Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731801

RESUMO

Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.


Assuntos
Medicago truncatula , Folhas de Planta , Pulvínulo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Pulvínulo/metabolismo , Movimento , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Mimosa/fisiologia , Mimosa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
J Plant Res ; 137(1): 79-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812342

RESUMO

In the Malvaceae family, dynamic solar tracking by leaves is actuated by the deformation of the pulvinus, a thickened region at the leaf blade-petiole junction. While the internal structure is believed to play a crucial role in this process, experimental verification has been challenging due to technical limitations. To address this gap, we developed a semi-automated workflow, which integrates data analysis and image processing to simultaneously analyze the shape and internal structure of a Malvaceae pulvinus using X-ray microtomography. Firstly, we found that kenaf (Hibiscus cannabinus L.), a Malvaceae species with curved pulvini, exhibited solar-tracking leaf movement and selected it as a model system. We employed diffusible iodine-based contrast-enhanced computed tomography to visualize the internal structure of the kenaf pulvinus. Analysis of the pulvini's shape revealed variations in pulvinus morphology, yet plausible prediction of the centerline was accomplished using polar polynomial regression. Upon slicing the pulvini perpendicular to the centerline, we observed distinct gray value gradients along the proximo-distal and adaxial-abaxial axes, challenging threshold-based tissue segmentation. This workflow successfully generated three modified 3D images and derived quantitative parameters. Using these quantitative parameters, we conducted network analysis and found the linkage between the size-normalized cortex cross-sectional area and curvature. Polynomial least absolute shrinkage and selection operator (LASSO) regression revealed the relationship between the size-normalized cortex cross-sectional area and curvature commonly in all three tested samples. This workflow enables simultaneous analysis of the shape and internal structure, significantly improving the reproducibility of Malvaceae leaf pulvinus characterization.


Assuntos
Hibiscus , Pulvínulo , Microtomografia por Raio-X , Reprodutibilidade dos Testes , Folhas de Planta
3.
Plant Cell Environ ; 46(11): 3206-3217, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37614098

RESUMO

In legumes, a common phenomenon known as nyctinastic movement is observed. This movement involves the horizontal expansion of leaves during the day and relative vertical closure at night. Nyctinastic movement is driven by the pulvinus, which consists of flexor and extensor motor cells. The turgor pressure difference between these two cell types generates a driving force for the bending and deformation of the pulvinus. This review focuses on the developmental mechanisms of the pulvinus, the factors affecting nyctinastic movement, and the biological significance of this phenomenon in legumes, thus providing a reference for further research on nyctinastic movement.


Assuntos
Fabaceae , Pulvínulo , Folhas de Planta/metabolismo , Pulvínulo/metabolismo , Movimento
4.
Naturwissenschaften ; 110(3): 18, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188787

RESUMO

The diurnal motion of higher plants, responding to the alternation of day and night, known as nyctinastic movements or "sleep movements", has been discussed frequently. We present the first description of the circadian rhythm of the water plant Ludwigia sedoides (Humb. & Bonpl.) H.Hara of the family Onagraceae, furthermore its morphology and anatomy. Our results indicate that the plant's movements are endogenous, although environmental factors certainly have an influence. The majority of plants with nyctinastic leaf movements have a pulvinus, as the crucial part of the plant enabling this movement. Although the basal section of the L. sedoides petiole is not swollen, the tissue functions similarly to a pulvinus. It consists of a central conducting tissue with thick-walled cells, which is surrounded by thin-walled motor cells that can undergo visible shrinking and swelling. Thus, the tissue functionally corresponds to a pulvinus. Examinations of cellular processes, like measurements of the turgor pressure in the petiole, need to be evaluated in future studies.


Assuntos
Folhas de Planta , Pulvínulo , Ritmo Circadiano , Movimento , Sono
5.
Integr Comp Biol ; 63(6): 1331-1339, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37127409

RESUMO

Pulvini are plant motor organs that fulfill two conflicting mechanical roles. At rest, pulvini function as rigid beams that support the cantilevered weight of leafy appendages. During thigmonastic (touch-induced) or nyctinastic ("sleep"-induced) plant movements, however, pulvini function as flexible joints capable of active bending. I hypothesized that the ability to alternate between these roles emerges from the interaction of two structural features of pulvini: anisotropically reinforced parenchyma cells comprising the body of the pulvinus and a longitudinally stiff but flexurally pliant vascular bundle running through the pulvinus core. To investigate how these two components might interact within biological pulvini, I built a set of pulvinus-inspired physical models with varying combinations of these elements present. I compared the abilities of the models to (1) resist imposed bending deformation (i.e., act as rigid beams) and (2) exhibit bending deformation when asymmetrically pressurized (i.e., act as actively deformable joints). Pulvinus models displayed the greatest ability to resist bending deformation when both an anisotropically reinforced parenchyma and a vasculature-like core were present. Disruption of either element reduced hydrostatic fluid pressures developed within the models, resulting in a decreased ability to resist externally applied forces. When differentially pressurized to induce active bending, the degree of bending achieved varied widely between models with and without adequately reinforced parenchyma elements. Bending, however, was not influenced by the presence of a vasculature-like core. These findings suggest that biological pulvini achieve their dual functionality by pairing anisotropically reinforced parenchyma tissues with a longitudinally stiff but flexurally pliant vascular core. Together, these elements compose a hydrostatic skeleton within the pulvinus that strongly resists external deformation when pressurized, but that bends easily when the balance of fluid pressures within it is altered. These results illustrate the emergent nature of pulvinus motor abilities and highlight structural specialization as an important aspect of pulvinus physiology.


Assuntos
Pulvínulo , Animais , Pulvínulo/fisiologia , Gravitropismo/fisiologia , Folhas de Planta
6.
Curr Biol ; 33(4): 639-646.e3, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36608688

RESUMO

Leaf movement in vascular plants is executed by joint-like structures called pulvini. Many structural features of pulvini have been described at subcellular, cellular, and tissue scales of organization; however, how the characteristic hierarchical architecture of plant tissue influences pulvinus-mediated actuation remains poorly understood. To investigate the influence of multiscale structure on turgor-driven pulvinus movements, we visualized Mimosa pudica pulvinus morphology and anatomy at multiple hierarchical scales of organization and used osmotic perturbations to experimentally swell pulvini in incremental states of dissection. We observed directional cellulose microfibril reinforcement, oblong, spindle-shaped primary pit fields, and longitudinally slightly compressed cell geometries in the parenchyma of M. pudica. Consistent with these observations, isolated parenchyma tissues displayed highly anisotropic swelling behaviors indicating a high degree of mechanical anisotropy. Swelling behaviors at higher scales of pulvinus organization were also influenced by the presence of the pulvinus epidermis, which displayed oblong epidermal cells oriented transverse to the pulvinus long axis. Our findings indicate that structural specializations spanning multiple hierarchical scales of organization guide hydraulic deformation of pulvini, suggesting that multiscale mechanics are crucial to the translation of cell-level turgor variations into organ-scale pulvinus motion in vivo.


Assuntos
Mimosa , Pulvínulo , Anisotropia , Pulvínulo/ultraestrutura , Folhas de Planta , Mimosa/anatomia & histologia , Movimento
7.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142170

RESUMO

Plant cell deformation is a mechanical process that is driven by differences in the osmotic pressure inside and outside of the cell and is influenced by cell wall properties. Legume leaf movements result from reversible deformation of pulvinar motor cells. Reversible cell deformation is an elastic process distinct from the irreversible cell growth of developing organs. Here, we begin with a review of the basic mathematics of cell volume changes, cell wall function, and the mechanics of bending deformation at a macro scale. Next, we summarize the findings of recent molecular genetic studies of pulvinar development. We then review the mechanisms of the adaxial/abaxial patterning because pulvinar bending deformation depends on the differences in mechanical properties and physiological responses of motor cells on the adaxial versus abaxial sides of the pulvinus. Intriguingly, pulvini simultaneously encompass morphological symmetry and functional asymmetry along the adaxial/abaxial axis. This review provides an introduction to leaf movement and reversible deformation from the perspective of mechanics and molecular genetics.


Assuntos
Fabaceae , Pulvínulo , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Movimento , Células Vegetais , Folhas de Planta/genética , Pulvínulo/genética
8.
Bioinspir Biomim ; 17(6)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35944519

RESUMO

Mimosa pudicarapidly folds leaves when touched. Motion is created by pulvini, 'the plant muscles' that allow plants to produce various complex motions. Plants rely on local control of the turgor pressure to create on-demand motion. In this paper, the mechanics of a cellular material inspired from pulvinus ofM. pudicais studied. First, the manufacturing process of a cell-controllable material is described. Its deformation behaviour when pressured is tested, focusing on three pressure patterns of reference. The deformations are modelled based on the minimisation of elastic energy framework. Depending on pressurisation pattern and magnitude, reversible buckling-induced motion may occur.


Assuntos
Pulvínulo , Folhas de Planta
9.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457256

RESUMO

Nyctinastic leaf movement of Fabaceae is driven by the tiny motor organ pulvinus located at the base of the leaf or leaflet. Despite the increased understanding of the essential role of ELONGATED PETIOLULE1 (ELP1)/PETIOLE LIKE PULVINUS (PLP) orthologs in determining pulvinus identity in legumes, key regulatory components and molecular mechanisms underlying this movement remain largely unclear. Here, we used WT pulvinus and the equivalent tissue in the elp1 mutant to carry out transcriptome and proteome experiments. The omics data indicated that there are multiple cell biological processes altered at the gene expression and protein abundance level during the pulvinus development. In addition, comparative analysis of different leaf tissues provided clues to illuminate the possible common primordium between pulvinus and petiole, as well as the function of ELP1. Furthermore, the auxin pathway, cell wall composition and chloroplast distribution were altered in elp1 mutants, verifying their important roles in pulvinus development. This study provides a comprehensive insight into the motor organ of the model legume Medicago truncatula and further supplies a rich dataset to facilitate the identification of novel players involved in nyctinastic movement.


Assuntos
Medicago truncatula , Pulvínulo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
10.
Genes (Basel) ; 13(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205230

RESUMO

A short petiole is an important agronomic trait for the development of plant ideotypes with high yields. However, the genetic basis underlying this trait remains unclear. Here, we identified and characterized a novel soybean mutant with short petioles and weakened pulvini, designated as short petioles and weakened pulvini (spwp). Compared with the wild type (WT), the spwp mutant displayed shortened petioles, owing to the longitudinally decreased cell length, and exhibited a smaller pulvinus structure due to a reduction in motor cell proliferation and expansion. Genetic analysis showed that the phenotype of the spwp mutant was controlled by two recessive nuclear genes, named as spwp1 and spwp2. Using a map-based cloning strategy, the spwp1 locus was mapped in a 183 kb genomic region on chromosome 14 between markers S1413 and S1418, containing 15 annotated genes, whereas the spwp2 locus was mapped in a 195 kb genomic region on chromosome 11 between markers S1373 and S1385, containing 18 annotated genes. Based on the whole-genome re-sequencing and RNA-seq data, we identified two homologous genes, Glyma.11g230300 and Glyma.11g230600, as the most promising candidate genes for the spwp2 locus. In addition, the RNA-seq analysis revealed that the expression levels of genes involved in the cytokinin and auxin signaling transduction networks were altered in the spwp mutant compared with the WT. Our findings provide new gene resources for insights into the genetic mechanisms of petiole development and pulvinus establishment, as well as soybean ideotype breeding.


Assuntos
Glycine max , Pulvínulo , Mapeamento Cromossômico , Melhoramento Vegetal , RNA-Seq
11.
Plant Physiol ; 187(3): 1704-1712, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734277

RESUMO

Mechanoperception, the ability to perceive and respond to mechanical stimuli, is a common and fundamental property of all forms of life. Vascular plants such as Mimosa pudica use this function to protect themselves against herbivory. The mechanical stimulus caused by a landing insect triggers a rapid closing of the leaflets that drives the potential pest away. While this thigmonastic movement is caused by ion fluxes accompanied by a rapid change of volume in the pulvini, the mechanism responsible for the detection of the mechanical stimulus remains poorly understood. Here, we examined the role of mechanosensitive ion channels in the first step of this evolutionarily conserved defense mechanism: the mechanically evoked closing of the leaflet. Our results demonstrate that the key site of mechanosensation in the Mimosa leaflets is the pulvinule, which expresses a stretch-activated chloride-permeable mechanosensitive ion channel. Blocking these channels partially prevents the closure of the leaflets following mechanical stimulation. These results demonstrate a direct relation between the activity of mechanosensitive ion channels and a central defense mechanism of M. pudica.


Assuntos
Canais Iônicos/fisiologia , Mimosa/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/fisiologia , Mecanotransdução Celular , Pulvínulo/fisiologia
12.
Plant Physiol ; 185(4): 1745-1763, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33793936

RESUMO

Many plant species open their leaves during the daytime and close them at night as if sleeping. This leaf movement is known as nyctinasty, a unique and intriguing phenomenon that been of great interest to scientists for centuries. Nyctinastic leaf movement occurs widely in leguminous plants, and is generated by a specialized motor organ, the pulvinus. Although a key determinant of pulvinus development, PETIOLULE-LIKE PULVINUS (PLP), has been identified, the molecular genetic basis for pulvinus function is largely unknown. Here, through an analysis of knockout mutants in barrelclover (Medicago truncatula), we showed that neither altering brassinosteroid (BR) content nor blocking BR signal perception affected pulvinus determination. However, BR homeostasis did influence nyctinastic leaf movement. BR activity in the pulvinus is regulated by a BR-inactivating gene PHYB ACTIVATION TAGGED SUPPRESSOR1 (BAS1), which is directly activated by PLP. A comparative analysis between M. truncatula and the non-pulvinus forming species Arabidopsis and tomato (Solanum lycopersicum) revealed that PLP may act as a factor that associates with unknown regulators in pulvinus determination in M. truncatula. Apart from exposing the involvement of BR in the functionality of the pulvinus, these results have provided insights into whether gene functions among species are general or specialized.


Assuntos
Brassinosteroides/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/genética , Medicago truncatula/metabolismo , Pulvínulo/crescimento & desenvolvimento , Pulvínulo/genética , Pulvínulo/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Homeostase/genética , Homeostase/fisiologia , Movimento/fisiologia , Mutação
13.
New Phytol ; 230(2): 475-484, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458826

RESUMO

In most legumes, two typical features found in leaves are diverse compound forms and the pulvinus-driven nyctinastic movement. Many genes have been identified for leaf-shape determination, but the underlying nature of leaf movement as well as its association with the compound form remains largely unknown. Using forward-genetic screening and whole-genome resequencing, we found that two allelic mutants of Medicago truncatula with unclosed leaflets at night were impaired in MtDWARF4A (MtDWF4A), a gene encoding a cytochrome P450 protein orthologous to Arabidopsis DWARF4. The mtdwf4a mutant also had a mild brassinosteroid (BR)-deficient phenotype bearing pulvini without significant deficiency in organ identity. Both mtdwf4a and dwf4 could be fully rescued by MtDWF4A, and mtdwf4a could close their leaflets at night after the application of exogenous 24-epi-BL. Surgical experiments and genetic analysis of double mutants revealed that the failure to exhibit leaf movement in mtdwf4a is a consequence of the physical obstruction of the overlapping leaflet laminae, suggesting a proper geometry of leaflets is important for their movement in M. truncatula. These observations provide a novel insight into the nyctinastic movement of compound leaves, shedding light on the importance of open space for organ movements in plants.


Assuntos
Medicago truncatula , Pulvínulo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
14.
Plant Biotechnol J ; 19(2): 351-364, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32816361

RESUMO

Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process.


Assuntos
Medicago truncatula , Pulvínulo , Estudos Transversais , Regulação da Expressão Gênica de Plantas/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pulvínulo/metabolismo
15.
Theor Appl Genet ; 133(6): 1911-1926, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32157354

RESUMO

KEY MESSAGE: The bHLH transcription factor, PPLS1, interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet (Setaria italica). Foxtail millet (Setaria italica), a self-pollinated crop with numerous small florets, is difficult for cross-pollination. The color of pulvinus and leaf sheath with purple being dominant to green is an indicative character and often used for screening authentic hybrids in foxtail millet crossing. Deciphering molecular mechanism controlling this trait would greatly facilitate genetic improvement of cultivars in foxtail millet. Here, using the F2 bulk specific-locus amplified fragment sequencing approach, we mapped the putative causal gene for the purple color of pulvinus and leaf sheath (PPLS) trait to a 100 Kb region on chromosome 7. Expression analyses of the 15 genes in this region revealed that Seita.7G195400 (renamed here as PPLS1) was differentially expressed between purple and green cultivars. PPLS1 encodes a bHLH transcription factor and is localized in the nucleus with a transactivation activity. Furthermore, we observed that expression of a MYB transcription factor gene, SiMYB85 (Seita.4G086300) involved in anthocyanin biosynthesis, shows a totally positive association with that of PPLS1. Heterologous co-expression of both PPLS1 and SiMYB85 in tobacco leaves led to elevated anthocyanin accumulation and expression of some anthocyanin-related genes. Furthermore, PPLS1 physically interacts with SiMYB85. Taken together, our results suggest that PPLS1 interacts with SiMYB85 to control the color of pulvinus and leaf sheath by regulating anthocyanin biosynthesis in foxtail millet.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Plantas/genética , Pulvínulo/genética , Setaria (Planta)/genética , Fatores de Transcrição/genética , Antocianinas/química , Clorofila/química , Cor , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único
16.
New Phytol ; 222(1): 286-300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735258

RESUMO

In grapevine, climate changes lead to increased berry potassium (K+ ) contents that result in must with low acidity. Consequently, wines are becoming 'flat' to the taste, with poor organoleptic properties and low potential aging, resulting in significant economic loss. Precise investigation into the molecular determinants controlling berry K+ accumulation during its development are only now emerging. Here, we report functional characterization by electrophysiology of a new grapevine Shaker-type K+ channel, VvK3.1. The analysis of VvK3.1 expression patterns was performed by qPCR and in situ hybridization. We found that VvK3.1 belongs to the AKT2 channel phylogenetic branch and is a weakly rectifying channel, mediating both inward and outward K+ currents. We showed that VvK3.1 is highly expressed in the phloem and in a unique structure located at the two ends of the petiole, identified as a pulvinus. From the onset of fruit ripening, all data support the role of the VvK3.1 channel in the massive K+ fluxes from the phloem cell cytosol to the berry apoplast during berry K+ loading. Moreover, the high amount of VvK3.1 transcripts detected in the pulvinus strongly suggests a role for this Shaker in the swelling and shrinking of motor cells involved in paraheliotropic leaf movements.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Pulvínulo/metabolismo , Vitis/metabolismo , Animais , Secas , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico , Xenopus/metabolismo
17.
Protoplasma ; 256(3): 615-629, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30382423

RESUMO

Potassium pyroantimonate precipitation, transmission electron microscopy, and X-ray microanalysis were used to investigate the subcellular localization of loosely bound calcium in Robinia pseudoacacia pulvinar motor cells during phytochrome-mediated nyctinastic closure. Calcium localization was carried out in pulvini collected in white light 2 h after the beginning of the photoperiod, immediately after a red light or a far-red light pulse applied 2 h after the beginning of the photoperiod and after 15 or 25 min of darkness respectively. Calcium antimonate precipitates were found in all the pulvinar tissues from the epidermis to the vascular bundle, independent of the light treatment. At subcellular level, precipitates were found mainly in the intercellular spaces, the inner surface of the plasma membrane, cytoplasm, colloidal vacuoles, and nuclei. Red light enhanced the nyctinastic closure of leaflets and caused an asymmetric distribution of cytosolic calcium precipitates between the extensor and flexor motor cells. Both the number and area of the cytosolic calcium precipitates drastically increased in the extensor cells compared to the flexor motor cells. Red light had a rapid and transient effect on the distribution of cytosolic calcium precipitates, which occurred during or at the end of the irradiation, before leaflet closure. By contrast, the distribution of cytosolic loosely bound calcium was similar between the extensor and flexor motor cells after irradiation with far-red light. Our results demonstrate that red light causes specific calcium mobilization in pulvinar motor cells and suggest the involvement of cytoplasmic Ca2+ as a second messenger for phytochrome during nyctinastic closure.


Assuntos
Cálcio/metabolismo , Fitocromo/metabolismo , Pulvínulo/citologia , Robinia/fisiologia , Citosol/metabolismo , Microanálise por Sonda Eletrônica , Pulvínulo/ultraestrutura , Robinia/citologia , Robinia/ultraestrutura
18.
Environ Sci Pollut Res Int ; 24(8): 6910-6922, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26820642

RESUMO

Early prediction of compound absorption by cells is of considerable importance in the building of an integrated scheme describing the impact of a compound on intracellular biological processes. In this scope, we study the structure-activity relationships of several benzoic acid-related phenolics which are involved in many plant biological phenomena (growth, flowering, allelopathy, defense processes). Using the partial least squares (PLS) regression method, the impact of molecular descriptors that have been shown to play an important role concerning the uptake of pharmacologically active compounds by animal cells was analyzed in terms of the modification of membrane potential, variations in proton flux, and inhibition of the osmocontractile reaction of pulvinar cells of Mimosa pudica leaves. The hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA), polar surface area (PSA), halogen ratio (Hal ratio), number of rotatable bonds (FRB), molar volume (MV), molecular weight (MW), and molar refractivity (MR) were considered in addition to two physicochemical properties (logD and the amount of non-dissociated form in relation to pKa). HBD + HBA and PSA predominantly impacted the three biological processes compared to the other descriptors. The coefficient of determination in the quantitative structure-activity relationship (QSAR) models indicated that a major part of the observed seismonasty inhibition and proton flux modification can be explained by the impact of these descriptors, whereas this was not the case for membrane potential variations. These results indicate that the transmembrane transport of the compounds is a predominant component. An increasing number of implicated descriptors as the biological processes become more complex may reflect their impacts on an increasing number of sites in the cell. The determination of the most efficient effectors may lead to a practical use to improve drugs in the control of microbial attacks on plants.


Assuntos
Membrana Celular/fisiologia , Mimosa/fisiologia , Fenóis/química , Pulvínulo/fisiologia , Animais , Fenômenos Biológicos , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Ligação de Hidrogênio , Análise dos Mínimos Quadrados , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mimosa/citologia , Mimosa/efeitos dos fármacos , Mimosa/metabolismo , Modelos Teóricos , Fenóis/metabolismo , Prótons , Pulvínulo/citologia , Pulvínulo/efeitos dos fármacos , Pulvínulo/metabolismo , Relação Quantitativa Estrutura-Atividade , Ácido Salicílico/farmacologia
19.
Sci Rep ; 6: 21542, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26899473

RESUMO

Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress.


Assuntos
Desidratação/genética , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Manihot/citologia , Manihot/genética , Manihot/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Pulvínulo/citologia , Pulvínulo/genética , Pulvínulo/crescimento & desenvolvimento , Água/metabolismo
20.
Appl Biochem Biotechnol ; 175(3): 1263-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25380642

RESUMO

Reactive oxygen species (ROS) and malondialdehyde (MDA) in plant cell are thought to be important inducible factors of cell apoptosis if excessively accumulated in cells. To elucidate the metabolic mechanism of MDA production and scavenging in the cytoplasmic male-sterile (CMS) rice, CMS line and maintainer were employed for studying the relationship at different developmental stages by marking upmost pulvinus interval method of experiment. The results showed that the panicles and leaves of the CMS line had a noticeable higher MDA content than those of maintainer line at all five stages that had been investigated (p < 0.05). MDA content in the CMS line in the flag leaves of auricle in the distance 0 mm stage (the meiosis stage) was the highest of the five stages. The increase of MDA contents in sterile panicles and leaves had inducible effects on the enzymic activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). However, at the abortion peak stage, MDA was excessively accumulated and antioxidant enzymic activity reduced significantly, resulting in the generation and scavenging of MDA out of balance.


Assuntos
Citoplasma/metabolismo , Infertilidade das Plantas/fisiologia , Pulvínulo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Hibridização Genética , Malondialdeído/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Oryza/fisiologia , Peroxidase/metabolismo , Folhas de Planta/enzimologia , Sementes/crescimento & desenvolvimento , Autofertilização , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA