Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.194
Filtrar
1.
Sci Rep ; 14(1): 10224, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702368

RESUMO

The biosynthesis of nanoparticles offers numerous advantages, including ease of production, cost-effectiveness, and environmental friendliness. In our research, we focused on the bioformation of silver nanoparticles (AgNPs) using a combination of Lactobacillus sp. and Bacillus sp. growth. These AgNPs were then evaluated for their biological activities against multidrug-resistant bacteria. Our study involved the isolation of Bacillus sp. from soil samples and Lactobacillus sp. from raw milk in Dhamar Governorate, Yemen. The synthesized AgNPs were characterized using various techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The antibacterial properties of the AgNPs were assessed using the modified Kirby Bauer disk diffusion method against multidrug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa. Our results demonstrated that the use of a bacterial mixture for biosynthesis led to faster and more effective production of AgNPs compared to using a single bacterium. The UV-visible spectra showed characteristic peaks indicative of silver nanoparticles, while XRD analysis confirmed the crystalline nature of the synthesized particles. FTIR results suggested the presence of capping proteins that contribute to the synthesis and stability of AgNPs. Furthermore, TEM images revealed the size and morphology of the AgNPs, which exhibited spherical shapes with sizes ranging from 4.65 to 22.8 nm. Notably, the antibacterial activity of the AgNPs was found to be more pronounced against Staphylococcus aureus than Pseudomonas aeruginosa, indicating the potential of these nanoparticles as effective antimicrobial agents. Overall, our study highlights the promising antibacterial properties of AgNPs synthesized by a mixture of Lactobacillus sp. and Bacillus sp. growth. Further research is warranted to explore the potential of utilizing different bacterial combinations for enhanced nanoparticle synthesis.


Assuntos
Antibacterianos , Bacillus , Lactobacillus , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Prata/química , Prata/farmacologia , Bacillus/metabolismo , Lactobacillus/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739119

RESUMO

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Assuntos
Antibacterianos , Biofilmes , Ciprofloxacina , Modelos Animais de Doenças , Ceratite , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/farmacologia , Suínos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Biofilmes/efeitos dos fármacos , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Meropeném/farmacologia
3.
Microbiology (Reading) ; 170(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687006

RESUMO

Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviours for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Animais , Virulência/efeitos dos fármacos , Farmacorresistência Bacteriana , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
PLoS One ; 18(2): e0281768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795683

RESUMO

OBJECTIVE: To determine whether bupivacaine liposomal injectable suspension (BLIS) supports microbial growth when artificially inoculated and to evaluate liposomal stability in the face of this extrinsic contamination as evidenced by changes in free bupivacaine concentrations. STUDY DESIGN: A randomized, prospective in vitro study in which three vials of each BLIS, bupivacaine 0.5%, and propofol were individually inoculated with known concentrations of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans (n = 36) to quantify bacterial and fungal growth was conducted. Over 120 hours, aliquots from contaminated vials were withdrawn, plated, and incubated to determine microbial concentrations. High-pressure liquid chromatography (HPLC) was used to evaluate free bupivacaine concentrations over time in BLIS. Data were analyzed using a mixed effects model with multiple comparisons. SAMPLE POPULATION: Twelve vials of each BLIS, bupivacaine 0.5%, and propofol. RESULTS: BLIS did not support significant growth of Staphylococcus aureus or Candida albicans at any time. BLIS supported significant growth of Escherichia coli and Pseudomonas aeruginosa beginning at the 24 hour time point. Bupivacaine 0.5% did not support significant growth of any organisms. Propofol supported significant growth of all organisms. Free bupivacaine concentrations changed minimally over time. CONCLUSION: Bacterial and fungal contaminant growth in artificially inoculated BLIS is organism dependent. BLIS supports significant growth of Escherichia coli and Pseudomonas aeruginosa. Extra-label handling of BLIS should only be undertaken with caution and with adherence to strict aseptic technique.


Assuntos
Anestésicos , Contaminação de Medicamentos , Propofol , Anestésicos Locais/administração & dosagem , Bupivacaína/administração & dosagem , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Propofol/administração & dosagem , Estudos Prospectivos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação
5.
Am J Infect Control ; 51(7): 772-778, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36130627

RESUMO

BACKGROUND: Alcohol is perceived to aid flexible endoscope channel drying, however we previously showed alcohol increased the time required to dry some channels with forced air versus water alone. Yet, alcohol may prevent microorganism outgrowth during storage. Drying endoscope channels has been shown to prevent outgrowth, but it is unknown if incomplete drying (<10 µL remaining) provides similar protection. METHODS: Endoscope channel test articles were used to determine the efficacy of 70%-30% alcohol flush for prevention of Pseudomonas aeruginosa outgrowth and drying efficiency. For non-alcohol flushed channels, the impact of forced air drying on outgrowth of P. aeruginosa was determined. RESULTS: Alcohol flush (70%-30%) prevented outgrowth with little to no recovery of P. aeruginosa during ambient storage. 70% alcohol increased channel drying time by 1.5 or 3-fold compared to 50% alcohol or water, respectively. Forced air drying of non-alcohol flushed channels greatly reduced the initial contamination level and prevented outgrowth. Incomplete drying of contaminated channels was akin to no application of forced air. Applying forced air for more time than necessary to remove residual liquid did not completely eliminate the low level recovery of P. aeruginosa. CONCLUSIONS: Flushing with reduced concentrations of alcohol may provide a strategy to prevent microbial outgrowth while reducing drying time.


Assuntos
Desinfecção , Endoscópios , Desinfecção/métodos , Desinfecção/normas , Endoscópios/microbiologia , Contaminação de Equipamentos/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , 2-Propanol/farmacologia , Anti-Infecciosos/farmacologia , Ar , Fatores de Tempo
6.
Mar Drugs ; 20(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323468

RESUMO

Volatile compounds from the marine cyanolichen Lichina pygmaea, collected from the Moroccan Atlantic coast, were extracted by hydrodistillation and their putative chemical composition was investigated by gas chromatography coupled to mass spectrometry (GC/MS). Based on the obtained results, Lichina pygmaea volatile compounds (LPVCs) were mainly dominated by sesquiterpenes compounds, where γ-himachalene, ß-himachalene, (2E,4E)-2,4 decadienal and α-himachalene were assumed to be the most abundant constituents, with percentage of 37.51%, 11.71%, 8.59% and 7.62%, respectively. LPVCs depicted significant antimicrobial activity against all tested strains (Staphylococcus aureus CCMM B3, Pseudomonas aeruginosa DSM 50090, Escherichia coli ATCC 8739 and Candida albicans CCMM-L4) with minimum inhibitory concentration (MIC) values within the range of 1.69-13.5 mg/mL. Moreover, this LPVC showed interesting scavenging effects on the 2,2-diphenyl-1-picrylhydrazyl radical with an IC50 of 0.21 mg/mL. LPVCs could be an approving resource with moderate antimicrobial potential and interesting antioxidant activity for cosmetics and pharmaceutical applications.


Assuntos
Anti-Infecciosos , Antioxidantes , Ascomicetos/química , Sesquiterpenos , Compostos Orgânicos Voláteis , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Picratos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sesquiterpenos/análise , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/farmacologia
7.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208949

RESUMO

Nanotechnology has become a dire need of the current era and the green synthesis of nanoparticles offers several advantages over other methods. Nanobiotechnology is an emerging field that contributes to many domains of human life, such as the formulation of nanoscale drug systems or nanomedicine for the diagnosis and treatment of diseases. Medicinal plants are the main sources of lead compounds, drug candidates and drugs. This work reports the green synthesis of Ag nanoparticles (AgNPs) using the aqueous bark extract of Zanthozylum armatum, which was confirmed by a UV absorption at 457 nm. XRD analysis revealed an average size of 18.27 nm and SEM showed the particles' spherical shape, with few irregularly shaped particles due to the aggregation of the AgNPs. FT-IR revealed the critical functional groups of phytochemicals which acted as reducing and stabilizing agents. The bark extract showed rich flavonoids (333 mg RE/g) and phenolic contents (82 mg GAE/g), which were plausibly responsible for its high antioxidant potency (IC50 = 14.61 µg/mL). Extract-loaded AgNPs exhibited the highest but equal inhibition against E. coli and P. aeruginosa (Z.I. 11.0 mm), whereas methanolic bark extract inhibited to a lesser extent, but equally to both pathogens (Z.I. 6.0 mm). The aqueous bark extract inhibited P. aeruginosa (Z.I. 9.0 mm) and (Z.I. 6.0 mm) E. coli. These findings-especially the biosynthesis of spherical AgNPs of 18.27 nm-provide promise for further investigation and for the development of commercializable biomedical products.


Assuntos
Antibacterianos , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Extratos Vegetais/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Prata , Zanthoxylum/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Cell Rep ; 38(7): 110372, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172131

RESUMO

The Pseudomonas quinolone signal (PQS) is a multifunctional quorum sensing molecule of key importance to P. aeruginosa. Here, we report that the lytic Pseudomonas bacterial virus LUZ19 targets this population density-dependent signaling system by expressing quorum sensing targeting protein (Qst) early during infection. We demonstrate that Qst interacts with PqsD, a key host quinolone signal biosynthesis pathway enzyme, resulting in decreased levels of PQS and its precursor 2-heptyl-4(1H)-quinolone. The lack of a functional PqsD enzyme impairs LUZ19 infection but is restored by external supplementation of 2-heptyl-4(1H)-quinolone, suggesting that LUZ19 exploits the PQS system for successful infection. We establish a broad functional interaction network of Qst, which includes enzymes of cofactor biosynthesis pathways (CoaC/ThiD) and a non-ribosomal peptide synthetase pathway (PA1217). Qst therefore represents an exquisite example of intricate reprogramming of the bacterium by a phage, which may be further exploited as tool to combat antibiotic resistant bacterial pathogens.


Assuntos
Bacteriófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Acetiltransferases/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Redes e Vias Metabólicas , Metaboloma , Metabolômica , Modelos Biológicos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , Quinolonas/metabolismo , Metabolismo Secundário , Proteínas Virais/metabolismo
9.
Nat Commun ; 13(1): 721, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132084

RESUMO

Much of our understanding of bacterial behavior stems from studies in liquid culture. In nature, however, bacteria frequently live in densely packed spatially-structured communities. How does spatial structure affect bacterial cooperative behaviors? In this work, we examine rhamnolipid production-a cooperative and virulent behavior of Pseudomonas aeruginosa. Here we show that, in striking contrast to well-mixed liquid culture, rhamnolipid gene expression in spatially-structured colonies is strongly associated with colony specific growth rate, and is impacted by perturbation with diffusible quorum signals. To interpret these findings, we construct a data-driven statistical inference model which captures a length-scale of bacterial interaction that develops over time. Finally, we find that perturbation of P. aeruginosa swarms with quorum signals preserves the cooperating genotype in competition, rather than creating opportunities for cheaters. Overall, our data demonstrate that the complex response to spatial localization is key to preserving bacterial cooperative behaviors.


Assuntos
Interações Microbianas/fisiologia , Modelos Biológicos , Proteínas de Bactérias/genética , Biomassa , Contagem de Colônia Microbiana , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/genética , Glicolipídeos/metabolismo , Locomoção , Interações Microbianas/genética , Mutação , Imagem Óptica , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Análise Espaço-Temporal
10.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163794

RESUMO

The search for new microbicide compounds is of an urgent need, especially against difficult-to-eradicate biofilm-forming bacteria. One attractive option is the application of cationic multivalent dendrimers as antibacterials and also as carriers of active molecules. These compounds require an adequate hydrophilic/hydrophobic structural balance to maximize the effect. Herein, we evaluated the antimicrobial activity of cationic carbosilane (CBS) dendrimers unmodified or modified with polyethylene glycol (PEG) units, against planktonic and biofilm-forming P. aeruginosa culture. Our study revealed that the presence of PEG destabilized the hydrophilic/hydrophobic balance but reduced the antibacterial activity measured by microbiological cultivation methods, laser interferometry and fluorescence microscopy. On the other hand, the activity can be improved by the combination of the CBS dendrimers with endolysin, a bacteriophage-encoded peptidoglycan hydrolase. This enzyme applied in the absence of the cationic CBS dendrimers is ineffective against Gram-negative bacteria because of the protective outer membrane shield. However, the endolysin-CBS dendrimer mixture enables the penetration through the membrane and then deterioration of the peptidoglycan layer, providing a synergic antimicrobial effect.


Assuntos
Antibacterianos/farmacologia , Endopeptidases/farmacologia , Polietilenoglicóis/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Silanos/farmacologia , Antibacterianos/química , Bacteriófagos/metabolismo , Biofilmes/efeitos dos fármacos , Dendrímeros , Composição de Medicamentos , Sinergismo Farmacológico , Interferometria , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Fluorescência , Plâncton/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Silanos/química
11.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163819

RESUMO

While blue LED (b-LED) light is increasingly being studied for its cytotoxic activity towards bacteria in therapy of skin-related infections, its effects on eukaryotic cells plasticity are less well characterized. Moreover, since different protocols are often used, comparing the effect of b-LED towards both microorganisms and epithelial surfaces may be difficult. The aim of this study was to analyze, in the same experimental setting, both the bactericidal activity and the effects on human keratinocytes. Exposure to b-LED induced an intense cytocidal activity against Gram-positive (i.e, Staphylococcus aureus) and Gram-negative (i.e., Pseudomonas aeruginosa) bacteria associated with catheter-related infections. Treatment with b-LED of a human keratinocyte cell line induced a transient cell cycle arrest. At the molecular level, exposure to b-LED induced a transient downregulation of Cyclin D1 and an upregulation of p21, but not signs of apoptosis. Interestingly, a transient induction of phosphor-histone γ-H2Ax, which is associated with genotoxic damages, was observed. At the same time, keratinocytes underwent a transient epithelial to mesenchymal transition (EMT)-like phenotype, characterized by E-cadherin downregulation and SNAIL/SLUG induction. As a functional readout of EMT induction, a scratch assay was performed. Surprisingly, b-LED treatment provoked a delay in the scratch closure. In conclusion, we demonstrated that b-LED microbicidal activity is associated with complex responses in keratinocytes that certainly deserve further analysis.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos da radiação , Queratinócitos/citologia , Luz/efeitos adversos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Síndrome de Down , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Células HaCaT , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Pseudomonas aeruginosa/efeitos da radiação , Fatores de Transcrição da Família Snail/metabolismo , Staphylococcus aureus/efeitos da radiação
12.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164333

RESUMO

BACKGROUND: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. METHODS: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. RESULTS: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P. aeruginosa and E. coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6-17-fold) and ketoconazole (13-52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. CONCLUSION: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.


Assuntos
Antibacterianos/síntese química , Antifúngicos/síntese química , Fungos/crescimento & desenvolvimento , Tiazolidinas/síntese química , Ampicilina/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fungos/efeitos dos fármacos , Imidazóis/farmacologia , Cetoconazol/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tiazolidinas/química , Tiazolidinas/farmacologia
13.
Viruses ; 14(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062325

RESUMO

Outer membrane vesicles (OMVs) released from gram-negative bacteria are key elements in bacterial physiology, pathogenesis, and defence. In this study, we investigated the role of Pseudomonas aeruginosa OMVs in the anti-phage defence as well as in the potential sensitization to LPS-specific phages. Using transmission electron microscopy, virion infectivity, and neutralization assays, we have shown that both phages efficiently absorb on free vesicles and are unable to infect P. aeruginosa host. Nevertheless, the accompanying decrease in PFU titre (neutralization) was only observed for myovirus KT28 but not podovirus LUZ7. Next, we verified whether OMVs derived from wild-type PAO1 strain can sensitize the LPS-deficient mutant (Δwbpl PAO1) resistant to tested phages. The flow cytometry experiments proved a quite effective and comparable association of OMVs to Δwbpl PAO1 and wild-type PAO1; however, the growth kinetic curves and one-step growth assay revealed no sensitization event of the OMV-associated phage-resistant P. aeruginosa deletant to LPS-specific phages. Our findings for the first time identify naturally formed OMVs as important players in passive resistance (protection) of P. aeruginosa population to phages, but we disproved the hypothesis of transferring phage receptors to make resistant strains susceptible to LPS-dependent phages.


Assuntos
Vesículas Citoplasmáticas/virologia , Lipopolissacarídeos , Fagos de Pseudomonas , Pseudomonas aeruginosa/virologia , Membrana Externa Bacteriana , Bacteriófagos , Bactérias Gram-Negativas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento
14.
Microbiol Spectr ; 10(1): e0086021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019682

RESUMO

Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical applications have been hampered by challenges during mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that Escherichia coli expressing full-length preproHNP-1 secretes a soluble form of HNP-1, which can be recovered from the total cell lysate after isopropyl thio-ß-d-galactoside (IPTG) induction and ultrafiltration. Label-free quantitative proteomics and co-immunoprecipitation experiments revealed that HNP-1 induces cell apoptosis in bacteria by causing DNA and membrane damage. Notably, we found that HNP-1 disrupts the DNA damage response pathway by interfering with the binding of RecA to single-stranded DNA (ssDNA). Further experiments demonstrated that HNP-1 encapsulated in liposomes inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) and meropenem-resistant Pseudomonas aeruginosa (MRPA). These results indicated that recombinant protein expression may be a simple and cost-effective solution to produce HNP-1 and that RecA inhibition via HNP-1 may serve as an alternative strategy to counteract antibiotic resistance. IMPORTANCE Human neutrophil peptide-1 (HNP-1) is a promising antibiotic candidate, but its clinical application has been hampered by the difficulty of mass production and an inadequate understanding of its bactericidal mechanisms. In this study, we demonstrated that recombinant protein expression combined with ultrafiltration may be a simple and cost-effective solution to HNP-1 production. We further found that HNP-1 induces bacterial apoptosis and prevents its SOS repair pathway from binding to the RecA protein, which may be a new antibacterial mechanism. In addition, we showed that HNP-1 encapsulated in liposomes inhibits the growth of methicillin-resistant Staphylococcus aureus (MRSA) and meropenem-resistant Pseudomonas aeruginosa (MRPA). These results provide new insights into the production and antibacterial mechanism of HNP-1, both of which may promote its clinical application.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/farmacologia , Antibacterianos/metabolismo , Farmacorresistência Bacteriana , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , alfa-Defensinas/metabolismo
15.
Sci Rep ; 12(1): 180, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996996

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterium causing several health problems and having many virulence factors like biofilm formation on different surfaces. There is a significant need to develop new antimicrobials due to the spreading resistance to the commonly used antibiotics, partly attributed to biofilm formation. Consequently, this study aimed to investigate the anti-biofilm and anti-quorum sensing activities of Dioon spinulosum, Dyer Ex Eichler extract (DSE), against Pseudomonas aeruginosa clinical isolates. DSE exhibited a reduction in the biofilm formation by P. aeruginosa isolates both in vitro and in vivo rat models. It also resulted in a decrease in cell surface hydrophobicity and exopolysaccharide quantity of P. aeruginosa isolates. Both bright field and scanning electron microscopes provided evidence for the inhibiting ability of DSE on biofilm formation. Moreover, it reduced violacein production by Chromobacterium violaceum (ATCC 12,472). It decreased the relative expression of 4 quorum sensing genes (lasI, lasR, rhlI, rhlR) and the biofilm gene (ndvB) using qRT-PCR. Furthermore, DSE presented a cytotoxic activity with IC50 of 4.36 ± 0.52 µg/ml against human skin fibroblast cell lines. For the first time, this study reports that DSE is a promising resource of anti-biofilm and anti-quorum sensing agents.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Chromobacterium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Dermatopatias Bacterianas/prevenção & controle , Zamiaceae , Animais , Antibacterianos/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Chromobacterium/crescimento & desenvolvimento , Chromobacterium/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , Ratos , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/patologia , Zamiaceae/química
16.
J Thorac Cardiovasc Surg ; 163(3): 841-849.e1, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33478833

RESUMO

INTRODUCTION: High-dose nitric oxide (NO) has been shown effective against a variety of micro-organisms in vitro, including common bacteria found in donor organs. However, clinical obstacles related to its implementation in vivo are the formation of methemoglobin and the accumulation of toxic nitrogen compounds. Ex vivo lung perfusion (EVLP) is a platform that allows for organ maintenance with an acellular perfusion solution, thus overcoming these limitations. The present study explores the safety of continuous high-dose inhaled (iNO) during EVLP for an extended period of 12 hours. METHODS: Lungs procured from Yorkshire pigs were randomized into control (standard ventilation) and treatment (standard ventilation + 200 ppm iNO) groups, then perfused with an acellular solution for 12 hours (n = 4/group). Lung physiology and biological markers were evaluated. RESULTS: After 12 hours of either standard EVLP or EVLP + 200 ppm iNO, we did not notice any significant physiologic difference between the groups: pulmonary oxygenation (P = .586), peak airway pressures (P = .998), and dynamic (P = .997) and static (P = .908) lung compliances. In addition, no significant differences were seen among proinflammatory cytokines measured in perfusate and lung tissue. Importantly, most common toxic compounds were kept at safe levels throughout the treatment course. CONCLUSIONS: High-dose inhaled NO delivered continuously over 12 hours appears to be safe without inducing any significant pulmonary inflammation or deterioration in lung function. These findings support further efficacy studies to explore the use of iNO for the treatment of infections in donor lungs during EVLP.


Assuntos
Anti-Infecciosos/administração & dosagem , Infecções Bacterianas/prevenção & controle , Circulação Extracorpórea , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Óxido Nítrico/administração & dosagem , Preservação de Órgãos , Perfusão , Administração por Inalação , Animais , Anti-Infecciosos/toxicidade , Infecções Bacterianas/microbiologia , Burkholderia cepacia/efeitos dos fármacos , Burkholderia cepacia/crescimento & desenvolvimento , Circulação Extracorpórea/efeitos adversos , Estudos de Viabilidade , Pulmão/microbiologia , Pulmão/cirurgia , Masculino , Metemoglobina/metabolismo , Modelos Animais , Óxido Nítrico/toxicidade , Preservação de Órgãos/efeitos adversos , Perfusão/efeitos adversos , Pneumonectomia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Sus scrofa
17.
Angew Chem Int Ed Engl ; 61(7): e202112456, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34913238

RESUMO

Using artificial hemes for the reconstruction of natural heme proteins represents a fascinating approach to enhance the bioactivity of the latter. We report the synthesis of various metal 5-oxaporphyrinium cations as cofactors, and a cobalt 5-oxaporphyrinium cation was successfully incorporated into the heme-acquisition protein (HasA) secreted by Pseudomonas aeruginosa. We hypothesize that the oxaporphyrinium cation strongly binds to the HasA-specific outer membrane receptor (HasR) due to its cationic charge, which prevents the subsequent acquisition of heme. In fact, the reconstructed HasA inhibited the growth of Pseudomonas aeruginosa and even of multidrug-resistant P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Cobalto/farmacologia , Hemeproteínas/química , Porfirinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Cátions/química , Cátions/farmacologia , Cobalto/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Porfirinas/química , Pseudomonas aeruginosa/crescimento & desenvolvimento
18.
Cell Host Microbe ; 30(1): 31-40.e5, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932986

RESUMO

Phages impose strong selection on bacteria to evolve resistance against viral predation. Bacteria can rapidly evolve phage resistance via receptor mutation or using their CRISPR-Cas adaptive immune systems. Acquisition of CRISPR immunity relies on the insertion of a phage-derived sequence into CRISPR arrays in the bacterial genome. Using Pseudomonas aeruginosa and its phage DMS3vir as a model, we demonstrate that conditions that reduce bacterial growth rates, such as exposure to bacteriostatic antibiotics (which inhibit cell growth without killing), promote the evolution of CRISPR immunity. We demonstrate that this is due to slower phage development under these conditions, which provides more time for cells to acquire phage-derived sequences and mount an immune response. Our data reveal that the speed of phage development is a key determinant of the evolution of CRISPR immunity and suggest that use of bacteriostatic antibiotics can trigger elevated levels of CRISPR immunity in human-associated and natural environments.


Assuntos
Imunidade Adaptativa/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Sistemas CRISPR-Cas/imunologia , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Bacteriófagos/genética , Genoma Bacteriano , Humanos , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/imunologia
19.
mBio ; 12(6): e0314821, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903059

RESUMO

Drugs called CFTR modulators improve the physiologic defect underlying cystic fibrosis (CF) and alleviate many disease manifestations. However, studies to date indicate that chronic lung infections that are responsible for most disease-related mortality generally persist. Here, we investigated whether combining the CFTR modulator ivacaftor with an intensive 3.5-month antibiotic course could clear chronic Pseudomonas aeruginosa or Staphylococcus aureus lung infections in subjects with R117H-CFTR, who are highly ivacaftor-responsive. Ivacaftor alone improved CFTR activity, and lung function and inflammation within 48 h, and reduced P. aeruginosa and S. aureus pathogen density by ∼10-fold within a week. Antibiotics produced an additional ∼10-fold reduction in pathogen density, but this reduction was transient in subjects who remained infected. Only 1/5 P. aeruginosa-infected and 1/7 S. aureus-infected subjects became persistently culture-negative after the combined treatment. Subjects appearing to clear infection did not have particularly favorable baseline lung function or inflammation, pathogen density or antibiotic susceptibility, or bronchiectasis scores on CT scans, but they did have remarkably low sweat chloride values before and after ivacaftor. All persistently P. aeruginosa-positive subjects remained infected by their pretreatment strain, whereas subjects persistently S. aureus-positive frequently lost and gained strains. This work suggests chronic CF infections may resist eradication despite marked and rapid modulator-induced improvements in lung infection and inflammation parameters and aggressive antibiotic treatment. IMPORTANCE Recent work shows that people with CF and chronic lung infections generally remain persistently infected after treatment with drugs that target the CF physiological defect (called CFTR modulators). However, changes produced by modulators could increase antibiotic efficacy. We tested the approach of combining modulators and intensive antibiotics in rapid succession and found that while few subjects cleared their infections, combined treatment appeared most effective in subjects with the highest CFTR activity. These findings highlight challenges that remain to improve the health of people with CF.


Assuntos
Aminofenóis/administração & dosagem , Antibacterianos/administração & dosagem , Fibrose Cística/tratamento farmacológico , Quimioterapia Combinada , Quinolonas/administração & dosagem , Adulto , Estudos de Coortes , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Humanos , Pulmão/microbiologia , Masculino , Mutação , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
20.
Biomolecules ; 11(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34944398

RESUMO

Urinary tract infections (UTIs) are a serious health problem in the human population due to their chronic and recurrent nature. Bacteria causing UTIs form multispecies biofilms being resistant to the activity of the conventionally used antibiotics. Therefore, compounds of plant origin are currently being searched for, which could constitute an alternative strategy to antibiotic therapy. Our study aimed to determine the activity of asiatic acid (AA) against biofilms formed by uropathogenic Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. The influence of AA on the survival, biofilm mass formation by bacteria living in mono-, dual-, and triple-species consortia as well as the metabolic activity and bacterial cell morphology were determined. The spectrophotometric methods were used for biofilm mass synthesis and metabolic activity determination. The survival of bacteria was established using the serial dilution assay. The decrease in survival and a weakening of the ability to create biofilms, both single and multi-species, as well as changes in the morphology of bacterial cells were noticed. As AA works best against young biofilms, the use of AA-containing formulations, especially during the initial stages of infection, seems to be reasonable. However, there is a need for further research concerning AA especially regarding its antibacterial mechanisms of action.


Assuntos
Biofilmes/efeitos dos fármacos , Enterobacter cloacae/crescimento & desenvolvimento , Triterpenos Pentacíclicos/farmacologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Escherichia coli Uropatogênica/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Enterobacter cloacae/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Triterpenos Pentacíclicos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA