Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(1): e0194421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171019

RESUMO

Microbes are social organisms that commonly live in sessile biofilms. Spatial patterns of populations within biofilms can be important determinants of community-level properties. Spatial intermixing emerging from microbial interaction is one of the best-studied characteristics of spatial patterns. The specific levels of spatial intermixing critically contribute to how the dynamics and functioning of such communities are governed. However, the precise factors that determine spatial patterns and intermixing remain unclear. Here, we investigated the spatial patterning and intermixing of an engineered synthetic consortium composed of two mutualistic Pseudomonas stutzeri strains that degrade salicylate via metabolic cross-feeding. We found that the consortium self-organizes across space to form a previously unreported spatial pattern (here referred to as a 'bubble-burst' pattern) that exhibits a low level of intermixing. Interestingly, when the genes encoding type IV pili were deleted from both strains, a highly intermixed spatial pattern developed and increased the productivity of the entire community. The intermixed pattern was maintained in a robust manner across a wide range of initial ratios between the two strains. Our findings show that the type IV pilus plays a role in mitigating spatial intermixing of different populations in surface-attached microbial communities, with consequences for governing community-level properties. These insights provide tangible clues for the engineering of synthetic microbial systems that perform highly in spatially structured environments. IMPORTANCE When growing on surfaces, multispecies microbial communities form biofilms that exhibit intriguing spatial patterns. These patterns can significantly affect the overall properties of the community, enabling otherwise impermissible metabolic functions to occur as well as driving the evolutionary and ecological processes acting on communities. The development of these patterns is affected by several drivers, including cell-cell interactions, nutrient levels, density of founding cells, and surface properties. The type IV pilus is commonly found to mediate surface-associated behaviors of microorganisms, but its role on pattern formation within microbial communities is unclear. Here, we report that in a cross-feeding consortium, the type IV pilus affects the spatial intermixing of interacting populations involved in pattern formation and ultimately influences overall community productivity and robustness. This novel insight assists our understanding of the ecological processes of surface-attached microbial communities and suggests a potential strategy for engineering high-performance synthetic microbial communities.


Assuntos
Fímbrias Bacterianas/fisiologia , Interações Microbianas , Pseudomonas stutzeri/fisiologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Fímbrias Bacterianas/genética , Consórcios Microbianos , Pseudomonas stutzeri/genética , Salicilatos/metabolismo , Simbiose
2.
Molecules ; 26(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34833943

RESUMO

Every petroleum-processing plant produces sewage sludge containing several types of polycyclic aromatic hydrocarbons (PAHs). The degradation of PAHs via physical, biological, and chemical methods is not yet efficient. Among biological methods, the use of marine sponge symbiont bacteria is considered an alternative and promising approach in the degradation of and reduction in PAHs. This study aimed to explore the potential performance of a consortium of sponge symbiont bacteria in degrading anthracene and pyrene. Three bacterial species (Bacillus pumilus strain GLB197, Pseudomonas stutzeri strain SLG510A3-8, and Acinetobacter calcoaceticus strain SLCDA 976) were mixed to form the consortium. The interaction between the bacterial consortium suspension and PAH components was measured at 5 day intervals for 25 days. The biodegradation performance of bacteria on PAH samples was determined on the basis of five biodegradation parameters. The analysis results showed a decrease in the concentration of anthracene (21.89%) and pyrene (7.71%), equivalent to a ratio of 3:1, followed by a decrease in the abundance of anthracene (60.30%) and pyrene (27.52%), equivalent to a ratio of 2:1. The level of pyrene degradation was lower than that of the anthracene due to fact that pyrene is more toxic and has a more stable molecular structure, which hinders its metabolism by bacterial cells. The products from the biodegradation of the two PAHs are alcohols, aldehydes, carboxylic acids, and a small proportion of aromatic hydrocarbon components.


Assuntos
Acinetobacter calcoaceticus/fisiologia , Antracenos/metabolismo , Bacillus pumilus/fisiologia , Poríferos/fisiologia , Pseudomonas stutzeri/fisiologia , Pirenos/metabolismo , Animais , Antracenos/isolamento & purificação , Biodegradação Ambiental , Microbiota , Pirenos/isolamento & purificação , Simbiose
3.
NPJ Biofilms Microbiomes ; 7(1): 54, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210981

RESUMO

Biofilm and nitrogen fixation are two competitive strategies used by many plant-associated bacteria; however, the mechanisms underlying the formation of nitrogen-fixing biofilms remain largely unknown. Here, we examined the roles of multiple signalling systems in the regulation of biofilm formation by root-associated diazotrophic P. stutzeri A1501. Physiological analysis, construction of mutant strains and microscale thermophoresis experiments showed that RpoN is a regulatory hub coupling nitrogen fixation and biofilm formation by directly activating the transcription of pslA, a major gene involved in the synthesis of the Psl exopolysaccharide component of the biofilm matrix and nifA, the transcriptional activator of nif gene expression. Genetic complementation studies and determination of the copy number of transcripts by droplet digital PCR confirmed that the regulatory ncRNA RsmZ serves as a signal amplifier to trigger biofilm formation by sequestering the translational repressor protein RsmA away from pslA and sadC mRNAs, the latter of which encodes a diguanylate cyclase that synthesises c-di-GMP. Moreover, RpoS exerts a braking effect on biofilm formation by transcriptionally downregulating RsmZ expression, while RpoS expression is repressed posttranscriptionally by RsmA. These findings provide mechanistic insights into how the Rpo/Gac/Rsm regulatory networks fine-tune nitrogen-fixing biofilm formation in response to the availability of nutrients.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Fixação de Nitrogênio , Pseudomonas stutzeri/fisiologia , Proteínas de Bactérias/metabolismo , Ordem dos Genes , Nitrogenase/genética , Nitrogenase/metabolismo , Sequências Repetitivas de Ácido Nucleico , Ativação Transcricional
4.
Arch Microbiol ; 203(1): 169-181, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32789754

RESUMO

The study focuses on the impact of foliar spraying cyanobacterium Spirulina platensis extract and the inoculation with the endophyte N2-fixing Pseudomonas stutzeri, and their mixture in the presence of different nitrogen doses on growth and yield of onion under field conditions. Bioactive compounds of Spirulina and Pseudomonas were analyzed by GC-MC and amino acid production of Spirulina by the amino acid analyzer. Hydrogen cyanide (HCN), indole acetic acid (IAA), ammonia (NH3), pectinase activity, and N2-fixation of Pseudomonas were measured. Plant height (cm), leaf length (cm), number of green leaves, bulb diameter (cm), fresh and dry weight of plant (g), chlorophyll a, b of leaves, bulb weight (g), marketable bulb yield (t. ha-1), cull bulb weight (t. ha-1), total bulb yield (t. ha-1), bulb diameter (cm), total soluble solids (TSS%), dry matter content (DM%), evaluation of storage behavior, and economic feasibility were estimated. Spirulina extract has several bioactive compounds. Pseudomonas can produce HCN, NH3, IAA, pectinase, and nitrogen fixation. The application of mixture with recommended dose of nitrogen increases the onion plant parameters, marketable yield, total bulb yield, bulb weight, bulb diameter, TSS%, DM%, net return, benefit-cost ratio (B:C), lowest cumulative weight loss% of bulbs during storage, and reduce culls weight compared with other treatments in two seasons. Application of S. platensis extract and inoculation with endophyte nitrogen-fixing P. stutzeri enhance the growth and productivity of the onion under different doses of nitrogen fertilizer.


Assuntos
Cebolas/crescimento & desenvolvimento , Cebolas/microbiologia , Pseudomonas stutzeri/fisiologia , Spirulina/química , Clorofila A/análise , Produtos Agrícolas/microbiologia , Endófitos/fisiologia , Fertilizantes , Microbiologia Industrial , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
5.
Commun Biol ; 3(1): 685, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208809

RESUMO

Evidence suggests that bacterial community spatial organization affects their ecological function, yet details of the mechanisms that promote spatial patterns remain difficult to resolve experimentally. In contrast to bacterial communities in liquid cultures, surface-attached range expansion fosters genetic segregation of the growing population with preferential access to nutrients and reduced mechanical restrictions for cells at the expanding periphery. Here we elucidate how localized conditions in cross-feeding bacterial communities shape community spatial organization. We combine experiments with an individual based mathematical model to resolve how trophic dependencies affect localized growth rates and nucleate successful cell lineages. The model tracks individual cell lineages and attributes these with trophic dependencies that promote counterintuitive reproductive advantages and result in lasting influences on the community structure, and potentially, on its functioning. We examine persistence of lucky lineages in structured habitats where expansion is interrupted by physical obstacles to gain insights into patterns in porous domains.


Assuntos
Pseudomonas stutzeri/genética , Pseudomonas stutzeri/fisiologia , Animais , Meios de Cultura , Interações Microbianas , Modelos Biológicos , Nitratos/metabolismo , Nitritos/metabolismo , Oxirredução , Análise Espacial , Comportamento Espacial , Simbiose
6.
Chemosphere ; 256: 127098, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32470732

RESUMO

Chlorpyrifos, a common organophosphorus pesticide, is widely used for agricultural pest control and can inhibit nitrogen-fixing bacteria biomass in paddy. In this study, the additions of chlorpyrifos (1 and 8 mg kg-1) to soil, with or without Pseudomonas stutzeri A1501, resulted in a significant decrease in nitrogen fixation, despite insignificant effects on the abundances of P. stutzeri A1501 and bacteria in soil. Toxic effect of chlorpyrifos on P. stutzeri A1501 nitrogenase activity in medium was also observed, accompanied by a significant reduction in the expression of nitrogen-fixing related genes (nifA and nifH). Furthermore, rhizosphere colonization and biofilm formation by P. stutzeri A1501 were repressed by chlorpyrifos, leading to decreased nitrogenase activity in the rhizosphere. Biofilm formation in medium was inhibited by bacterial hyperkinesis and reduction of extracellular polymeric substance, including exopolysaccharides and proteins. Together, these findings showed that chlorpyrifos-induced production of reactive oxygen species (ROS) which was directly responsible for reduced nitrogenase activity in the medium, soil, and rhizosphere by inhibiting the expressions of nitrogen-fixing related genes. Furthermore, the inhibition of biofilm formation by chlorpyrifos or ROS likely aggravated the reduction in rhizospherere nitrogenase activity. These findings provide potentially valuable insights into the toxicity of chlorpyrifos on nitrogen-fixing bacteria and its mechanisms. Furthermore, for sustainable rice production, it is necessary to evaluate whether other pesticides affect nitrogen fixation and select pesticides that do not inhibit nitrogen fixation.


Assuntos
Clorpirifos/toxicidade , Inseticidas/toxicidade , Fixação de Nitrogênio/efeitos dos fármacos , Pseudomonas stutzeri/efeitos dos fármacos , Microbiologia do Solo , Clorpirifos/metabolismo , Matriz Extracelular de Substâncias Poliméricas , Nitrogênio/metabolismo , Nitrogenase/genética , Oryza/metabolismo , Pseudomonas stutzeri/metabolismo , Pseudomonas stutzeri/fisiologia , Rizosfera , Solo
7.
J Appl Microbiol ; 129(5): 1321-1336, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32367524

RESUMO

AIMS: The aim of this study was to find and use rhizobacteria able to confer plants advantages to deal with saline conditions. METHODS AND RESULTS: We isolated 24 different bacterial species from the rhizosphere of halophyte plants growing in Santiago del Estero, Argentina salt flat. Four strains were selected upon their ability to grow in salinity and their biochemical traits associated with plant growth promotion. Next, we tested the adhesion on soybean seeds surface and root colonization with the four selected isolates. Isolate 19 stood out from the rest and was selected for further experiments. This strain showed positive chemotaxis towards soybean root exudates and a remarkable ability to form biofilm both in vitro conditions and on soybean roots. Interestingly, this trait was enhanced in high saline conditions, indicating the extremely adapted nature of the bacterium to high salinity. In addition, this strain positively impacted on seed germination, plant growth and general plant health status also under saline stress. CONCLUSIONS: A bacterium isolate with outstanding ability to promote seed germination and plant growth under saline conditions was found. SIGNIFICANCE AND IMPACT OF THE STUDY: The experimental approach allowed us to find a suitable bacterial candidate for a biofertilizer intended to alleviate saline stress on crops. This would allow the use of soil now considered inadequate for agriculture and thus prevent further advancement of agriculture frontiers into areas of environmental value.


Assuntos
Pseudomonas stutzeri/fisiologia , Rizosfera , Estresse Salino/fisiologia , Argentina , Biofilmes/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Germinação , Raízes de Plantas/microbiologia , Pseudomonas stutzeri/crescimento & desenvolvimento , Pseudomonas stutzeri/isolamento & purificação , Salinidade , Plantas Tolerantes a Sal/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Solo/química , Microbiologia do Solo , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia
8.
Philos Trans R Soc Lond B Biol Sci ; 375(1798): 20190246, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32200742

RESUMO

Surface-attached microbial communities consist of different cell types that, at least to some degree, organize themselves non-randomly across space (referred to as spatial self-organization). While spatial self-organization can have important effects on the functioning, ecology and evolution of communities, the underlying determinants of spatial self-organization remain unclear. Here, we hypothesize that the presence of physical objects across a surface can have important effects on spatial self-organization. Using pairs of isogenic strains of Pseudomonas stutzeri, we performed range expansion experiments in the absence or presence of physical objects and quantified the effects on spatial self-organization. We demonstrate that physical objects create local deformities along the expansion frontier, and these deformities increase in magnitude during range expansion. The deformities affect the densities of interspecific boundaries and diversity along the expansion frontier, and thus affect spatial self-organization, but the effects are interaction-dependent. For competitive interactions that promote sectorized patterns of spatial self-organization, physical objects increase the density of interspecific boundaries and diversity. By contrast, for cross-feeding interactions that promote dendritic patterns, they decrease the density of interspecific boundaries and diversity. These qualitatively different outcomes are probably caused by fundamental differences in the orientations of the interspecific boundaries. Thus, in order to predict the effects of physical objects on spatial self-organization, information is needed regarding the interactions present within a community and the general geometric shapes of spatial self-organization that emerge from those interactions. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.


Assuntos
Microbiota/fisiologia , Pseudomonas stutzeri/fisiologia
9.
Syst Appl Microbiol ; 42(2): 248-260, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30477902

RESUMO

Plant growth promoting diazotrophs with the ability to associate with plant roots are in common use as inoculants to benefit crop yield and to mitigate chemical nitrogen fertilization. However, limited information is available in understanding to what extent the plant growth-promoting effect of the inoculum has on the plant's nitrogen acquisition as well as on the impact of inoculation on the indigenous rhizosphere microbial population. Here we reported on experiments that assessed how endophytic Pseudomonas stutzeri A1501 inoculated on maize improved plant growth and plant nitrogen content using a 15N dilution technique under two water regime conditions. The effects of inoculation and different water regimes were also assessed for the maize rhizospheric and surface soil communities by MiSeq community sequencing combined with qPCR of functional genes and transcripts (nifH and amoA) related to nitrogen cycling. Results support maize inoculated with P. stutzeri A1501 grew better and accumulated more nitrogen with a lower δ15N signature after 60 days than did plants inoculated with nifH-mutant and sterilized A1501 cells (non N2-fixing controls). Inoculant contribution to the plant was estimated to range from 0.30 to 0.82g N/plant, depending on water conditions. Inoculation with P. stutzeri A1501 significantly altered the composition of the diazotrophic community that P. stutzeri became dominant in the rhizosphere, and also increased the population of indigenous diazotrophs and ammonia oxidizers and functional genes transcripts. Redundancy analysis revealed that soil compartment and A1501 inoculation treatments were the main factors affecting the distribution of the diazotrophic community.


Assuntos
Pseudomonas stutzeri/fisiologia , Rizosfera , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , China , DNA Bacteriano/genética , Genes Bacterianos , Microbiota , Ciclo do Nitrogênio , Fixação de Nitrogênio , Isótopos de Nitrogênio/análise , Pseudomonas stutzeri/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Bioresour Technol ; 270: 70-79, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212776

RESUMO

Pseudomonas stutzeri XL-2, with the capability of heterotrophic nitrification-aerobic denitrification and biofilm-forming, was applied in a sequencing batch biofilm reactor (SBBR) for bioaugmented treatment of ammonium-rich wastewater. The bioaugmented system SBBR 1 showed a rapid development of biofilm and relatively shorter time for biofilm hanging compared with the control system SBBR 2 without strain XL-2 inoculation. At different NH4+-N loads of 100, 200 and 300 mg/L, the effluent TN removal ratios ranged in 88.7-97.0%, 85.1-93.5% and 87.8-92.5% respectively in SBBR 1, while only ranged in 77.4-85.4%, 77.1-84.3% and 79.8-85.0% in SBBR 2. Less accumulation of NO2--N and NO3--N resulted in the better performance on TN removal in SBBR 1. Microbial community structure analysis revealed that strain XL-2 successfully proliferated in SBBR 1 and contributed to the less accumulation of NO2--N and NO3--N as well as biofilm formation.


Assuntos
Compostos de Amônio/metabolismo , Biofilmes , Pseudomonas stutzeri/fisiologia , Desnitrificação , Nitrificação , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
11.
J Appl Microbiol ; 125(3): 800-812, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29754410

RESUMO

AIMS: In this work, the 'hi-tech' complex biocleaning and restoration of the 14th-century fresco Triumph of Death (5·6 × 15·0 m) at the Camposanto Monumental Cemetery (Pisa, Italy) is reported. Since 2000, the restoration based on the biological cleaning of noble medieval frescoes, has been successfully utilized in this site. METHODS AND RESULTS: The novelty of this study is the two-steps biocleaning process using Pseudomonas stutzeri A29 viable cells, previously applied for recovering other valuable frescoes. In this case, after the fresco detachment from the asbestos-cement support (eternity), both the animal glue and the residues of calcium caseinate were biologically removed respectively from the front and from the back of the fresco in 3 h as indicated by GC-MS and PY/GC-MS analyses. The data obtained during the monitoring of the biorestoration process confirmed that the adopted procedure does not leave residual cells on the fresco surfaces as showed by plate count method, ATP determination and also SEM observation. In addition, to avoid the risk of condensation phenomena after the relocation of the restored fresco sections onto the original walls, the use of a new support has been set up together with the design of a control system that allows a continuous monitoring of environmental parameters for prevention and conservation purposes. CONCLUSIONS: This large-scale biorestoration work clearly shows and confirms that this biotechnology is highly efficient, safe, noninvasive, risk-free and very competitive compared to the traditional cleaning methods, offering an unusual 'resurrection' of the degraded artworks also in very complicated and delicate conditions such as the Triumph of Death fresco, defined for its dimension and artistic importance the 'Pisa's Sistina frescoes'. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings can be of significant importance for other future new restoration activities and they are crucial for determining preservation strategies in this field.


Assuntos
Biotecnologia/métodos , Pinturas , Adesivos , Caseínas , Cemitérios , Cromatografia Gasosa-Espectrometria de Massas , Itália , Pseudomonas stutzeri/fisiologia
12.
Arch Microbiol ; 199(3): 513-517, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28070613

RESUMO

The use of plant growth-promoting rhizobacteria as a sustainable alternative for chemical nitrogen fertilizers has been explored for many economically important crops. For one such strain isolated from rice rhizosphere and endosphere, nitrogen-fixing Pseudomonas stutzeri A15, unequivocal evidence of the plant growth-promoting effect and the potential contribution of biological nitrogen fixation (BNF) is still lacking. In this study, we investigated the effect of P. stutzeri A15 inoculation on the growth of rice seedlings in greenhouse conditions. P. stutzeri A15 induced significant growth promotion compared to uninoculated rice seedlings. Furthermore, inoculation with strain A15 performed significantly better than chemical nitrogen fertilization, clearly pointing to the potential of this bacterium as biofertilizer. To assess the contribution of BNF to the plant growth-promoting effect, rice seedlings were also inoculated with a nitrogen fixation-deficient mutant. Our results suggest that BNF (at best) only partially contributes to the stimulation of plant growth.


Assuntos
Fixação de Nitrogênio/fisiologia , Oryza/microbiologia , Pseudomonas stutzeri/fisiologia , Endófitos/fisiologia , Mutação , Nitrogênio/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Fixação de Nitrogênio/genética , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/microbiologia
13.
Appl Environ Microbiol ; 82(19): 6046-56, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474723

RESUMO

UNLABELLED: Metal ion transport systems have been studied extensively, but the specificity of a given transporter is often unclear from amino acid sequence data alone. In this study, predicted Cu(2+) and Zn(2+) resistance systems in Pseudomonas stutzeri strain RCH2 are compared with those experimentally implicated in Cu(2+) and Zn(2+) resistance, as determined by using a DNA-barcoded transposon mutant library. Mutant fitness data obtained under denitrifying conditions are combined with regulon predictions to yield a much more comprehensive picture of Cu(2+) and Zn(2+) resistance in strain RCH2. The results not only considerably expand what is known about well-established metal ion exporters (CzcCBA, CzcD, and CusCBA) and their accessory proteins (CzcI and CusF), they also reveal that isolates with mutations in some predicted Cu(2+) resistance systems do not show decreased fitness relative to the wild type when exposed to Cu(2+) In addition, new genes are identified that have no known connection to Zn(2+) (corB, corC, Psest_3226, Psest_3322, and Psest_0618) or Cu(2+) resistance (Mrp antiporter subunit gene, Psest_2850, and Psest_0584) but are crucial for resistance to these metal cations. Growth of individual deletion mutants lacking corB, corC, Psest_3226, or Psest_3322 confirmed the observed Zn-dependent phenotypes. Notably, to our knowledge, this is the first time a bacterial homolog of TMEM165, a human gene responsible for a congenital glycosylation disorder, has been deleted and the resulting strain characterized. Finally, the fitness values indicate Cu(2+)- and Zn(2+)-based inhibition of nitrite reductase and interference with molybdenum cofactor biosynthesis for nitrate reductase. These results extend the current understanding of Cu(2+) and Zn(2+) efflux and resistance and their effects on denitrifying metabolism. IMPORTANCE: In this study, genome-wide mutant fitness data in P. stutzeri RCH2 combined with regulon predictions identify several proteins of unknown function that are involved in resisting zinc and copper toxicity. For zinc, these include a member of the UPF0016 protein family that was previously implicated in Ca(2+)/H(+) antiport and a human congenital glycosylation disorder, CorB and CorC, which were previously linked to Mg(2+) transport, and Psest_3322 and Psest_0618, two proteins with no characterized homologs. Experiments using mutants lacking Psest_3226, Psest_3322, corB, corC, or czcI verified their proposed functions, which will enable future studies of these little-characterized zinc resistance determinants. Likewise, Psest_2850, annotated as an ion antiporter subunit, and the conserved hypothetical protein Psest_0584 are implicated in copper resistance. Physiological connections between previous studies and phenotypes presented here are discussed. Functional and mechanistic understanding of transport proteins improves the understanding of systems in which members of the same protein family, including those in humans, can have different functions.


Assuntos
Cobre/metabolismo , Aptidão Genética , Pseudomonas stutzeri/fisiologia , Zinco/metabolismo , Cátions/metabolismo , Cobre/farmacologia , Mutação , Pseudomonas stutzeri/efeitos dos fármacos , Pseudomonas stutzeri/genética , Zinco/farmacologia
14.
Mikrobiol Z ; 78(2): 89-94, 2016.
Artigo em Russo | MEDLINE | ID: mdl-30141601

RESUMO

Five plasmid DNAs were detected in three of microorganisms, which formed microbial composition «Ð—амин-М¼. One plasmid (23.1 kb) was found in Bacillus megaterium СКБ-310 cells and another one (55.0 kb) was found in cells of Pseudomonas stutzeri СКБ-308, but cells of Bacillus subtilis СКБ-309 contained 3 plasmids (48.5 kb, 30.0 kb and 13.3 kb). It was assumed that these plasmids may carry genes of resistance to adverse environmental conditions, including the high content (10 %) of ions Cl- and SO4(2-).


Assuntos
Plasmídeos/genética , Rizosfera , Tolerância ao Sal , Microbiologia do Solo , Bacillus/genética , Bacillus/fisiologia , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/fisiologia
15.
J Environ Biol ; 36(2): 357-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25895256

RESUMO

Ammonia-oxidizing bacteria (AOB) were isolated from sediment samples of fishponds with an aim to use them for application in biological nitrification of water. Isolation of AOB was done in an inorganic medium and nitrite-producing bacterial isolates were selected. These isolates were further screened by polymerase chain reaction using specific primers forAOB. Out of 119 nitrate positive isolates, only 12 showed positive amplification and yielded a PCR product of ~465 bp. Treatment of aquaculture pond and riverwaterwith one of the bacterial isolate (HC-5) resulted in lowering of soluble ammonia level from 3.50 to 0.05 mgl(-1) and 7.5 to 0.01 mgl(-1), respectively. Partial 16S rRNA gene sequencing of isolate HC-5 identified the microorganism as Pseudomonasstutzeri.


Assuntos
Amônia/química , Nitrificação/fisiologia , Pseudomonas stutzeri/fisiologia , Água/química , Amônia/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Nitratos/química , Nitratos/metabolismo , Nitritos/química , Nitritos/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Oxirredução , Fatores de Tempo
16.
Bioresour Technol ; 187: 30-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25827250

RESUMO

The excellent removal efficiency of nitrate by the aerobic denitrifier, Pseudomonas stutzeri T13, was achieved in free cells system. However, poor nitrite reduction prevents efficient aerobic denitrification because of the nitrite accumulation. This problem could be conquered by immobilizing the cells on supports. In this study, strain T13 was immobilized by mycelial pellets (MPs), polyurethane foam cubes (PFCs) and sodium alginate beads (SABs). Higher removal percentages of TN in MP (43.78%), PFC (42.31%) and SAB (57.25%) systems were achieved compared with the free cell system (29.7%). Furthermore, the optimal condition for immobilized cell systems was as follows: 30°C, 100rpm shaking speed and pH 7. The shock-resistance of SAB system was relatively poor, which could collapse under either alkaline (pH=9) or high rotating (200rpm) conditions. The recycling experiments demonstrated that the high steady TN removal rate could be maintained for seven cycles in both MP and PFC systems.


Assuntos
Nitrificação/fisiologia , Nitritos/metabolismo , Oxigênio/metabolismo , Pseudomonas stutzeri/fisiologia , Aerobiose , Aderência Bacteriana/fisiologia , Oxirredução , Pseudomonas stutzeri/citologia
17.
J Microbiol Biotechnol ; 25(7): 1119-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25674802

RESUMO

1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.


Assuntos
Carbono-Carbono Liases/metabolismo , Poluentes Ambientais/toxicidade , Níquel/toxicidade , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal/efeitos dos fármacos , Pseudomonas stutzeri/enzimologia , Cloreto de Sódio/toxicidade , Carbono-Carbono Liases/genética , Poluentes Ambientais/metabolismo , Deleção de Genes , Níquel/metabolismo , Oryza/microbiologia , Pseudomonas stutzeri/fisiologia , Cloreto de Sódio/metabolismo , Simbiose
18.
PLoS One ; 9(12): e114886, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489740

RESUMO

To reduce ammonium and nitrite in aquaculture water, an isolate of the denitrifying bacterium Pseudomonas stutzeri, SC221-M, was obtained. The effects of various nitrogen and carbon sources, the ratio of carbon to nitrogen and temperature on bacterial growth, denitrification rates and the expression levels of nirS and nosZ in SC221-M were studied. The following conditions were determined to be optimal for growth and denitrification in SC221-M: NaNO2 as the nitrogen source, sodium citrate as the carbon source, a carbon to nitrogen ratio range of 4-8, and a temperature range of 20-35°C. Subsequently, SC221-M and the Bacillus cereus BSC24 strain were selected to generate microbial preparations. The results showed that addition of the microbial preparations decreased various hydrochemical parameters, including total dissolved solids, ammonium, nitrite, total nitrogen and the chemical oxygen demand. Nitrogen removal rates were highest on day 9; the removal rates of BSC24, SC221-M, a mixed preparation and a 3× mixed preparation were 24.5%, 26.6%, 53.9% and 53.4%, respectively. The mixed preparation (SC221-M+BSC24) was more effective at removing nitrogen than either the SC221-M or BSC24 preparation. Roche 454 pyrosequencing and subsequent analysis indicated that the control and other groups formed separate clusters, and the microbial community structure in the water changed significantly after the addition of microbial preparations. These results indicate that the addition of microbial preparations can improve both the water quality and microbial community structure in an experimental aquaculture system. P. stutzeri strain SC221-M and its related microbial preparations are potential candidates for the regulation of water quality in commercial aquaculture systems.


Assuntos
Desnitrificação/fisiologia , Pseudomonas stutzeri/isolamento & purificação , Pseudomonas stutzeri/fisiologia , Controle de Qualidade , Purificação da Água/métodos , Qualidade da Água , Animais , Aquicultura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carpas , Expressão Gênica , Nitritos/metabolismo
19.
J Environ Sci (China) ; 26(2): 398-403, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25076531

RESUMO

Immigrant bacteria located on leaf surfaces are important to the health of plants as well as to people who consume fresh fruits and vegetables. However, the spatial distribution and organization of these immigrant bacteria on leaf surfaces are still poorly understood. To examine the spatial organization of these strains, two bacterial strains on tobacco leaves: (1) an indigenous strain, Pseudomonas stutzeri Nov. Y2011 labeled with green fluorescent protein, and (2) an immigrant strain Pantoea agglomerans labeled with cyan fluorescent protein isolated from pear, were studied. Under moist conditions, P. agglomerans cells quickly disappeared from direct observation by laser-scanning confocal microscopy, although elution results indicated that large amounts of live cells were still present on the leaves. Following exposure to desiccation stress, particles of cyan fluorescent protein-labeled P. agglomerans were visible within cracked aggregates of P. stutzeri Nov. Y2011. Detailed observation of sectioned aggregates showed that colonies of immigrant P. agglomerans were embedded within aggregates of P. stutzeri Nov. Y2011. Furthermore, carbon-resource partitioning studies suggested that these two species could coexist without significant nutritional competition. This is the first observation of an immigrant bacterium embedding within aggregates of indigenous bacteria on leaves to evade harsh conditions in the phyllosphere.


Assuntos
Espécies Introduzidas , Interações Microbianas , Pantoea/fisiologia , Folhas de Planta/microbiologia , Pseudomonas stutzeri/fisiologia , Nicotiana
20.
PLoS One ; 9(7): e102170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048697

RESUMO

Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.


Assuntos
Transferência Genética Horizontal , Infecções por Pseudomonas/microbiologia , Pseudomonas stutzeri/genética , Biofilmes , Resistência Microbiana a Medicamentos , Genoma Bacteriano , Humanos , Fenótipo , Pseudomonas stutzeri/citologia , Pseudomonas stutzeri/efeitos dos fármacos , Pseudomonas stutzeri/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA