Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 63(6): 1331-1339, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37127409

RESUMO

Pulvini are plant motor organs that fulfill two conflicting mechanical roles. At rest, pulvini function as rigid beams that support the cantilevered weight of leafy appendages. During thigmonastic (touch-induced) or nyctinastic ("sleep"-induced) plant movements, however, pulvini function as flexible joints capable of active bending. I hypothesized that the ability to alternate between these roles emerges from the interaction of two structural features of pulvini: anisotropically reinforced parenchyma cells comprising the body of the pulvinus and a longitudinally stiff but flexurally pliant vascular bundle running through the pulvinus core. To investigate how these two components might interact within biological pulvini, I built a set of pulvinus-inspired physical models with varying combinations of these elements present. I compared the abilities of the models to (1) resist imposed bending deformation (i.e., act as rigid beams) and (2) exhibit bending deformation when asymmetrically pressurized (i.e., act as actively deformable joints). Pulvinus models displayed the greatest ability to resist bending deformation when both an anisotropically reinforced parenchyma and a vasculature-like core were present. Disruption of either element reduced hydrostatic fluid pressures developed within the models, resulting in a decreased ability to resist externally applied forces. When differentially pressurized to induce active bending, the degree of bending achieved varied widely between models with and without adequately reinforced parenchyma elements. Bending, however, was not influenced by the presence of a vasculature-like core. These findings suggest that biological pulvini achieve their dual functionality by pairing anisotropically reinforced parenchyma tissues with a longitudinally stiff but flexurally pliant vascular core. Together, these elements compose a hydrostatic skeleton within the pulvinus that strongly resists external deformation when pressurized, but that bends easily when the balance of fluid pressures within it is altered. These results illustrate the emergent nature of pulvinus motor abilities and highlight structural specialization as an important aspect of pulvinus physiology.


Assuntos
Pulvínulo , Animais , Pulvínulo/fisiologia , Gravitropismo/fisiologia , Folhas de Planta
2.
Plant Physiol ; 187(3): 1704-1712, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734277

RESUMO

Mechanoperception, the ability to perceive and respond to mechanical stimuli, is a common and fundamental property of all forms of life. Vascular plants such as Mimosa pudica use this function to protect themselves against herbivory. The mechanical stimulus caused by a landing insect triggers a rapid closing of the leaflets that drives the potential pest away. While this thigmonastic movement is caused by ion fluxes accompanied by a rapid change of volume in the pulvini, the mechanism responsible for the detection of the mechanical stimulus remains poorly understood. Here, we examined the role of mechanosensitive ion channels in the first step of this evolutionarily conserved defense mechanism: the mechanically evoked closing of the leaflet. Our results demonstrate that the key site of mechanosensation in the Mimosa leaflets is the pulvinule, which expresses a stretch-activated chloride-permeable mechanosensitive ion channel. Blocking these channels partially prevents the closure of the leaflets following mechanical stimulation. These results demonstrate a direct relation between the activity of mechanosensitive ion channels and a central defense mechanism of M. pudica.


Assuntos
Canais Iônicos/fisiologia , Mimosa/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/fisiologia , Mecanotransdução Celular , Pulvínulo/fisiologia
3.
Environ Sci Pollut Res Int ; 24(8): 6910-6922, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26820642

RESUMO

Early prediction of compound absorption by cells is of considerable importance in the building of an integrated scheme describing the impact of a compound on intracellular biological processes. In this scope, we study the structure-activity relationships of several benzoic acid-related phenolics which are involved in many plant biological phenomena (growth, flowering, allelopathy, defense processes). Using the partial least squares (PLS) regression method, the impact of molecular descriptors that have been shown to play an important role concerning the uptake of pharmacologically active compounds by animal cells was analyzed in terms of the modification of membrane potential, variations in proton flux, and inhibition of the osmocontractile reaction of pulvinar cells of Mimosa pudica leaves. The hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA), polar surface area (PSA), halogen ratio (Hal ratio), number of rotatable bonds (FRB), molar volume (MV), molecular weight (MW), and molar refractivity (MR) were considered in addition to two physicochemical properties (logD and the amount of non-dissociated form in relation to pKa). HBD + HBA and PSA predominantly impacted the three biological processes compared to the other descriptors. The coefficient of determination in the quantitative structure-activity relationship (QSAR) models indicated that a major part of the observed seismonasty inhibition and proton flux modification can be explained by the impact of these descriptors, whereas this was not the case for membrane potential variations. These results indicate that the transmembrane transport of the compounds is a predominant component. An increasing number of implicated descriptors as the biological processes become more complex may reflect their impacts on an increasing number of sites in the cell. The determination of the most efficient effectors may lead to a practical use to improve drugs in the control of microbial attacks on plants.


Assuntos
Membrana Celular/fisiologia , Mimosa/fisiologia , Fenóis/química , Pulvínulo/fisiologia , Animais , Fenômenos Biológicos , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Ligação de Hidrogênio , Análise dos Mínimos Quadrados , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mimosa/citologia , Mimosa/efeitos dos fármacos , Mimosa/metabolismo , Modelos Teóricos , Fenóis/metabolismo , Prótons , Pulvínulo/citologia , Pulvínulo/efeitos dos fármacos , Pulvínulo/metabolismo , Relação Quantitativa Estrutura-Atividade , Ácido Salicílico/farmacologia
4.
Appl Biochem Biotechnol ; 175(3): 1263-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25380642

RESUMO

Reactive oxygen species (ROS) and malondialdehyde (MDA) in plant cell are thought to be important inducible factors of cell apoptosis if excessively accumulated in cells. To elucidate the metabolic mechanism of MDA production and scavenging in the cytoplasmic male-sterile (CMS) rice, CMS line and maintainer were employed for studying the relationship at different developmental stages by marking upmost pulvinus interval method of experiment. The results showed that the panicles and leaves of the CMS line had a noticeable higher MDA content than those of maintainer line at all five stages that had been investigated (p < 0.05). MDA content in the CMS line in the flag leaves of auricle in the distance 0 mm stage (the meiosis stage) was the highest of the five stages. The increase of MDA contents in sterile panicles and leaves had inducible effects on the enzymic activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). However, at the abortion peak stage, MDA was excessively accumulated and antioxidant enzymic activity reduced significantly, resulting in the generation and scavenging of MDA out of balance.


Assuntos
Citoplasma/metabolismo , Infertilidade das Plantas/fisiologia , Pulvínulo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Hibridização Genética , Malondialdeído/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Oryza/fisiologia , Peroxidase/metabolismo , Folhas de Planta/enzimologia , Sementes/crescimento & desenvolvimento , Autofertilização , Superóxido Dismutase/metabolismo
5.
Plant Signal Behav ; 9(10): e982029, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482796

RESUMO

The fourth basic circuit element, a memristor, is a resistor with memory that was postulated by Chua in 1971. Here we found that memristors exist in vivo. The electrostimulation of the Mimosa pudica by bipolar sinusoidal or triangle periodic waves induce electrical responses with fingerprints of memristors. Uncouplers carbonylcyanide-3-chlorophenylhydrazone and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decrease the amplitude of electrical responses at low and high frequencies of bipolar sinusoidal or triangle periodic electrostimulating waves. Memristive behavior of an electrical network in the Mimosa pudica is linked to the properties of voltage gated ion channels: the channel blocker TEACl reduces the electric response to a conventional resistor. Our results demonstrate that a voltage gated K(+) channel in the excitable tissue of plants has properties of a memristor. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants.


Assuntos
Eletricidade , Fenômenos Eletrofisiológicos , Mimosa/fisiologia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Mimosa/efeitos dos fármacos , Pulvínulo/efeitos dos fármacos , Pulvínulo/fisiologia
6.
Am J Bot ; 100(1): 101-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23125431

RESUMO

Cereal grass pulvini have emerged as model systems that are not only valuable for the study of gravitropism, but are also of agricultural and economic significance. The pulvini are regions of tissue that are apical to each node and collectively return a reoriented stem to a more vertical position. They have proven to be useful for the study of gravisensing and response and are also providing clues about the establishment of polarity across tissues. This review will first highlight the agronomic significance of these stem regions and their benefits for use as model systems and provide a brief historical overview. A detailed discussion of the literature focusing on cell signaling and early changes in gene expression will follow, culminating in a temporal framework outlining events in the signaling and early growth phases of gravitropism in this tissue. Changes in cell wall composition and gene expression that occur well into the growth phase will be touched upon briefly. Finally, some ongoing research involving both maize and wheat pulvini will be introduced along with prospects for future investigations.


Assuntos
Grão Comestível/fisiologia , Gravitropismo/fisiologia , Modelos Biológicos , Poaceae/fisiologia , Pulvínulo/fisiologia , Transdução de Sinais
7.
New Phytol ; 196(1): 92-100, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22891817

RESUMO

Leaves of many plant species open during the day and fold at night. Diurnal leaf movement, named nyctinasty, has been of great interest to researchers since Darwin's time. Nyctinastic leaf movement is generated by the pulvinus, which is a specialized motor organ located at the base of leaf and leaflet. The molecular basis and functional reason behind nyctinasty are unknown. In a forward screening of a retrotransposon-tagged mutant population of Medicago truncatula, four petiolule-like pulvinus (plp) mutant lines with defects in leaf movement were identified and characterized. Loss of function of PLP results in the change of pulvini to petiolules. PLP is specifically expressed in the pulvinus, as demonstrated by quantitative reverse-transcription polymerase chain reaction analysis, expression analysis of a PLP promoter-ß-glucuronidase construct in transgenic plants and in situ hybridization. Microarray analysis revealed that the expression levels of many genes were altered in the mutant during the day and at night. Crosses between the plp mutant and several leaf pattern mutants showed that the developmental mechanisms of pulvini and leaf patterns are likely independent. Our results demonstrated that PLP plays a crucial role in the determination of pulvinus development. Leaf movement generated by pulvini may have an impact on plant vegetative growth.


Assuntos
Ritmo Circadiano/fisiologia , Genes de Plantas/genética , Medicago truncatula/genética , Medicago truncatula/fisiologia , Modelos Biológicos , Mutação/genética , Pulvínulo/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Movimento , Especificidade de Órgãos/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Terciária de Proteína , Pulvínulo/genética , Pulvínulo/crescimento & desenvolvimento
9.
Proc Natl Acad Sci U S A ; 109(29): 11723-8, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22689967

RESUMO

Plants exhibit various kinds of movements that have fascinated scientists and the public for centuries. Physiological studies in plants with the so-called motor organ or pulvinus suggest that cells at opposite sides of the pulvinus mediate leaf or leaflet movements by swelling and shrinking. How motor organ identity is determined is unknown. Using a genetic approach, we isolated a mutant designated elongated petiolule1 (elp1) from Medicago truncatula that fails to fold its leaflets in the dark due to loss of motor organs. Map-based cloning indicated that ELP1 encodes a putative plant-specific LOB domain transcription factor. RNA in situ analysis revealed that ELP1 is expressed in primordial cells that give rise to the motor organ. Ectopic expression of ELP1 resulted in dwarf plants with petioles and rachises reduced in length, and the epidermal cells gained characteristics of motor organ epidermal cells. By identifying ELP1 orthologs from other legume species, namely pea (Pisum sativum) and Lotus japonicus, we show that this motor organ identity is regulated by a conserved molecular mechanism.


Assuntos
Genes de Plantas/genética , Medicago truncatula/genética , Movimento/fisiologia , Pulvínulo/fisiologia , Fatores de Transcrição/genética , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/genética , Hibridização In Situ , Medicago truncatula/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Pulvínulo/genética , Pulvínulo/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Transcrição/metabolismo
10.
Plant Physiol ; 156(4): 2155-71, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21697508

RESUMO

Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus.


Assuntos
Parede Celular/metabolismo , Gravitação , Pulvínulo/citologia , Pulvínulo/fisiologia , Estresse Fisiológico , Zea mays/citologia , Zea mays/fisiologia , Fenômenos Biomecânicos/fisiologia , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Gravitropismo , Lignina/metabolismo , Metabolômica , Modelos Biológicos , Nucleotídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/fisiologia , Polissacarídeos/metabolismo , Pulvínulo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Xilanos/metabolismo , Zea mays/enzimologia , Zea mays/genética
11.
Plant Signal Behav ; 5(10): 1211-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20855975

RESUMO

Thigmonastic or seismonastic movements in Mimosa pudica, such as the response to touch, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of Mimosa pudica shows elastic properties, and we found that electrically or mechanically induced movements of the petiole were accompanied by a change of the pulvinus shape. As the petiole falls, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of water between the upper and lower parts of the pulvinus. This hydroelastic process is reversible. During the relaxation of the petiole, the volume of the lower part of the pulvinus increases and the volume of the upper part decreases. Redistribution of ions between the upper and lower parts of a pulvinus causes fast transport of water through aquaporins and causes a fast change in the volume of the motor cells. Here, the biologically closed electrochemical circuits in electrically and mechanically anisotropic pulvini of Mimosa pudica are analyzed using the charged capacitor method for electrostimulation at different voltages. Changing the polarity of electrodes leads to a strong rectification effect in a pulvinus and to different kinetics of a capacitor discharge if the applied initial voltage is 0.5 V or higher. The electrical properties of Mimosa pudica's pulvini were investigated and the equivalent electrical circuit within the pulvinus was proposed to explain the experimental data. The detailed mechanism of seismonastic movements in Mimosa pudica is discussed.


Assuntos
Anisotropia , Eletricidade , Mimosa/fisiologia , Pulvínulo/fisiologia , Fenômenos Biomecânicos/fisiologia , Estimulação Elétrica , Eletrodos , Cinética , Modelos Biológicos , Tamanho do Órgão , Fatores de Tempo
12.
Int J Biometeorol ; 52(8): 815-22, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18751738

RESUMO

Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33-42 degrees C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance (R2 = 0.54; P < 0.01), and photosynthesis rate (R2 = 0.84; P < 0.01). With a reduction in leaf-incidence angle and increase in air temperature, WUEi was reduced. During the measurements, leaf temperature remained below air temperature and was a significant function of air temperature (r = 0.92; P < 0.01). In conclusion, pulvinus bending followed both light intensity and air temperature and influenced leaf gas exchange.


Assuntos
Ritmo Circadiano/fisiologia , Ecossistema , Fabaceae/fisiologia , Temperatura Alta , Modelos Biológicos , Pulvínulo/fisiologia , Água/fisiologia , Simulação por Computador , Movimento (Física) , Folhas de Planta/fisiologia
13.
Plant Cell Physiol ; 47(4): 531-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16489209

RESUMO

The seismonastic movement of Mimosa pudica is triggered by a sudden loss of turgor pressure. In the present study, we compared the cell cytoskeleton by immunofluorescence analysis before and after movement, and the effects of actin- and microtubule-targeted drugs were examined by injecting them into the cut pulvinus. We found that fragmentation of actin filaments and microtubules occurs during bending, although the actin cytoskeleton, but not the microtubules, was involved in regulation of the movement. Transmission electron microscopy revealed that actin cables became loose after the bending. We injected phosphatase inhibitors into the severed pulvinus to examine the effects of such inhibitors on the actin cytoskeleton. We found that changes in actin isoforms, fragmentation of actin filaments and the bending movement were all inhibited after injection of a tyrosine phosphatase inhibitor. We thus propose that the phosphorylation status of actin at tyrosine residues affects the dynamic reorganization of actin filaments and causes seismonastic movement.


Assuntos
Actinas/análise , Citoesqueleto/química , Citoesqueleto/fisiologia , Mimosa/fisiologia , Folhas de Planta/fisiologia , Actinas/efeitos dos fármacos , Actinas/fisiologia , Benzamidas/farmacologia , Colchicina/farmacologia , Temperatura Baixa , Citocalasina D/farmacologia , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Movimento , Paclitaxel/farmacologia , Faloidina/farmacologia , Fosforilação , Estimulação Física , Folhas de Planta/ultraestrutura , Proteínas Tirosina Fosfatases/metabolismo , Pulvínulo/efeitos dos fármacos , Pulvínulo/fisiologia
14.
Chem Rec ; 6(6): 344-55, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17304541

RESUMO

The chemical aspects of the circadian leaf movement known as "nyctinasty" are discussed in this paper. Each of the nyctinastic plants of five different genera so far examined contained a pair of factors, one of which induced leaf closure and another induced leaf opening. The relative contents of the closing and opening factors changed correlating with the nyctinastic leaf movement. The use of fluorescence-labeled and photoaffinity-labeled factors revealed that the factors bind to specific cells, the motor cells, present in the pulvini, and that the membrane fraction of the motor cells contained two proteins of 210 and 180 kDa, which can bind to the factors.


Assuntos
Relógios Biológicos/fisiologia , Fatores Biológicos/fisiologia , Folhas de Planta , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/fisiologia , Fatores Biológicos/química , Fatores Biológicos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Conformação Proteica , Pulvínulo/enzimologia , Pulvínulo/metabolismo , Pulvínulo/fisiologia
15.
Adv Space Res ; 32(8): 1631-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15015476

RESUMO

In Zea mays L., changes in orientation of stems are perceived by the pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. Gravity is perceived in the bundle sheath cells, which contain amyloplasts that sediment to the new cell base when a change in the gravity vector occurs. The mechanism by which the mechanical signal is transduced into a physiological response is so far unknown for any gravity perceiving tissue. It is hypothesized that this involves interactions of amyloplasts with the plasma membrane and/or ER via cytoskeletal elements. To gain further insights into this process we monitored amyloplast movements in response to gravistimulation. In a pharmacological approach we investigated how the dynamics of plastid sedimentation are affected by actin and microtubule (MT) disrupting drugs. Dark grown caulonemal filaments of the moss Physcomitrella patens respond to gravity vector changes with a reorientation of tip growth away from the gravity vector. MT distributions in tip cells were monitored over time and MTs were seen to accumulate preferentially on the lower flank of the tip 30 min after a 90 degree turn. Using a self-referencing Ca2+ selective ion probe, we found that growing caulonemal filaments exhibit a Ca2+ influx at the apical dome, similar to that reported previously for other tip growing cells. However, in gravistimulated Physcomitrella filaments the region of Ca2+ influx is not confined to the apex, but extends about 60 micrometers along the upper side of the filament. Our results indicate an asymmetry in the Ca2+ flux pattern between the upper and side of the filament suggesting differential activation of Ca2+ permeable channels at the plasma membrane.


Assuntos
Cálcio/metabolismo , Gravitropismo/fisiologia , Sensação Gravitacional/fisiologia , Microtúbulos/fisiologia , Plastídeos/fisiologia , Pulvínulo/fisiologia , Citoesqueleto de Actina/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bryopsida/fisiologia , Bryopsida/ultraestrutura , Canais de Cálcio/metabolismo , Citoesqueleto/fisiologia , Escuridão , Dinitrobenzenos/farmacologia , Herbicidas/farmacologia , Toxinas Marinhas/farmacologia , Microscopia Confocal , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura , Plastídeos/efeitos dos fármacos , Pulvínulo/efeitos dos fármacos , Sulfanilamidas/farmacologia , Tiazolidinas/farmacologia , Moduladores de Tubulina/farmacologia , Zea mays/fisiologia , Zea mays/ultraestrutura
16.
Plant Cell ; 14(3): 727-39, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11910017

RESUMO

Leaf-moving organs, remarkable for the rhythmic volume changes of their motor cells, served as a model system in which to study the regulation of membrane water fluxes. Two plasma membrane intrinsic protein homolog genes, SsAQP1 and SsAQP2, were cloned from these organs and characterized as aquaporins in Xenopus laevis oocytes. Osmotic water permeability (P(f)) was 10 times higher in SsAQP2-expressing oocytes than in SsAQP1-expressing oocytes. SsAQP1 was found to be glycerol permeable, and SsAQP2 was inhibited by 0.5 mM HgCl(2) and by 1 mM phloretin. The aquaporin mRNA levels differed in their spatial distribution in the leaf and were regulated diurnally in phase with leaflet movements. Additionally, SsAQP2 transcription was under circadian control. The P(f) of motor cell protoplasts was regulated diurnally as well: the morning and/or evening P(f) increases were inhibited by 50 microM HgCl(2), by 2 mM cycloheximide, and by 250 microM phloretin to the noon P(f) level. Our results link SsAQP2 to the physiological function of rhythmic cell volume changes.


Assuntos
Aquaporinas/genética , Permeabilidade da Membrana Celular/fisiologia , Ritmo Circadiano/fisiologia , Fabaceae/genética , Proteínas de Plantas/genética , Pulvínulo/fisiologia , Sequência de Aminoácidos , Animais , Aquaporinas/fisiologia , Transporte Biológico/efeitos dos fármacos , Cicloeximida/farmacologia , Dimetil Sulfóxido/farmacologia , Fabaceae/fisiologia , Feminino , Expressão Gênica , Cloreto de Mercúrio/farmacologia , Dados de Sequência Molecular , Oócitos , Floretina/farmacologia , Folhas de Planta/fisiologia , Proteínas de Plantas/fisiologia , Pulvínulo/citologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Água/metabolismo , Xenopus laevis
17.
Plant Physiol ; 128(2): 591-602, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11842162

RESUMO

Maize (Zea mays) stem gravitropism involves differential elongation of cells within a highly specialized region, the stem internodal pulvinus. In the present study, we investigated factors that control gravitropic responses in this system. In the graviresponding pulvinus, hexose sugars (D-Glc and D-Fru) accumulated asymmetrically across the pulvinus. This correlated well with an asymmetric increase in acid invertase activity across the pulvinus. Northern analyses revealed asymmetric induction of one maize acid invertase gene, Ivr2, consistent with transcriptional regulation by gravistimulation. Several lines of evidence indicated that auxin redistribution, as a result of polar auxin transport, is necessary for gravity-stimulated Ivr2 transcript accumulation and differential cell elongation across the maize pulvinus. First, the auxin transport inhibitor, N-1-naphthylphthalamic acid, inhibited gravistimulated curvature and Ivr2 transcript accumulation. Second, a transient gradient of free indole-3-acetic acid (IAA) across the pulvinus was apparent shortly after initiation of gravistimulation. This temporarily free IAA gradient appears to be important for differential cell elongation and Ivr2 transcript accumulation. This is based on the observation that N-1-naphthylphthalamic acid will not inhibit gravitropic responses when applied to pulvinus tissue after the free IAA gradient peak has occurred. Third, IAA alone can stimulate Ivr2 transcript accumulation in non-gravistimulated pulvini. The gravity- and IAA-stimulated increase in Ivr2 transcripts was sensitive to the protein synthesis inhibitor, cycloheximide. Based on these results, a two-phase model describing possible relationships between gravitropic curvature, IAA redistribution, and Ivr2 expression is presented.


Assuntos
Glicosídeo Hidrolases/genética , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Pulvínulo/genética , Zea mays/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosídeo Hidrolases/metabolismo , Sensação Gravitacional/fisiologia , Hexoses/metabolismo , Ftalimidas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Potássio/metabolismo , Pulvínulo/efeitos dos fármacos , Pulvínulo/fisiologia , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , beta-Frutofuranosidase
18.
Plant Physiol ; 128(2): 634-42, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11842166

RESUMO

In a search for potassium channels involved in light- and clock-regulated leaf movements, we cloned four putative K channel genes from the leaf-moving organs, pulvini, of the legume Samanea saman. The S. saman SPOCK1 is homologous to KCO1, an Arabidopsis two-pore-domain K channel, the S. saman SPORK1 is similar to SKOR and GORK, Arabidopsis outward-rectifying Shaker-like K channels, and the S. saman SPICK1 and SPICK2 are homologous to AKT2, a weakly-inward-rectifying Shaker-like Arabidopsis K channel. All four S. saman sequences possess the universal K-channel-specific pore signature, TXXTXGYG, strongly suggesting a role in transmembrane K(+) transport. The four S. saman genes had different expression patterns within four leaf parts: "extensor" and "flexor" (the motor tissues), the leaf blades (mainly mesophyll), and the vascular bundle ("rachis"). Based on northern blot analysis, their transcript level was correlated with the rhythmic leaf movements: (a) all four genes were regulated diurnally (Spick2, Spork1, and Spock1 in extensor and flexor, Spick1 in extensor and rachis); (b) Spork1 and Spock1 rhythms were inverted upon the inversion of the day-night cycle; and (c) in extensor and/or flexor, the expression of Spork1, Spick1, and Spick2 was also under a circadian control. These findings parallel the circadian rhythm shown to govern the resting membrane K(+) permeability in extensor and flexor protoplasts and the susceptibility of this permeability to light stimulation (Kim et al., 1993). Thus, Samanea pulvinar motor cells are the first described system combining light and circadian regulation of K channels at the level of transcript and membrane transport.


Assuntos
Proteínas de Arabidopsis , Ritmo Circadiano/fisiologia , Fabaceae/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Canais de Potássio de Domínios Poros em Tandem , Canais de Potássio/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Transporte Biológico/fisiologia , Permeabilidade da Membrana Celular , Fabaceae/fisiologia , Regulação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Pressão Osmótica , Folhas de Planta/fisiologia , Pulvínulo/genética , Pulvínulo/fisiologia , Homologia de Sequência de Aminoácidos , Superfamília Shaker de Canais de Potássio , Transdução de Sinais , Árvores/genética , Árvores/fisiologia
19.
Plant Cell Physiol ; 42(11): 1219-27, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11726706

RESUMO

Protoplasts isolated from the laminar pulvinus of Phaseolus vulgaris and bathed in a medium containing KCl as the major salt were found to swell in response to IAA and to shrink in response to ABA. The protoplasts of flexor cells and those of extensor cells responded similarly. The results indicate that the cellular content of osmotic solutes is enhanced by IAA and reduced by ABA. The IAA-induced swelling was abolished when either the K(+) or the Cl(-) of the bathing medium was replaced by an impermeant ion or when the medium was adjusted to neutral pH (instead of pH 6). The response was inhibited by vanadate. It is concluded that the swelling is caused by enhanced influxes of K(+) and Cl(-), which probably occur through K(+) channels and Cl(-)/H(+) symporters, respectively. The ABA-induced shrinking was inhibited by 5-nitro-2-(3-phenylpropylamino)-benzoic acid, an anion-channel inhibitor, suggesting that it is caused by Cl(-) efflux through anion channels and charge-balancing K(+) efflux through outward-rectifying K(+) channels. It appears that the two plant hormones act on pulvinar motor cells to regulate their turgor pressure, as they do in stomatal guard cells. The findings are discussed in relation to the pulvinar movements induced by environmental stimuli.


Assuntos
Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Transporte de Íons/fisiologia , Phaseolus/fisiologia , Ácido Abscísico/farmacologia , Antiporters/fisiologia , Ácido Benzoico/farmacologia , Transporte Biológico , Cálcio/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/farmacologia , Pressão Osmótica , Canais de Potássio/fisiologia , Cloreto de Potássio/farmacologia , Protoplastos/fisiologia , Pulvínulo/fisiologia , Vanadatos/farmacologia
20.
Planta ; 213(4): 565-74, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11556789

RESUMO

The intracellular localization of phytochrome in the pulvini of Robinia pseudoacacia L. was analyzed by immunogold electron microscopy after red (R; 15 min) and far-red (FR; 5 min) irradiation 2 h after the beginning of the photoperiod. Screening of the available antibodies by immunoblotting demonstrated that none of the oat (Avena sativa L.) anti-phytochrome A (phy A) monoclonal antibodies) (MAbs) detected Robinia phytochrome. A putative Robinia phy A was detected by immunoblotting using a MAb to mustard (Sinapis alba L.) phy A (CP 2/9). No cross-reactivity was observed in blots probed with a MAb against Cucumis sativus L. phy B (mAT1). Ultrathin sections of LR White resin-embedded pulvini were immunolabelled with CP 2/9 MAb. The labelling was restricted to cortical cells and there was no evidence of labelling either in the vascular system or in the epidermis. The pattern of labelling was the same in both extensor and flexor cells irrespective of whether phytochrome was in the far-red-absorbing (Pfr) state or had reverted to the red-absorbing (Pr) form. Isolated labels and clusters of labels were randomly distributed throughout the cytoplasm. Gold particles were also found in the interior of nuclei, chloroplasts and mitochondria.


Assuntos
Fabaceae/fisiologia , Fitocromo/metabolismo , Pulvínulo/fisiologia , Transporte Biológico , Núcleo Celular/fisiologia , Cloroplastos/fisiologia , Ritmo Circadiano , Fabaceae/efeitos da radiação , Fabaceae/ultraestrutura , Imuno-Histoquímica , Luz , Microscopia Eletrônica , Mitocôndrias/fisiologia , Fotoperíodo , Fitocromo/efeitos da radiação , Fitocromo A , Pulvínulo/efeitos da radiação , Pulvínulo/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA