterium at a lower abundance.


Assuntos
Diarreia , Metagenoma , Cães , Animais , Diarreia/diagnóstico , Diarreia/veterinária , Diarreia/epidemiologia , Fezes/microbiologia , Providencia/genética , Bactérias/genética , Metagenômica/métodos
8.
mSphere ; 9(3): e0073123, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412041

RESUMO

Members of Providencia, although typically opportunistic, can cause severe infections in immunocompromised hosts. Recent advances in genome sequencing provide an opportunity for more precise study of this genus. In this study, we first identified and characterized a novel species named Providencia zhijiangensis sp. nov. It has ≤88.23% average nucleotide identity (ANI) and ≤31.8% in silico DNA-DNA hybridization (dDDH) values with all known Providencia species, which fall significantly below the species-defining thresholds. Interestingly, we found that Providencia stuartii and Providencia thailandensis actually fall under the same species, evidenced by an ANI of 98.59% and a dDDH value of 90.4%. By fusing ANI with phylogeny, we have reclassified 545 genomes within this genus into 20 species, including seven unnamed taxa (provisionally titled Taxon 1-7), which can be further subdivided into 23 lineages. Pangenomic analysis identified 1,550 genus-core genes in Providencia, with coenzymes being the predominant category at 10.56%, suggesting significant intermediate metabolism activity. Resistance analysis revealed that most lineages of the genus (82.61%, 19/23) carry a high number of antibiotic-resistance genes (ARGs) and display diverse resistance profiles. Notably, the majority of ARGs are located on plasmids, underscoring the significant role of plasmids in the resistance evolution within this genus. Three species or lineages (P. stuartii, Taxon 3, and Providencia hangzhouensis L12) that possess the highest number of carbapenem-resistance genes suggest their potential influence on clinical treatment. These findings underscore the need for continued surveillance and study of this genus, particularly due to their role in harboring antibiotic-resistance genes. IMPORTANCE: The Providencia genus, known to harbor opportunistic pathogens, has been a subject of interest due to its potential to cause severe infections, particularly in vulnerable individuals. Our research offers groundbreaking insights into this genus, unveiling a novel species, Providencia zhijiangensis sp. nov., and highlighting the need for a re-evaluation of existing classifications. Our comprehensive genomic assessment offers a detailed classification of 545 genomes into distinct species and lineages, revealing the rich biodiversity and intricate species diversity within the genus. The substantial presence of antibiotic-resistance genes in the Providencia genus underscores potential challenges for public health and clinical treatments. Our study highlights the pressing need for increased surveillance and research, enriching our understanding of antibiotic resistance in this realm.


Assuntos
Antibacterianos , Providencia , Humanos , Providencia/genética , Plasmídeos , Antibacterianos/farmacologia , Genômica , DNA
9.
Microbiol Spectr ; 12(2): e0254223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38149860

RESUMO

This study investigated resistance genes corresponding to the fosfomycin resistance phenotype in clinical isolate Providencia rettgeri W986, as well as characterizing the enzymatic activity of FosA11 and the genetic environment. Antimicrobial susceptibility testing was performed using the agar microdilution method based on the Clinical and Laboratory Standards Institute guidelines. The whole genomic sequence of Providencia rettgeri W986 was obtained using Illumina sequencing and the PacBio platform. The fosA-11 gene was amplified by PCR and cloned into the pUCP20 vector. The recombinant strain pCold1-fosA11-BL21 was expressed to extract the target protein, and absorbance photometry was applied for enzymatic parameter determination. Minimal inhibitory concentration (MIC) tests showed that W986 conferred fosfomycin resistance and was inhibited by phosphonoformate, thereby indicating the presence of a FosA protein. A novel resistance gene designated as fosA11 was identified by whole-genome sequencing and bioinformatics analysis, and it shared 54.41%-64.23% amino acid identity with known FosA proteins. Cloning fosA11 into Escherichia coli obtained a significant increase (32-fold) in the MIC with fosfomycin. Determination of the enzyme kinetics showed that FosA11 had a high catalytic effect on fosfomycin, with Km = 18 ± 4 and Kcat = 56.1 ± 3.2. We also found that fosA11 was located on the chromosome, but the difference in the GC content between the chromosome and fosA11 was dubious, and thus further investigation is required. In this study, we identified and characterized a novel fosfomycin inactivation enzyme called FosA11. The origin and prevalence of the fosA11 gene in other bacteria require further investigation.IMPORTANCEFosfomycin is an effective antimicrobial agent against Enterobacterales strains. However, the resistance rate of fosfomycin is increasing year by year. Therefore, it is necessary to study the deep molecular mechanism of bacterial resistance to fosfomycin. We identified a novel chromosomal fosfomycin glutathione S-transferase, FosA11 from Providencia rettgeri, which shares a very low identity (54.41%-64.23%) with the previously known FosA and exhibits highly efficient catalytic ability against fosfomycin. Analysis of the genetic context and origin of fosA11 displays that the gene and its surrounding environments are widely conserved in Providencia and no mobile elements are discovered, implying that FosA11 may be broadly important in the natural resistance to fosfomycin of Providencia species.


Assuntos
Fosfomicina , Fosfomicina/farmacologia , Providencia/genética , Antibacterianos/farmacologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Cromossomos
10.
Emerg Microbes Infect ; 12(2): 2275596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874004

RESUMO

Providencia as an opportunistic pathogen can cause serious infection, and moreover the emergence of multi-drug-resistant Providencia strains poses a potentially life-threatening risk to public health. However, a comprehensive genomic study to reveal the population structure and dissemination of Providencia is still lacking. In this study, we conducted a genomic epidemiology analysis on the 580 global sequenced Providencia isolates, including 257 ones sequenced in this study (42 ones were fully sequenced). We established a genome sequence-based species classification scheme for Providencia, redefining the conventional 11 Providencia species into seven genocomplexes that were further divided into 18 genospecies, providing an extensively updated reference for Providencia species discrimination based on the largest Providencia genome dataset to date. We then dissected the profile of antimicrobial resistance genes and the prevalence of multi-drug-resistant Providencia strains among these genocomplexes/genospecies, disclosing the presence of diverse and abundant antimicrobial resistance genes and high resistance ratios against multiple classes of drugs in Providencia. We further dissected the genetic basis for the spread of blaNDM-1 in Providencia. blaNDM-1 genes were mainly carried by five incompatible (Inc) groups of plasmids: IncC, IncW, IncpPROV114-NR, IncpCHS4.1-3, and IncpPrY2001, and the last three were newly designated in this study. By tracking the spread of blaNDM-1-carrying plasmids, IncC, IncpPROV114-NR, IncpCHS4.1-3, and IncpPrY2001 plasmids were found to be highly involved in parallel horizontal transfer or vertical clonal expansion of blaNDM-1 among Providencia. Overall, our study provided a comprehensive genomic view of species differentiation, antimicrobial resistance prevalence, and plasmid-mediated blaNDM-1 dissemination in Providencia.


Assuntos
Antibacterianos , Providencia , Providencia/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Plasmídeos/genética , beta-Lactamases/genética , Genômica , Testes de Sensibilidade Microbiana
11.
Genome Biol Evol ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37690114

RESUMO

Strict blood-feeding animals are confronted with a strong B-vitamin deficiency. Blood-feeding leeches from the Glossiphoniidae family, similarly to hematophagous insects, have evolved specialized organs called bacteriomes to harbor symbiotic bacteria. Leeches of the Haementeria genus have two pairs of globular bacteriomes attached to the esophagus which house intracellular "Candidatus Providencia siddallii" bacteria. Previous work analyzing a draft genome of the Providencia symbiont of the Mexican leech Haementeria officinalis showed that, in this species, the bacteria hold a reduced genome capable of synthesizing B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of Providencia symbionts of Haementeria. For this purpose, we sequenced the symbiont genomes of three selected leech species. We found that all genomes are highly syntenic and have kept a stable genetic repertoire, mirroring ancient insect endosymbionts. Additionally, we found B-vitamin pathways to be conserved among these symbionts, pointing to a conserved symbiotic role. Lastly and most notably, we found that the symbiont of H. acuecueyetzin has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a lineage-specific and likely intermediate stage of genetic code reassignment.


Assuntos
Sanguessugas , Providencia , Animais , Providencia/genética , Filogenia , Sanguessugas/genética , Bactérias/genética , Insetos/genética , Vitaminas , Código Genético , Simbiose/genética
12.
BMC Genom Data ; 24(1): 49, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658299

RESUMO

OBJECTIVES: Providencia is a genus of gram-negative bacteria within the order Enterobacterales, closely related to Proteus and Morganella. While ubiquitous in the environment, some species of Providencia, such as P. rettgeri and P. stuartii, are considered emerging nosocomial pathogens and have been implicated in urinary tract infection, gastrointestinal illness, and travelers' diarrhea. Given their intrinsic resistance to many commonly used antibiotics, this study aimed to isolate and sequence bacteriophages targeting a clinical P. rettgeri isolate. DATA DESCRIPTION: Here we report the complete genome sequence of three novel Providencia phages, PibeRecoleta, Stilesk and PatoteraRojo, which were isolated against a clinical P. rettgeri strain sourced from a patient in a metropolitan hospital in Victoria, Australia. The three phages contain dsDNA genomes between 60.7 and 60.9 kb in size and are predicted to encode between 72 and 73 proteins. These three new phages, which share high genomic similarity to two other Providencia phages previously isolated on P. stuartii, serve as important resources in our understanding about Providencia bacteriophages and the potential for future phage-based biotherapies.


Assuntos
Bacteriófagos , Disenteria , Humanos , Diarreia/genética , Diarreia/terapia , Providencia/genética , Viagem , Bacteriófagos/genética , Hospitais Urbanos , Vitória
13.
Infect Immun ; 91(6): e0012122, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158737

RESUMO

Providencia rustigianii is potentially enteropathogenic in humans. Recently, we identified a P. rustigianii strain carrying a part of the cdtB gene homologous to that of Providencia alcalifacines that produces an exotoxin called cytolethal distending toxin (CDT), encoded by three subunit genes (cdtA, cdtB, and cdtC). In this study, we analyzed the P. rustigianii strain for possible presence of the entire cdt gene cluster and its organization, location, and mobility, as well as expression of the toxin as a putative virulence factor of P. rustigianii. Nucleotide sequence analysis revealed the presence of the three cdt subunit genes in tandem, and over 94% homology to the corresponding genes carried by P. alcalifaciens both at nucleotide and amino acid sequence levels. The P. rustigianii strain produced biologically active CDT, which caused distension of eukaryotic cell lines with characteristic tropism of CHO and Caco-2 cells but not of Vero cells. S1-nuclease digested pulsed-field gel electrophoresis followed by Southern hybridization analysis demonstrated that the cdt genes in both P. rustigianii and P. alcalifaciens strains are located on large plasmids (140 to 170 kb). Subsequently, conjugation assays using a genetically marked derivative of the P. rustigianii strain showed that the plasmid carrying cdt genes in the P. rustigianii was transferable to cdt gene-negative recipient strains of P. rustigianii, Providencia rettgeri, and Escherichia coli. Our results demonstrated the presence of cdt genes in P. rustigianii for the first time, and further showed that the genes are located on a transferable plasmid, which can potentially spread to other bacterial species.


Assuntos
Escherichia coli , Providencia , Animais , Chlorocebus aethiops , Humanos , Providencia/genética , Células Vero , Células CACO-2 , Escherichia coli/genética
14.
PLoS Pathog ; 18(9): e1010825, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084158

RESUMO

Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing "travelers' diarrhea", urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species-P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifaciens transposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs.


Assuntos
Drosophila melanogaster , Providencia , Animais , Peptídeos Antimicrobianos , Drosophila melanogaster/microbiologia , Hemócitos , Humanos , Lipopolissacarídeos , Oxigênio , Providencia/genética , Espécies Reativas de Oxigênio , Fatores de Virulência/genética
15.
An Acad Bras Cienc ; 94(3): e20210765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36074405

RESUMO

Providencia stuartii is one of the Enterobacteriaceae species of medical importance commonly associated with urinary infections, which can also cause other ones, including uncommon ones, such as liver abscess and septic vasculitis. This bacterium stands out in the expression of intrinsic and acquired resistance to antimicrobials. Besides, it uses mechanisms such as biofilm for its persistence in biotic and abiotic environments. This study investigated the cellular hydrophobicity profile of clinical isolates of P. stuartii. It also analyzed genes related to the fimbrial adhesin in this species comparing with other reports described for other bacteria from Enterobacteriaceae family. The investigated isolates to form biofilm and had a practically hydrophilic cell surface profile. However, fimH and mrkD genes were not found in P. stuartii, unlike observed in other species of Enterobacteriaceae. These results show that P. stuartii has specificities regarding its potential for biofilm formation, which makes it difficult to destabilize the infectious process and increases the permanence of this pathogen in hospital units.


Assuntos
Infecções por Enterobacteriaceae , Biofilmes , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/microbiologia , Humanos , Providencia/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-35930465

RESUMO

A facultatively anaerobic, Gram-negative, rod-shaped bacterial strain designated as LLDRA6T, was isolated from heavy metal contaminated soils collected near a ceased smelting factory at Zhuzhou, Hunan Province, China. Strain LLDRA6T has the ability to oxidize Mn(II) and generate biogenic manganese oxides. The strain can grow in a wide range of temperature from 10-42°C and pH from 5 to 10. Comparative analysis of its complete 16S rRNA gene sequence suggests that strain LLDRA6T is highly similar to species within the genus Providencia. The complete genome of LLDRA6T is 4 342 370 bp with 40.18 mol% of G+C content and contains no plasmids. In comparison to the genomes of type strains in Providencia, LLDRA6T shows average nucleotide identity values between 76.60 and 80.89 %, and digital DNA-DNA hybridization values in a range of 21.2-24.6 %. Both multilocus sequence analysis and genomic phylogenetics indicate a new taxonomic status for LLDRA6T in Providencia. Chemotaxonomic analyses for LLDRA6T show that the predominant cellular fatty acids are C16 : 0, C14 : 0 and cyclo-C17 : 0, accounting for 32.7, 16.1 and 10.3 % of total fatty acids, respectively. The polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, four unidentified aminolipids, one unidentified phospholipid and three unidentified lipids. Within the cell wall, ribose and meso-diaminopimelic acid are the characteristic constituents for saccharides and amino acids, respectively. Respiratory quinones on cell membranes are composed of menaquinone (MK) and ubiquinone (coenzyme Q), including MK-8 (100.0 %), Q-7 (13.7 %) and Q-8 (86.3 %). Moreover, the positive results from d-lyxose and d-mannitol fermentation tests indicate that LLDRA6T is totally different from all the type strains within the genus Providencia. In summary, strain LLDRA6T represents a novel species in the genus Providencia, for which the name Providencia manganoxydans sp. nov. (type strain LLDRA6T=CCTCC AB 2021154T=KCTC 92091T) is proposed.


Assuntos
Metais Pesados , Providencia , Bactérias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Oxirredução , Fosfolipídeos/química , Filogenia , Providencia/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
18.
Viruses ; 14(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35458437

RESUMO

Providencia rettgeri is an emerging opportunistic Gram-negative pathogen with reports of increasing antibiotic resistance. Pan-drug resistant (PDR) P. rettgeri infections are a growing concern, demonstrating a need for the development of alternative treatment options which is fueling a renewed interest in bacteriophage (phage) therapy. Here, we identify and characterize phage vB_PreP_EPr2 (EPr2) with lytic activity against PDR P. rettgeri MRSN 845308, a clinical isolate that carries multiple antibiotic resistance genes. EPr2 was isolated from an environmental water sample and belongs to the family Autographiviridae, subfamily Studiervirinae and genus Kayfunavirus, with a genome size of 41,261 base pairs. Additional phenotypic characterization showed an optimal MOI of 1 and a burst size of 12.3 ± 3.4 PFU per bacterium. EPr2 was determined to have a narrow host range against a panel of clinical P. rettgeri strains. Despite this fact, EPr2 is a promising lytic phage with potential for use as an alternative therapeutic for treatment of PDR P. rettgeri infections.


Assuntos
Bacteriófagos , Antibacterianos , Especificidade de Hospedeiro , Providencia/genética
19.
Sci Total Environ ; 820: 153286, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074363

RESUMO

Very little is known about how microbiome interactions shape the horizontal transfer of antibiotic resistance genes in aquacultural environment. To this end, we first conducted 16S rRNA gene amplicon sequencing to monitor the dynamics of bacterial community compositions in one shrimp farm from 2019 to 2020. Next, co-occurrence analysis was then conducted to reveal the interactions network between Vibrio spp. and other species. Subsequently, 21 V. parahaemolyticus isolates and 15 related bacterial species were selected for whole-genome sequencing (WGS). The 16S rDNA amplicon sequencing results identified a remarkable increase of Vibrio and Providencia in September-2019 and a significant rise of Enterobacter and Shewanella in Septtember-2020. Co-occurrence analysis revealed that Vibrio spp. positively interacted with the above species, leading to the sequencing of their isolates to further understand the sharing of the resistant genomic islands (GIs). Subsequent pan-genomic analysis of V. parahaemolyticus genomes identified 278 horizontally transferred genes in 10 GIs, most of which were associated with antibiotic resistance, virulence, and fitness of metabolism. Most of the GIs have also been identified in Providencia, and Enterobacter, suggesting that exchange of genetic traits might occur in V. parahaemolyticus and other cooperative species in a specific niche. No genetic exchange was found between the species with negative relationships. The knowledge generated from this study would greatly improve our capacity to predict and mitigate the emergence of new resistant population and provide practical guidance on the microbial management during the aquacultural activities.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Transferência Genética Horizontal , Vibrio parahaemolyticus , Antibacterianos/farmacologia , Aquicultura , Farmacorresistência Bacteriana/genética , Enterobacter/genética , Genes Bacterianos , Genoma Bacteriano , Providencia/genética , RNA Ribossômico 16S , Shewanella/genética , Vibrio parahaemolyticus/genética
20.
Curr Microbiol ; 79(1): 1, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34878563

RESUMO

Despites Providencia heimbachae has been isolated from human, penguin, and bovine fetus, relatively little information is available regarding the pathogenicity and biologic characteristics of P. heimbachae. Here, we report that investigation of post-weaning diarrhea yielded bacterial isolates identified as P. heimbachae based on the biochemical tests and 16S ribosomal DNA sequence analysis. The two isolates were positive for utilization of Malonate, no gas production from glucose, and non-fermentation of D-mannitol, D-Galactose, and L-Rhamnose that were different from those of the type strain, and both of them have the ability of adhesion and invasion to IPEC-J2 cells, and were resistant to 21 out of the 41 antibiotics tested. In addition, the isolate 99101 was highly pathogenic to mice and piglets. Histopathology studies on nerve tissue of piglets that developed hindlimb paralysis showed microglia cell infiltration and neuron damage in the spinal cord. Notably, the strains could grow under low temperature (4 °C), which raise attention of a new risk factor for food safety. To the best of our knowledge, this is the first report of P. heimbachae strain caused post-weaning diarrhea in piglets in both natural and experimental conditions. These findings extended the knowledge of P. heimbachae as an important zoonotic agent, which should be given more attention during surveillance and diagnostics.


Assuntos
Providencia , Doenças dos Suínos , Animais , Bovinos , Diarreia/veterinária , Camundongos , Fenótipo , Providencia/genética , Suínos , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA